xilinx: zynq: Add support to secure images

This patch basically adds two new commands for loadig secure
images.
1. zynq rsa adds support to load secure image which can be both
   authenticated or encrypted or both authenticated and encrypted
   image in xilinx bootimage(BOOT.bin) format.
2. zynq aes command adds support to decrypt and load encrypted
   image back to DDR as per destination address. The image has
   to be encrypted using xilinx bootgen tool and to get only the
   encrypted image from tool use -split option while invoking
   bootgen.

Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
lime2-spi
Siva Durga Prasad Paladugu 6 years ago committed by Michal Simek
parent 6bdf0a992c
commit 37e3a36a54
  1. 1
      arch/arm/Kconfig
  2. 1
      arch/arm/mach-zynq/include/mach/hardware.h
  3. 33
      board/xilinx/zynq/Kconfig
  4. 5
      board/xilinx/zynq/Makefile
  5. 143
      board/xilinx/zynq/bootimg.c
  6. 513
      board/xilinx/zynq/cmds.c
  7. 1
      configs/zynq_cse_qspi_defconfig
  8. 45
      drivers/fpga/zynqpl.c
  9. 4
      include/u-boot/rsa-mod-exp.h
  10. 33
      include/zynq_bootimg.h
  11. 4
      include/zynqpl.h
  12. 51
      lib/rsa/rsa-mod-exp.c

@ -1475,6 +1475,7 @@ source "board/vscom/baltos/Kconfig"
source "board/woodburn/Kconfig"
source "board/work-microwave/work_92105/Kconfig"
source "board/xilinx/Kconfig"
source "board/xilinx/zynq/Kconfig"
source "board/xilinx/zynqmp/Kconfig"
source "board/zipitz2/Kconfig"

@ -20,6 +20,7 @@
#define ZYNQ_EFUSE_BASEADDR 0xF800D000
#define ZYNQ_USB_BASEADDR0 0xE0002000
#define ZYNQ_USB_BASEADDR1 0xE0003000
#define ZYNQ_OCM_BASEADDR 0xFFFC0000
/* Bootmode setting values */
#define ZYNQ_BM_MASK 0x7

@ -0,0 +1,33 @@
# SPDX-License-Identifier: GPL-2.0
#
# Copyright (c) 2018, Xilinx, Inc.
if ARCH_ZYNQ
config CMD_ZYNQ
bool "Enable Zynq specific commands"
default y
help
Enables Zynq specific commands.
config CMD_ZYNQ_AES
bool "Enable zynq aes command for decryption of encrypted images"
depends on CMD_ZYNQ
depends on FPGA_ZYNQPL
help
Decrypts the encrypted image present in source address
and places the decrypted image at destination address.
config CMD_ZYNQ_RSA
bool "Enable zynq rsa command for loading secure images"
default y
depends on CMD_ZYNQ
depends on CMD_ZYNQ_AES
help
Enabling this will support zynq secure image verification.
The secure image is a xilinx specific BOOT.BIN with
either authentication or encryption or both encryption
and authentication feature enabled while generating
BOOT.BIN using Xilinx bootgen tool.
endif

@ -26,6 +26,11 @@ $(warning Put custom ps7_init_gpl.c/h to board/xilinx/zynq/custom_hw_platform/))
endif
endif
ifndef CONFIG_SPL_BUILD
obj-$(CONFIG_CMD_ZYNQ) += cmds.o
obj-$(CONFIG_CMD_ZYNQ_RSA) += bootimg.o
endif
obj-$(CONFIG_SPL_BUILD) += $(init-objs)
# Suppress "warning: function declaration isn't a prototype"

@ -0,0 +1,143 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Xilinx, Inc.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <u-boot/md5.h>
#include <zynq_bootimg.h>
DECLARE_GLOBAL_DATA_PTR;
#define ZYNQ_IMAGE_PHDR_OFFSET 0x09C
#define ZYNQ_IMAGE_FSBL_LEN_OFFSET 0x040
#define ZYNQ_PART_HDR_CHKSUM_WORD_COUNT 0x0F
#define ZYNQ_PART_HDR_WORD_COUNT 0x10
#define ZYNQ_MAXIMUM_IMAGE_WORD_LEN 0x40000000
#define MD5_CHECKSUM_SIZE 16
struct headerarray {
u32 fields[16];
};
/*
* Check whether the given partition is last partition or not
*/
static int zynq_islastpartition(struct headerarray *head)
{
int index;
debug("%s\n", __func__);
if (head->fields[ZYNQ_PART_HDR_CHKSUM_WORD_COUNT] != 0xFFFFFFFF)
return -1;
for (index = 0; index < ZYNQ_PART_HDR_WORD_COUNT - 1; index++) {
if (head->fields[index] != 0x0)
return -1;
}
return 0;
}
/*
* Get the partition count from the partition header
*/
int zynq_get_part_count(struct partition_hdr *part_hdr_info)
{
u32 count;
struct headerarray *hap;
debug("%s\n", __func__);
for (count = 0; count < ZYNQ_MAX_PARTITION_NUMBER; count++) {
hap = (struct headerarray *)&part_hdr_info[count];
if (zynq_islastpartition(hap) != -1)
break;
}
return count;
}
/*
* Get the partition info of all the partitions available.
*/
int zynq_get_partition_info(u32 image_base_addr, u32 *fsbl_len,
struct partition_hdr *part_hdr)
{
u32 parthdroffset;
*fsbl_len = *((u32 *)(image_base_addr + ZYNQ_IMAGE_FSBL_LEN_OFFSET));
parthdroffset = *((u32 *)(image_base_addr + ZYNQ_IMAGE_PHDR_OFFSET));
parthdroffset += image_base_addr;
memcpy(part_hdr, (u32 *)parthdroffset,
(sizeof(struct partition_hdr) * ZYNQ_MAX_PARTITION_NUMBER));
return 0;
}
/*
* Check whether the partition header is valid or not
*/
int zynq_validate_hdr(struct partition_hdr *header)
{
struct headerarray *hap;
u32 index;
u32 checksum;
debug("%s\n", __func__);
hap = (struct headerarray *)header;
for (index = 0; index < ZYNQ_PART_HDR_WORD_COUNT; index++) {
if (hap->fields[index])
break;
}
if (index == ZYNQ_PART_HDR_WORD_COUNT)
return -1;
checksum = 0;
for (index = 0; index < ZYNQ_PART_HDR_CHKSUM_WORD_COUNT; index++)
checksum += hap->fields[index];
checksum ^= 0xFFFFFFFF;
if (hap->fields[ZYNQ_PART_HDR_CHKSUM_WORD_COUNT] != checksum) {
printf("Error: Checksum 0x%8.8x != 0x%8.8x\n",
checksum, hap->fields[ZYNQ_PART_HDR_CHKSUM_WORD_COUNT]);
return -1;
}
if (header->imagewordlen > ZYNQ_MAXIMUM_IMAGE_WORD_LEN) {
printf("INVALID_PARTITION_LENGTH\n");
return -1;
}
return 0;
}
/*
* Validate the partition by calculationg the md5 checksum for the
* partition and compare with checksum present in checksum offset of
* partition
*/
int zynq_validate_partition(u32 start_addr, u32 len, u32 chksum_off)
{
u8 checksum[MD5_CHECKSUM_SIZE];
u8 calchecksum[MD5_CHECKSUM_SIZE];
memcpy(&checksum[0], (u32 *)chksum_off, MD5_CHECKSUM_SIZE);
md5_wd((u8 *)start_addr, len, &calchecksum[0], 0x10000);
if (!memcmp(checksum, calchecksum, MD5_CHECKSUM_SIZE))
return 0;
printf("Error: Partition DataChecksum\n");
return -1;
}

@ -0,0 +1,513 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Xilinx, Inc.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <malloc.h>
#include <u-boot/md5.h>
#include <u-boot/rsa.h>
#include <u-boot/rsa-mod-exp.h>
#include <u-boot/sha256.h>
#include <zynqpl.h>
#include <fpga.h>
#include <zynq_bootimg.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_CMD_ZYNQ_RSA
#define ZYNQ_EFUSE_RSA_ENABLE_MASK 0x400
#define ZYNQ_ATTRIBUTE_PL_IMAGE_MASK 0x20
#define ZYNQ_ATTRIBUTE_CHECKSUM_TYPE_MASK 0x7000
#define ZYNQ_ATTRIBUTE_RSA_PRESENT_MASK 0x8000
#define ZYNQ_ATTRIBUTE_RSA_PART_OWNER_MASK 0x30000
#define ZYNQ_RSA_MODULAR_SIZE 256
#define ZYNQ_RSA_MODULAR_EXT_SIZE 256
#define ZYNQ_RSA_EXPO_SIZE 64
#define ZYNQ_RSA_SPK_SIGNATURE_SIZE 256
#define ZYNQ_RSA_PARTITION_SIGNATURE_SIZE 256
#define ZYNQ_RSA_SIGNATURE_SIZE 0x6C0
#define ZYNQ_RSA_HEADER_SIZE 4
#define ZYNQ_RSA_MAGIC_WORD_SIZE 60
#define ZYNQ_RSA_PART_OWNER_UBOOT 1
#define ZYNQ_RSA_ALIGN_PPK_START 64
#define WORD_LENGTH_SHIFT 2
static u8 *ppkmodular;
static u8 *ppkmodularex;
struct zynq_rsa_public_key {
uint len; /* Length of modulus[] in number of u32 */
u32 n0inv; /* -1 / modulus[0] mod 2^32 */
u32 *modulus; /* modulus as little endian array */
u32 *rr; /* R^2 as little endian array */
};
static struct zynq_rsa_public_key public_key;
static struct partition_hdr part_hdr[ZYNQ_MAX_PARTITION_NUMBER];
/*
* Extract the primary public key components from already autheticated FSBL
*/
static void zynq_extract_ppk(u32 fsbl_len)
{
u32 padsize;
u8 *ppkptr;
debug("%s\n", __func__);
/*
* Extract the authenticated PPK from OCM i.e at end of the FSBL
*/
ppkptr = (u8 *)(fsbl_len + ZYNQ_OCM_BASEADDR);
padsize = ((u32)ppkptr % ZYNQ_RSA_ALIGN_PPK_START);
if (padsize)
ppkptr += (ZYNQ_RSA_ALIGN_PPK_START - padsize);
ppkptr += ZYNQ_RSA_HEADER_SIZE;
ppkptr += ZYNQ_RSA_MAGIC_WORD_SIZE;
ppkmodular = (u8 *)ppkptr;
ppkptr += ZYNQ_RSA_MODULAR_SIZE;
ppkmodularex = (u8 *)ppkptr;
ppkptr += ZYNQ_RSA_MODULAR_EXT_SIZE;
}
/*
* Calculate the inverse(-1 / modulus[0] mod 2^32 ) for the PPK
*/
static u32 zynq_calc_inv(void)
{
u32 modulus = public_key.modulus[0];
u32 tmp = BIT(1);
u32 inverse;
inverse = modulus & BIT(0);
while (tmp) {
inverse *= 2 - modulus * inverse;
tmp *= tmp;
}
return ~(inverse - 1);
}
/*
* Recreate the signature by padding the bytes and verify with hash value
*/
static int zynq_pad_and_check(u8 *signature, u8 *hash)
{
u8 padding[] = {0x30, 0x31, 0x30, 0x0D, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04,
0x20};
u8 *pad_ptr = signature + 256;
u32 pad = 202;
u32 ii;
/*
* Re-Create PKCS#1v1.5 Padding
* MSB ----------------------------------------------------LSB
* 0x0 || 0x1 || 0xFF(for 202 bytes) || 0x0 || T_padding || SHA256 Hash
*/
if (*--pad_ptr != 0 || *--pad_ptr != 1)
return -1;
for (ii = 0; ii < pad; ii++) {
if (*--pad_ptr != 0xFF)
return -1;
}
if (*--pad_ptr != 0)
return -1;
for (ii = 0; ii < sizeof(padding); ii++) {
if (*--pad_ptr != padding[ii])
return -1;
}
for (ii = 0; ii < 32; ii++) {
if (*--pad_ptr != hash[ii])
return -1;
}
return 0;
}
/*
* Verify and extract the hash value from signature using the public key
* and compare it with calculated hash value.
*/
static int zynq_rsa_verify_key(const struct zynq_rsa_public_key *key,
const u8 *sig, const u32 sig_len, const u8 *hash)
{
int status;
void *buf;
if (!key || !sig || !hash)
return -1;
if (sig_len != (key->len * sizeof(u32))) {
printf("Signature is of incorrect length %d\n", sig_len);
return -1;
}
/* Sanity check for stack size */
if (sig_len > ZYNQ_RSA_SPK_SIGNATURE_SIZE) {
printf("Signature length %u exceeds maximum %d\n", sig_len,
ZYNQ_RSA_SPK_SIGNATURE_SIZE);
return -1;
}
buf = malloc(sig_len);
if (!buf)
return -1;
memcpy(buf, sig, sig_len);
status = zynq_pow_mod((u32 *)key, (u32 *)buf);
if (status == -1) {
free(buf);
return status;
}
status = zynq_pad_and_check((u8 *)buf, (u8 *)hash);
free(buf);
return status;
}
/*
* Authenticate the partition
*/
static int zynq_authenticate_part(u8 *buffer, u32 size)
{
u8 hash_signature[32];
u8 *spk_modular;
u8 *spk_modular_ex;
u8 *signature_ptr;
u32 status;
debug("%s\n", __func__);
signature_ptr = (u8 *)(buffer + size - ZYNQ_RSA_SIGNATURE_SIZE);
signature_ptr += ZYNQ_RSA_HEADER_SIZE;
signature_ptr += ZYNQ_RSA_MAGIC_WORD_SIZE;
ppkmodular = (u8 *)signature_ptr;
signature_ptr += ZYNQ_RSA_MODULAR_SIZE;
ppkmodularex = signature_ptr;
signature_ptr += ZYNQ_RSA_MODULAR_EXT_SIZE;
signature_ptr += ZYNQ_RSA_EXPO_SIZE;
sha256_csum_wd((const unsigned char *)signature_ptr,
(ZYNQ_RSA_MODULAR_EXT_SIZE + ZYNQ_RSA_EXPO_SIZE +
ZYNQ_RSA_MODULAR_SIZE),
(unsigned char *)hash_signature, 0x1000);
spk_modular = (u8 *)signature_ptr;
signature_ptr += ZYNQ_RSA_MODULAR_SIZE;
spk_modular_ex = (u8 *)signature_ptr;
signature_ptr += ZYNQ_RSA_MODULAR_EXT_SIZE;
signature_ptr += ZYNQ_RSA_EXPO_SIZE;
public_key.len = ZYNQ_RSA_MODULAR_SIZE / sizeof(u32);
public_key.modulus = (u32 *)ppkmodular;
public_key.rr = (u32 *)ppkmodularex;
public_key.n0inv = zynq_calc_inv();
status = zynq_rsa_verify_key(&public_key, signature_ptr,
ZYNQ_RSA_SPK_SIGNATURE_SIZE,
hash_signature);
if (status)
return status;
signature_ptr += ZYNQ_RSA_SPK_SIGNATURE_SIZE;
sha256_csum_wd((const unsigned char *)buffer,
(size - ZYNQ_RSA_PARTITION_SIGNATURE_SIZE),
(unsigned char *)hash_signature, 0x1000);
public_key.len = ZYNQ_RSA_MODULAR_SIZE / sizeof(u32);
public_key.modulus = (u32 *)spk_modular;
public_key.rr = (u32 *)spk_modular_ex;
public_key.n0inv = zynq_calc_inv();
return zynq_rsa_verify_key(&public_key, (u8 *)signature_ptr,
ZYNQ_RSA_PARTITION_SIGNATURE_SIZE,
(u8 *)hash_signature);
}
/*
* Parses the partition header and verfies the authenticated and
* encrypted image.
*/
static int zynq_verify_image(u32 src_ptr)
{
u32 silicon_ver, image_base_addr, status;
u32 partition_num = 0;
u32 efuseval, srcaddr, size, fsbl_len;
struct partition_hdr *hdr_ptr;
u32 part_data_len, part_img_len, part_attr;
u32 part_load_addr, part_dst_addr, part_chksum_offset;
u32 part_start_addr, part_total_size, partitioncount;
bool encrypt_part_flag = false;
bool part_chksum_flag = false;
bool signed_part_flag = false;
image_base_addr = src_ptr;
silicon_ver = zynq_get_silicon_version();
/* RSA not supported in silicon versions 1.0 and 2.0 */
if (silicon_ver == 0 || silicon_ver == 1)
return -1;
zynq_get_partition_info(image_base_addr, &fsbl_len,
&part_hdr[0]);
/* Extract ppk if efuse was blown Otherwise return error */
efuseval = readl(&efuse_base->status);
if (!(efuseval & ZYNQ_EFUSE_RSA_ENABLE_MASK))
return -1;
zynq_extract_ppk(fsbl_len);
partitioncount = zynq_get_part_count(&part_hdr[0]);
/*
* As the first two partitions are related to fsbl,
* we can ignore those two in bootimage and the below
* code doesn't need to validate it as fsbl is already
* done by now
*/
if (partitioncount <= 2 ||
partitioncount > ZYNQ_MAX_PARTITION_NUMBER)
return -1;
while (partition_num < partitioncount) {
if (((part_hdr[partition_num].partitionattr &
ZYNQ_ATTRIBUTE_RSA_PART_OWNER_MASK) >> 16) !=
ZYNQ_RSA_PART_OWNER_UBOOT) {
printf("UBOOT is not Owner for partition %d\n",
partition_num);
partition_num++;
continue;
}
hdr_ptr = &part_hdr[partition_num];
status = zynq_validate_hdr(hdr_ptr);
if (status)
return status;
part_data_len = hdr_ptr->datawordlen;
part_img_len = hdr_ptr->imagewordlen;
part_attr = hdr_ptr->partitionattr;
part_load_addr = hdr_ptr->loadaddr;
part_chksum_offset = hdr_ptr->checksumoffset;
part_start_addr = hdr_ptr->partitionstart;
part_total_size = hdr_ptr->partitionwordlen;
if (part_data_len != part_img_len) {
debug("Encrypted\n");
encrypt_part_flag = true;
}
if (part_attr & ZYNQ_ATTRIBUTE_CHECKSUM_TYPE_MASK)
part_chksum_flag = true;
if (part_attr & ZYNQ_ATTRIBUTE_RSA_PRESENT_MASK) {
debug("RSA Signed\n");
signed_part_flag = true;
size = part_total_size << WORD_LENGTH_SHIFT;
} else {
size = part_img_len;
}
if (!signed_part_flag && !part_chksum_flag) {
printf("Partition not signed & no chksum\n");
partition_num++;
continue;
}
srcaddr = image_base_addr +
(part_start_addr << WORD_LENGTH_SHIFT);
/*
* This validation is just for PS DDR.
* TODO: Update this for PL DDR check as well.
*/
if (part_load_addr < gd->bd->bi_dram[0].start &&
((part_load_addr + part_data_len) >
(gd->bd->bi_dram[0].start +
gd->bd->bi_dram[0].size))) {
printf("INVALID_LOAD_ADDRESS_FAIL\n");
return -1;
}
if (part_attr & ZYNQ_ATTRIBUTE_PL_IMAGE_MASK)
part_load_addr = srcaddr;
else
memcpy((u32 *)part_load_addr, (u32 *)srcaddr,
size);
if (part_chksum_flag) {
part_chksum_offset = image_base_addr +
(part_chksum_offset <<
WORD_LENGTH_SHIFT);
status = zynq_validate_partition(part_load_addr,
(part_total_size <<
WORD_LENGTH_SHIFT),
part_chksum_offset);
if (status != 0) {
printf("PART_CHKSUM_FAIL\n");
return -1;
}
debug("Partition Validation Done\n");
}
if (signed_part_flag) {
status = zynq_authenticate_part((u8 *)part_load_addr,
size);
if (status != 0) {
printf("AUTHENTICATION_FAIL\n");
return -1;
}
debug("Authentication Done\n");
}
if (encrypt_part_flag) {
debug("DECRYPTION\n");
part_dst_addr = part_load_addr;
if (part_attr & ZYNQ_ATTRIBUTE_PL_IMAGE_MASK) {
partition_num++;
continue;
}
status = zynq_decrypt_load(part_load_addr,
part_img_len,
part_dst_addr,
part_data_len);
if (status != 0) {
printf("DECRYPTION_FAIL\n");
return -1;
}
}
partition_num++;
}
return 0;
}
static int do_zynq_rsa(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
u32 src_ptr;
char *endp;
src_ptr = simple_strtoul(argv[2], &endp, 16);
if (*argv[2] == 0 || *endp != 0)
return CMD_RET_USAGE;
if (zynq_verify_image(src_ptr))
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
#endif
#ifdef CONFIG_CMD_ZYNQ_AES
static int zynq_decrypt_image(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
char *endp;
u32 srcaddr, srclen, dstaddr, dstlen;
int status;
srcaddr = simple_strtoul(argv[2], &endp, 16);
if (*argv[2] == 0 || *endp != 0)
return CMD_RET_USAGE;
srclen = simple_strtoul(argv[3], &endp, 16);
if (*argv[3] == 0 || *endp != 0)
return CMD_RET_USAGE;
dstaddr = simple_strtoul(argv[4], &endp, 16);
if (*argv[4] == 0 || *endp != 0)
return CMD_RET_USAGE;
dstlen = simple_strtoul(argv[5], &endp, 16);
if (*argv[5] == 0 || *endp != 0)
return CMD_RET_USAGE;
/*
* Roundup source and destination lengths to
* word size
*/
if (srclen % 4)
srclen = roundup(srclen, 4);
if (dstlen % 4)
dstlen = roundup(dstlen, 4);
status = zynq_decrypt_load(srcaddr, srclen >> 2, dstaddr, dstlen >> 2);
if (status != 0)
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
#endif
static cmd_tbl_t zynq_commands[] = {
#ifdef CONFIG_CMD_ZYNQ_RSA
U_BOOT_CMD_MKENT(rsa, 3, 1, do_zynq_rsa, "", ""),
#endif
#ifdef CONFIG_CMD_ZYNQ_AES
U_BOOT_CMD_MKENT(aes, 6, 1, zynq_decrypt_image, "", ""),
#endif
};
static int do_zynq(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
cmd_tbl_t *zynq_cmd;
int ret;
if (!ARRAY_SIZE(zynq_commands)) {
puts("No zynq specific command enabled\n");
return CMD_RET_USAGE;
}
if (argc < 2)
return CMD_RET_USAGE;
zynq_cmd = find_cmd_tbl(argv[1], zynq_commands,
ARRAY_SIZE(zynq_commands));
if (!zynq_cmd || argc != zynq_cmd->maxargs)
return CMD_RET_USAGE;
ret = zynq_cmd->cmd(zynq_cmd, flag, argc, argv);
return cmd_process_error(zynq_cmd, ret);
}
static char zynq_help_text[] =
""
#ifdef CONFIG_CMD_ZYNQ_RSA
"rsa <baseaddr> - Verifies the authenticated and encrypted\n"
" zynq images and loads them back to load\n"
" addresses as specified in BOOT image(BOOT.BIN)\n"
#endif
#ifdef CONFIG_CMD_ZYNQ_AES
"aes <srcaddr> <srclen> <dstaddr> <dstlen>\n"
" - Decrypts the encrypted image present in source\n"
" address and places the decrypted image at\n"
" destination address\n"
#endif
;
U_BOOT_CMD(zynq, 6, 0, do_zynq,
"Zynq specific commands", zynq_help_text
);

@ -7,6 +7,7 @@ CONFIG_DEBUG_UART_BASE=0x0
CONFIG_DEBUG_UART_CLOCK=0
CONFIG_SPL_STACK_R_ADDR=0x200000
# CONFIG_ZYNQ_DDRC_INIT is not set
# CONFIG_CMD_ZYNQ is not set
CONFIG_DEFAULT_DEVICE_TREE="zynq-cse-qspi-single"
CONFIG_DEBUG_UART=y
CONFIG_DISTRO_DEFAULTS=y

@ -17,6 +17,7 @@
#define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
#define DEVCFG_CTRL_PCFG_AES_EFUSE_MASK 0x00001000
#define DEVCFG_CTRL_PCAP_RATE_EN_MASK 0x02000000
#define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
#define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
#define DEVCFG_ISR_RX_FIFO_OV 0x00040000
@ -497,3 +498,47 @@ struct xilinx_fpga_op zynq_op = {
.loadfs = zynq_loadfs,
#endif
};
#ifdef CONFIG_CMD_ZYNQ_AES
/*
* Load the encrypted image from src addr and decrypt the image and
* place it back the decrypted image into dstaddr.
*/
int zynq_decrypt_load(u32 srcaddr, u32 srclen, u32 dstaddr, u32 dstlen)
{
if (srcaddr < SZ_1M || dstaddr < SZ_1M) {
printf("%s: src and dst addr should be > 1M\n",
__func__);
return FPGA_FAIL;
}
if (zynq_dma_xfer_init(BIT_NONE)) {
printf("%s: zynq_dma_xfer_init FAIL\n", __func__);
return FPGA_FAIL;
}
writel((readl(&devcfg_base->ctrl) | DEVCFG_CTRL_PCAP_RATE_EN_MASK),
&devcfg_base->ctrl);
debug("%s: Source = 0x%08X\n", __func__, (u32)srcaddr);
debug("%s: Size = %zu\n", __func__, srclen);
/* flush(clean & invalidate) d-cache range buf */
flush_dcache_range((u32)srcaddr, (u32)srcaddr +
roundup(srclen << 2, ARCH_DMA_MINALIGN));
/*
* Flush destination address range only if image is not
* bitstream.
*/
flush_dcache_range((u32)dstaddr, (u32)dstaddr +
roundup(dstlen << 2, ARCH_DMA_MINALIGN));
if (zynq_dma_transfer(srcaddr | 1, srclen, dstaddr | 1, dstlen))
return FPGA_FAIL;
writel((readl(&devcfg_base->ctrl) & ~DEVCFG_CTRL_PCAP_RATE_EN_MASK),
&devcfg_base->ctrl);
return FPGA_SUCCESS;
}
#endif

@ -42,6 +42,10 @@ int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
int rsa_mod_exp(struct udevice *dev, const uint8_t *sig, uint32_t sig_len,
struct key_prop *node, uint8_t *out);
#if defined(CONFIG_CMD_ZYNQ_RSA)
int zynq_pow_mod(u32 *keyptr, u32 *inout);
#endif
/**
* struct struct mod_exp_ops - Driver model for RSA Modular Exponentiation
* operations

@ -0,0 +1,33 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (C) 2018 Xilinx, Inc.
*/
#ifndef _ZYNQ_BOOTIMG_H_
#define _ZYNQ_BOOTIMG_H_
#define ZYNQ_MAX_PARTITION_NUMBER 0xE
struct partition_hdr {
u32 imagewordlen; /* 0x0 */
u32 datawordlen; /* 0x4 */
u32 partitionwordlen; /* 0x8 */
u32 loadaddr; /* 0xC */
u32 execaddr; /* 0x10 */
u32 partitionstart; /* 0x14 */
u32 partitionattr; /* 0x18 */
u32 sectioncount; /* 0x1C */
u32 checksumoffset; /* 0x20 */
u32 pads1[1];
u32 acoffset; /* 0x28 */
u32 pads2[4];
u32 checksum; /* 0x3C */
};
int zynq_get_part_count(struct partition_hdr *part_hdr_info);
int zynq_get_partition_info(u32 image_base_addr, u32 *fsbl_len,
struct partition_hdr *part_hdr);
int zynq_validate_hdr(struct partition_hdr *header);
int zynq_validate_partition(u32 start_addr, u32 len, u32 chksum_off);
#endif /* _ZYNQ_BOOTIMG_H_ */

@ -11,6 +11,10 @@
#include <xilinx.h>
#ifdef CONFIG_CMD_ZYNQ_AES
int zynq_decrypt_load(u32 srcaddr, u32 dstaddr, u32 srclen, u32 dstlen);
#endif
extern struct xilinx_fpga_op zynq_op;
#define XILINX_ZYNQ_XC7Z007S 0x3

@ -300,3 +300,54 @@ int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
return 0;
}
#if defined(CONFIG_CMD_ZYNQ_RSA)
/**
* zynq_pow_mod - in-place public exponentiation
*
* @keyptr: RSA key
* @inout: Big-endian word array containing value and result
* @return 0 on successful calculation, otherwise failure error code
*
* FIXME: Use pow_mod() instead of zynq_pow_mod()
* pow_mod calculation required for zynq is bit different from
* pw_mod above here, hence defined zynq specific routine.
*/
int zynq_pow_mod(u32 *keyptr, u32 *inout)
{
u32 *result, *ptr;
uint i;
struct rsa_public_key *key;
u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES];
key = (struct rsa_public_key *)keyptr;
/* Sanity check for stack size - key->len is in 32-bit words */
if (key->len > RSA_MAX_KEY_BITS / 32) {
debug("RSA key words %u exceeds maximum %d\n", key->len,
RSA_MAX_KEY_BITS / 32);
return -EINVAL;
}
result = tmp; /* Re-use location. */
for (i = 0, ptr = inout; i < key->len; i++, ptr++)
val[i] = *(ptr);
montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */
for (i = 0; i < 16; i += 2) {
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */
montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */
}
montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */
/* Make sure result < mod; result is at most 1x mod too large. */
if (greater_equal_modulus(key, result))
subtract_modulus(key, result);
for (i = 0, ptr = inout; i < key->len; i++, ptr++)
*ptr = result[i];
return 0;
}
#endif

Loading…
Cancel
Save