Add NAND support (including spl) on IFC, such as is found on the p1010. Note that using hardware ECC on IFC with small-page NAND (which is what comes on the p1010rdb reference board) means there will be insufficient OOB space for JFFS2, since IFC does not support 1-bit ECC. UBI should work, as it does not use OOB for anything but ECC. When hardware ECC is not enabled in CSOR, software ECC is now used. Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com> [scottwood@freescale.com: ECC rework and misc fixes] Signed-off-by: Scott Wood <scottwood@freescale.com>master
parent
49249e137d
commit
52f90dad60
@ -0,0 +1,850 @@ |
||||
/* Integrated Flash Controller NAND Machine Driver
|
||||
* |
||||
* Copyright (c) 2011 Freescale Semiconductor, Inc |
||||
* |
||||
* Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com> |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation; either version 2 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||||
*/ |
||||
|
||||
#include <common.h> |
||||
#include <malloc.h> |
||||
|
||||
#include <linux/mtd/mtd.h> |
||||
#include <linux/mtd/nand.h> |
||||
#include <linux/mtd/nand_ecc.h> |
||||
|
||||
#include <asm/io.h> |
||||
#include <asm/errno.h> |
||||
#include <asm/fsl_ifc.h> |
||||
|
||||
#define MAX_BANKS 4 |
||||
#define ERR_BYTE 0xFF /* Value returned for read bytes |
||||
when read failed */ |
||||
#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC |
||||
NAND Machine */ |
||||
|
||||
struct fsl_ifc_ctrl; |
||||
|
||||
/* mtd information per set */ |
||||
struct fsl_ifc_mtd { |
||||
struct mtd_info mtd; |
||||
struct nand_chip chip; |
||||
struct fsl_ifc_ctrl *ctrl; |
||||
|
||||
struct device *dev; |
||||
int bank; /* Chip select bank number */ |
||||
unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ |
||||
u8 __iomem *vbase; /* Chip select base virtual address */ |
||||
}; |
||||
|
||||
/* overview of the fsl ifc controller */ |
||||
struct fsl_ifc_ctrl { |
||||
struct nand_hw_control controller; |
||||
struct fsl_ifc_mtd *chips[MAX_BANKS]; |
||||
|
||||
/* device info */ |
||||
struct fsl_ifc *regs; |
||||
uint8_t __iomem *addr; /* Address of assigned IFC buffer */ |
||||
unsigned int cs_nand; /* On which chipsel NAND is connected */ |
||||
unsigned int page; /* Last page written to / read from */ |
||||
unsigned int read_bytes; /* Number of bytes read during command */ |
||||
unsigned int column; /* Saved column from SEQIN */ |
||||
unsigned int index; /* Pointer to next byte to 'read' */ |
||||
unsigned int status; /* status read from NEESR after last op */ |
||||
unsigned int oob; /* Non zero if operating on OOB data */ |
||||
unsigned int eccread; /* Non zero for a full-page ECC read */ |
||||
}; |
||||
|
||||
static struct fsl_ifc_ctrl *ifc_ctrl; |
||||
|
||||
/* 512-byte page with 4-bit ECC, 8-bit */ |
||||
static struct nand_ecclayout oob_512_8bit_ecc4 = { |
||||
.eccbytes = 8, |
||||
.eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, |
||||
.oobfree = { {0, 5}, {6, 2} }, |
||||
}; |
||||
|
||||
/* 512-byte page with 4-bit ECC, 16-bit */ |
||||
static struct nand_ecclayout oob_512_16bit_ecc4 = { |
||||
.eccbytes = 8, |
||||
.eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, |
||||
.oobfree = { {2, 6}, }, |
||||
}; |
||||
|
||||
/* 2048-byte page size with 4-bit ECC */ |
||||
static struct nand_ecclayout oob_2048_ecc4 = { |
||||
.eccbytes = 32, |
||||
.eccpos = { |
||||
8, 9, 10, 11, 12, 13, 14, 15, |
||||
16, 17, 18, 19, 20, 21, 22, 23, |
||||
24, 25, 26, 27, 28, 29, 30, 31, |
||||
32, 33, 34, 35, 36, 37, 38, 39, |
||||
}, |
||||
.oobfree = { {2, 6}, {40, 24} }, |
||||
}; |
||||
|
||||
/* 4096-byte page size with 4-bit ECC */ |
||||
static struct nand_ecclayout oob_4096_ecc4 = { |
||||
.eccbytes = 64, |
||||
.eccpos = { |
||||
8, 9, 10, 11, 12, 13, 14, 15, |
||||
16, 17, 18, 19, 20, 21, 22, 23, |
||||
24, 25, 26, 27, 28, 29, 30, 31, |
||||
32, 33, 34, 35, 36, 37, 38, 39, |
||||
40, 41, 42, 43, 44, 45, 46, 47, |
||||
48, 49, 50, 51, 52, 53, 54, 55, |
||||
56, 57, 58, 59, 60, 61, 62, 63, |
||||
64, 65, 66, 67, 68, 69, 70, 71, |
||||
}, |
||||
.oobfree = { {2, 6}, {72, 56} }, |
||||
}; |
||||
|
||||
/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ |
||||
static struct nand_ecclayout oob_4096_ecc8 = { |
||||
.eccbytes = 128, |
||||
.eccpos = { |
||||
8, 9, 10, 11, 12, 13, 14, 15, |
||||
16, 17, 18, 19, 20, 21, 22, 23, |
||||
24, 25, 26, 27, 28, 29, 30, 31, |
||||
32, 33, 34, 35, 36, 37, 38, 39, |
||||
40, 41, 42, 43, 44, 45, 46, 47, |
||||
48, 49, 50, 51, 52, 53, 54, 55, |
||||
56, 57, 58, 59, 60, 61, 62, 63, |
||||
64, 65, 66, 67, 68, 69, 70, 71, |
||||
72, 73, 74, 75, 76, 77, 78, 79, |
||||
80, 81, 82, 83, 84, 85, 86, 87, |
||||
88, 89, 90, 91, 92, 93, 94, 95, |
||||
96, 97, 98, 99, 100, 101, 102, 103, |
||||
104, 105, 106, 107, 108, 109, 110, 111, |
||||
112, 113, 114, 115, 116, 117, 118, 119, |
||||
120, 121, 122, 123, 124, 125, 126, 127, |
||||
128, 129, 130, 131, 132, 133, 134, 135, |
||||
}, |
||||
.oobfree = { {2, 6}, {136, 82} }, |
||||
}; |
||||
|
||||
|
||||
/*
|
||||
* Generic flash bbt descriptors |
||||
*/ |
||||
static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
||||
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
||||
|
||||
static struct nand_bbt_descr bbt_main_descr = { |
||||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
||||
NAND_BBT_2BIT | NAND_BBT_VERSION, |
||||
.offs = 2, /* 0 on 8-bit small page */ |
||||
.len = 4, |
||||
.veroffs = 6, |
||||
.maxblocks = 4, |
||||
.pattern = bbt_pattern, |
||||
}; |
||||
|
||||
static struct nand_bbt_descr bbt_mirror_descr = { |
||||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
||||
NAND_BBT_2BIT | NAND_BBT_VERSION, |
||||
.offs = 2, /* 0 on 8-bit small page */ |
||||
.len = 4, |
||||
.veroffs = 6, |
||||
.maxblocks = 4, |
||||
.pattern = mirror_pattern, |
||||
}; |
||||
|
||||
/*
|
||||
* Set up the IFC hardware block and page address fields, and the ifc nand |
||||
* structure addr field to point to the correct IFC buffer in memory |
||||
*/ |
||||
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
struct fsl_ifc *ifc = ctrl->regs; |
||||
int buf_num; |
||||
|
||||
ctrl->page = page_addr; |
||||
|
||||
/* Program ROW0/COL0 */ |
||||
out_be32(&ifc->ifc_nand.row0, page_addr); |
||||
out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); |
||||
|
||||
buf_num = page_addr & priv->bufnum_mask; |
||||
|
||||
ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); |
||||
ctrl->index = column; |
||||
|
||||
/* for OOB data point to the second half of the buffer */ |
||||
if (oob) |
||||
ctrl->index += mtd->writesize; |
||||
} |
||||
|
||||
static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, |
||||
unsigned int bufnum) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); |
||||
u32 __iomem *main = (u32 *)addr; |
||||
u8 __iomem *oob = addr + mtd->writesize; |
||||
int i; |
||||
|
||||
for (i = 0; i < mtd->writesize / 4; i++) { |
||||
if (__raw_readl(&main[i]) != 0xffffffff) |
||||
return 0; |
||||
} |
||||
|
||||
for (i = 0; i < chip->ecc.layout->eccbytes; i++) { |
||||
int pos = chip->ecc.layout->eccpos[i]; |
||||
|
||||
if (__raw_readb(&oob[pos]) != 0xff) |
||||
return 0; |
||||
} |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
/* returns nonzero if entire page is blank */ |
||||
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, |
||||
u32 *eccstat, unsigned int bufnum) |
||||
{ |
||||
u32 reg = eccstat[bufnum / 4]; |
||||
int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; |
||||
|
||||
if (errors == 15) { /* uncorrectable */ |
||||
/* Blank pages fail hw ECC checks */ |
||||
if (is_blank(mtd, ctrl, bufnum)) |
||||
return 1; |
||||
|
||||
/*
|
||||
* We disable ECCER reporting in hardware due to |
||||
* erratum IFC-A002770 -- so report it now if we |
||||
* see an uncorrectable error in ECCSTAT. |
||||
*/ |
||||
ctrl->status |= IFC_NAND_EVTER_STAT_ECCER; |
||||
} else if (errors > 0) { |
||||
mtd->ecc_stats.corrected += errors; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/*
|
||||
* execute IFC NAND command and wait for it to complete |
||||
*/ |
||||
static int fsl_ifc_run_command(struct mtd_info *mtd) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
struct fsl_ifc *ifc = ctrl->regs; |
||||
long long end_tick; |
||||
u32 eccstat[4]; |
||||
int i; |
||||
|
||||
/* set the chip select for NAND Transaction */ |
||||
out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand); |
||||
|
||||
/* start read/write seq */ |
||||
out_be32(&ifc->ifc_nand.nandseq_strt, |
||||
IFC_NAND_SEQ_STRT_FIR_STRT); |
||||
|
||||
/* wait for NAND Machine complete flag or timeout */ |
||||
end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks(); |
||||
|
||||
while (end_tick > get_ticks()) { |
||||
ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat); |
||||
|
||||
if (ctrl->status & IFC_NAND_EVTER_STAT_OPC) |
||||
break; |
||||
} |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_evter_stat, ctrl->status); |
||||
|
||||
if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER) |
||||
printf("%s: Flash Time Out Error\n", __func__); |
||||
if (ctrl->status & IFC_NAND_EVTER_STAT_WPER) |
||||
printf("%s: Write Protect Error\n", __func__); |
||||
|
||||
if (ctrl->eccread) { |
||||
int bufperpage = mtd->writesize / 512; |
||||
int bufnum = (ctrl->page & priv->bufnum_mask) * bufperpage; |
||||
int bufnum_end = bufnum + bufperpage - 1; |
||||
|
||||
for (i = bufnum / 4; i <= bufnum_end / 4; i++) |
||||
eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); |
||||
|
||||
for (i = bufnum; i <= bufnum_end; i++) { |
||||
if (check_read_ecc(mtd, ctrl, eccstat, i)) |
||||
break; |
||||
} |
||||
|
||||
ctrl->eccread = 0; |
||||
} |
||||
|
||||
/* returns 0 on success otherwise non-zero) */ |
||||
return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; |
||||
} |
||||
|
||||
static void fsl_ifc_do_read(struct nand_chip *chip, |
||||
int oob, |
||||
struct mtd_info *mtd) |
||||
{ |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
struct fsl_ifc *ifc = ctrl->regs; |
||||
|
||||
/* Program FIR/IFC_NAND_FCR0 for Small/Large page */ |
||||
if (mtd->writesize > 512) { |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
||||
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | |
||||
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fir1, 0x0); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | |
||||
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); |
||||
} else { |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
||||
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); |
||||
|
||||
if (oob) |
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); |
||||
else |
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); |
||||
} |
||||
} |
||||
|
||||
/* cmdfunc send commands to the IFC NAND Machine */ |
||||
static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, |
||||
int column, int page_addr) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
struct fsl_ifc *ifc = ctrl->regs; |
||||
|
||||
/* clear the read buffer */ |
||||
ctrl->read_bytes = 0; |
||||
if (command != NAND_CMD_PAGEPROG) |
||||
ctrl->index = 0; |
||||
|
||||
switch (command) { |
||||
/* READ0 read the entire buffer to use hardware ECC. */ |
||||
case NAND_CMD_READ0: { |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 0); |
||||
set_addr(mtd, 0, page_addr, 0); |
||||
|
||||
ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
||||
ctrl->index += column; |
||||
|
||||
if (chip->ecc.mode == NAND_ECC_HW) |
||||
ctrl->eccread = 1; |
||||
|
||||
fsl_ifc_do_read(chip, 0, mtd); |
||||
fsl_ifc_run_command(mtd); |
||||
return; |
||||
} |
||||
|
||||
/* READOOB reads only the OOB because no ECC is performed. */ |
||||
case NAND_CMD_READOOB: |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); |
||||
set_addr(mtd, column, page_addr, 1); |
||||
|
||||
ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
||||
|
||||
fsl_ifc_do_read(chip, 1, mtd); |
||||
fsl_ifc_run_command(mtd); |
||||
|
||||
return; |
||||
|
||||
/* READID must read all possible bytes while CEB is active */ |
||||
case NAND_CMD_READID: |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); |
||||
/* 4 bytes for manuf, device and exts */ |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 4); |
||||
ctrl->read_bytes = 4; |
||||
|
||||
set_addr(mtd, 0, 0, 0); |
||||
fsl_ifc_run_command(mtd); |
||||
return; |
||||
|
||||
/* ERASE1 stores the block and page address */ |
||||
case NAND_CMD_ERASE1: |
||||
set_addr(mtd, 0, page_addr, 0); |
||||
return; |
||||
|
||||
/* ERASE2 uses the block and page address from ERASE1 */ |
||||
case NAND_CMD_ERASE2: |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
(NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | |
||||
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 0); |
||||
ctrl->read_bytes = 0; |
||||
fsl_ifc_run_command(mtd); |
||||
return; |
||||
|
||||
/* SEQIN sets up the addr buffer and all registers except the length */ |
||||
case NAND_CMD_SEQIN: { |
||||
u32 nand_fcr0; |
||||
ctrl->column = column; |
||||
ctrl->oob = 0; |
||||
|
||||
if (mtd->writesize > 512) { |
||||
nand_fcr0 = |
||||
(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | |
||||
(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
||||
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | |
||||
(IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fir1, 0); |
||||
} else { |
||||
nand_fcr0 = ((NAND_CMD_PAGEPROG << |
||||
IFC_NAND_FCR0_CMD1_SHIFT) | |
||||
(NAND_CMD_SEQIN << |
||||
IFC_NAND_FCR0_CMD2_SHIFT)); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | |
||||
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fir1, |
||||
(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); |
||||
|
||||
if (column >= mtd->writesize) { |
||||
/* OOB area --> READOOB */ |
||||
column -= mtd->writesize; |
||||
nand_fcr0 |= NAND_CMD_READOOB << |
||||
IFC_NAND_FCR0_CMD0_SHIFT; |
||||
ctrl->oob = 1; |
||||
} else if (column < 256) { |
||||
/* First 256 bytes --> READ0 */ |
||||
nand_fcr0 |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; |
||||
} else { |
||||
/* Second 256 bytes --> READ1 */ |
||||
nand_fcr0 |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; |
||||
} |
||||
} |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); |
||||
set_addr(mtd, column, page_addr, ctrl->oob); |
||||
return; |
||||
} |
||||
|
||||
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */ |
||||
case NAND_CMD_PAGEPROG: |
||||
if (ctrl->oob) |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index); |
||||
else |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 0); |
||||
|
||||
fsl_ifc_run_command(mtd); |
||||
return; |
||||
|
||||
case NAND_CMD_STATUS: |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 1); |
||||
set_addr(mtd, 0, 0, 0); |
||||
ctrl->read_bytes = 1; |
||||
|
||||
fsl_ifc_run_command(mtd); |
||||
|
||||
/* Chip sometimes reporting write protect even when it's not */ |
||||
out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); |
||||
return; |
||||
|
||||
case NAND_CMD_RESET: |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); |
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); |
||||
fsl_ifc_run_command(mtd); |
||||
return; |
||||
|
||||
default: |
||||
printf("%s: error, unsupported command 0x%x.\n", |
||||
__func__, command); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
* Write buf to the IFC NAND Controller Data Buffer |
||||
*/ |
||||
static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
unsigned int bufsize = mtd->writesize + mtd->oobsize; |
||||
|
||||
if (len <= 0) { |
||||
printf("%s of %d bytes", __func__, len); |
||||
ctrl->status = 0; |
||||
return; |
||||
} |
||||
|
||||
if ((unsigned int)len > bufsize - ctrl->index) { |
||||
printf("%s beyond end of buffer " |
||||
"(%d requested, %u available)\n", |
||||
__func__, len, bufsize - ctrl->index); |
||||
len = bufsize - ctrl->index; |
||||
} |
||||
|
||||
memcpy_toio(&ctrl->addr[ctrl->index], buf, len); |
||||
ctrl->index += len; |
||||
} |
||||
|
||||
/*
|
||||
* read a byte from either the IFC hardware buffer if it has any data left |
||||
* otherwise issue a command to read a single byte. |
||||
*/ |
||||
static u8 fsl_ifc_read_byte(struct mtd_info *mtd) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
|
||||
/* If there are still bytes in the IFC buffer, then use the
|
||||
* next byte. */ |
||||
if (ctrl->index < ctrl->read_bytes) |
||||
return in_8(&ctrl->addr[ctrl->index++]); |
||||
|
||||
printf("%s beyond end of buffer\n", __func__); |
||||
return ERR_BYTE; |
||||
} |
||||
|
||||
/*
|
||||
* Read two bytes from the IFC hardware buffer |
||||
* read function for 16-bit buswith |
||||
*/ |
||||
static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
uint16_t data; |
||||
|
||||
/*
|
||||
* If there are still bytes in the IFC buffer, then use the |
||||
* next byte. |
||||
*/ |
||||
if (ctrl->index < ctrl->read_bytes) { |
||||
data = in_be16((uint16_t *)&ctrl-> |
||||
addr[ctrl->index]); |
||||
ctrl->index += 2; |
||||
return (uint8_t)data; |
||||
} |
||||
|
||||
printf("%s beyond end of buffer\n", __func__); |
||||
return ERR_BYTE; |
||||
} |
||||
|
||||
/*
|
||||
* Read from the IFC Controller Data Buffer |
||||
*/ |
||||
static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
int avail; |
||||
|
||||
if (len < 0) |
||||
return; |
||||
|
||||
avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); |
||||
memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); |
||||
ctrl->index += avail; |
||||
|
||||
if (len > avail) |
||||
printf("%s beyond end of buffer " |
||||
"(%d requested, %d available)\n", |
||||
__func__, len, avail); |
||||
} |
||||
|
||||
/*
|
||||
* Verify buffer against the IFC Controller Data Buffer |
||||
*/ |
||||
static int fsl_ifc_verify_buf(struct mtd_info *mtd, |
||||
const u_char *buf, int len) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
int i; |
||||
|
||||
if (len < 0) { |
||||
printf("%s of %d bytes", __func__, len); |
||||
return -EINVAL; |
||||
} |
||||
|
||||
if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { |
||||
printf("%s beyond end of buffer " |
||||
"(%d requested, %u available)\n", |
||||
__func__, len, ctrl->read_bytes - ctrl->index); |
||||
|
||||
ctrl->index = ctrl->read_bytes; |
||||
return -EINVAL; |
||||
} |
||||
|
||||
for (i = 0; i < len; i++) |
||||
if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) |
||||
break; |
||||
|
||||
ctrl->index += len; |
||||
return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; |
||||
} |
||||
|
||||
/* This function is called after Program and Erase Operations to
|
||||
* check for success or failure. |
||||
*/ |
||||
static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) |
||||
{ |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
struct fsl_ifc *ifc = ctrl->regs; |
||||
u32 nand_fsr; |
||||
|
||||
if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) |
||||
return NAND_STATUS_FAIL; |
||||
|
||||
/* Use READ_STATUS command, but wait for the device to be ready */ |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << |
||||
IFC_NAND_FCR0_CMD0_SHIFT); |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 1); |
||||
set_addr(mtd, 0, 0, 0); |
||||
ctrl->read_bytes = 1; |
||||
|
||||
fsl_ifc_run_command(mtd); |
||||
|
||||
if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) |
||||
return NAND_STATUS_FAIL; |
||||
|
||||
nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); |
||||
|
||||
/* Chip sometimes reporting write protect even when it's not */ |
||||
nand_fsr = nand_fsr | NAND_STATUS_WP; |
||||
return nand_fsr; |
||||
} |
||||
|
||||
static int fsl_ifc_read_page(struct mtd_info *mtd, |
||||
struct nand_chip *chip, |
||||
uint8_t *buf, int page) |
||||
{ |
||||
struct fsl_ifc_mtd *priv = chip->priv; |
||||
struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
||||
|
||||
fsl_ifc_read_buf(mtd, buf, mtd->writesize); |
||||
fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); |
||||
|
||||
if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) |
||||
mtd->ecc_stats.failed++; |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/* ECC will be calculated automatically, and errors will be detected in
|
||||
* waitfunc. |
||||
*/ |
||||
static void fsl_ifc_write_page(struct mtd_info *mtd, |
||||
struct nand_chip *chip, |
||||
const uint8_t *buf) |
||||
{ |
||||
fsl_ifc_write_buf(mtd, buf, mtd->writesize); |
||||
fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
||||
} |
||||
|
||||
static void fsl_ifc_ctrl_init(void) |
||||
{ |
||||
ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL); |
||||
if (!ifc_ctrl) |
||||
return; |
||||
|
||||
ifc_ctrl->regs = IFC_BASE_ADDR; |
||||
|
||||
/* clear event registers */ |
||||
out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U); |
||||
out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U); |
||||
|
||||
/* Enable error and event for any detected errors */ |
||||
out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en, |
||||
IFC_NAND_EVTER_EN_OPC_EN | |
||||
IFC_NAND_EVTER_EN_PGRDCMPL_EN | |
||||
IFC_NAND_EVTER_EN_FTOER_EN | |
||||
IFC_NAND_EVTER_EN_WPER_EN); |
||||
|
||||
out_be32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0); |
||||
} |
||||
|
||||
static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) |
||||
{ |
||||
} |
||||
|
||||
int board_nand_init(struct nand_chip *nand) |
||||
{ |
||||
struct fsl_ifc_mtd *priv; |
||||
struct nand_ecclayout *layout; |
||||
uint32_t cspr = 0, csor = 0; |
||||
|
||||
if (!ifc_ctrl) { |
||||
fsl_ifc_ctrl_init(); |
||||
if (!ifc_ctrl) |
||||
return -1; |
||||
} |
||||
|
||||
priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
||||
if (!priv) |
||||
return -ENOMEM; |
||||
|
||||
priv->ctrl = ifc_ctrl; |
||||
priv->vbase = nand->IO_ADDR_R; |
||||
|
||||
/* Find which chip select it is connected to.
|
||||
*/ |
||||
for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { |
||||
phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R); |
||||
|
||||
cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr); |
||||
csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor); |
||||
|
||||
if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND && |
||||
(cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) { |
||||
ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
if (priv->bank >= MAX_BANKS) { |
||||
printf("%s: address did not match any " |
||||
"chip selects\n", __func__); |
||||
return -ENODEV; |
||||
} |
||||
|
||||
ifc_ctrl->chips[priv->bank] = priv; |
||||
|
||||
/* fill in nand_chip structure */ |
||||
/* set up function call table */ |
||||
|
||||
nand->write_buf = fsl_ifc_write_buf; |
||||
nand->read_buf = fsl_ifc_read_buf; |
||||
nand->verify_buf = fsl_ifc_verify_buf; |
||||
nand->select_chip = fsl_ifc_select_chip; |
||||
nand->cmdfunc = fsl_ifc_cmdfunc; |
||||
nand->waitfunc = fsl_ifc_wait; |
||||
|
||||
/* set up nand options */ |
||||
nand->bbt_td = &bbt_main_descr; |
||||
nand->bbt_md = &bbt_mirror_descr; |
||||
|
||||
/* set up nand options */ |
||||
nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR | |
||||
NAND_USE_FLASH_BBT; |
||||
|
||||
if (cspr & CSPR_PORT_SIZE_16) { |
||||
nand->read_byte = fsl_ifc_read_byte16; |
||||
nand->options |= NAND_BUSWIDTH_16; |
||||
} else { |
||||
nand->read_byte = fsl_ifc_read_byte; |
||||
} |
||||
|
||||
nand->controller = &ifc_ctrl->controller; |
||||
nand->priv = priv; |
||||
|
||||
nand->ecc.read_page = fsl_ifc_read_page; |
||||
nand->ecc.write_page = fsl_ifc_write_page; |
||||
|
||||
/* Hardware generates ECC per 512 Bytes */ |
||||
nand->ecc.size = 512; |
||||
nand->ecc.bytes = 8; |
||||
|
||||
switch (csor & CSOR_NAND_PGS_MASK) { |
||||
case CSOR_NAND_PGS_512: |
||||
if (nand->options & NAND_BUSWIDTH_16) { |
||||
layout = &oob_512_16bit_ecc4; |
||||
} else { |
||||
layout = &oob_512_8bit_ecc4; |
||||
|
||||
/* Avoid conflict with bad block marker */ |
||||
bbt_main_descr.offs = 0; |
||||
bbt_mirror_descr.offs = 0; |
||||
} |
||||
|
||||
priv->bufnum_mask = 15; |
||||
break; |
||||
|
||||
case CSOR_NAND_PGS_2K: |
||||
layout = &oob_2048_ecc4; |
||||
priv->bufnum_mask = 3; |
||||
break; |
||||
|
||||
case CSOR_NAND_PGS_4K: |
||||
if ((csor & CSOR_NAND_ECC_MODE_MASK) == |
||||
CSOR_NAND_ECC_MODE_4) { |
||||
layout = &oob_4096_ecc4; |
||||
} else { |
||||
layout = &oob_4096_ecc8; |
||||
nand->ecc.bytes = 16; |
||||
} |
||||
|
||||
priv->bufnum_mask = 1; |
||||
break; |
||||
|
||||
default: |
||||
printf("ifc nand: bad csor %#x: bad page size\n", csor); |
||||
return -ENODEV; |
||||
} |
||||
|
||||
/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ |
||||
if (csor & CSOR_NAND_ECC_DEC_EN) { |
||||
nand->ecc.mode = NAND_ECC_HW; |
||||
nand->ecc.layout = layout; |
||||
} else { |
||||
nand->ecc.mode = NAND_ECC_SOFT; |
||||
} |
||||
|
||||
return 0; |
||||
} |
@ -0,0 +1,271 @@ |
||||
/*
|
||||
* NAND boot for FSL Integrated Flash Controller, NAND Flash Control Machine |
||||
* |
||||
* Copyright 2011 Freescale Semiconductor, Inc. |
||||
* Author: Dipen Dudhat <dipen.dudhat@freescale.com> |
||||
* |
||||
* This program is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU General Public License as |
||||
* published by the Free Software Foundation; either version 2 of |
||||
* the License, or (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
||||
* MA 02111-1307 USA |
||||
*/ |
||||
|
||||
#include <common.h> |
||||
#include <asm/io.h> |
||||
#include <asm/fsl_ifc.h> |
||||
#include <linux/mtd/nand.h> |
||||
|
||||
static inline int is_blank(uchar *addr, int page_size) |
||||
{ |
||||
int i; |
||||
|
||||
for (i = 0; i < page_size; i++) { |
||||
if (__raw_readb(&addr[i]) != 0xff) |
||||
return 0; |
||||
} |
||||
|
||||
/*
|
||||
* For the SPL, don't worry about uncorrectable errors |
||||
* where the main area is all FFs but shouldn't be. |
||||
*/ |
||||
return 1; |
||||
} |
||||
|
||||
/* returns nonzero if entire page is blank */ |
||||
static inline int check_read_ecc(uchar *buf, u32 *eccstat, |
||||
unsigned int bufnum, int page_size) |
||||
{ |
||||
u32 reg = eccstat[bufnum / 4]; |
||||
int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; |
||||
|
||||
if (errors == 15) { /* uncorrectable */ |
||||
/* Blank pages fail hw ECC checks */ |
||||
if (is_blank(buf, page_size)) |
||||
return 1; |
||||
|
||||
puts("ecc error\n"); |
||||
for (;;) |
||||
; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static inline void nand_wait(uchar *buf, int bufnum, int page_size) |
||||
{ |
||||
struct fsl_ifc *ifc = IFC_BASE_ADDR; |
||||
u32 status; |
||||
u32 eccstat[4]; |
||||
int bufperpage = page_size / 512; |
||||
int bufnum_end, i; |
||||
|
||||
bufnum *= bufperpage; |
||||
bufnum_end = bufnum + bufperpage - 1; |
||||
|
||||
do { |
||||
status = in_be32(&ifc->ifc_nand.nand_evter_stat); |
||||
} while (!(status & IFC_NAND_EVTER_STAT_OPC)); |
||||
|
||||
if (status & IFC_NAND_EVTER_STAT_FTOER) { |
||||
puts("flash time out error\n"); |
||||
for (;;) |
||||
; |
||||
} |
||||
|
||||
for (i = bufnum / 4; i <= bufnum_end / 4; i++) |
||||
eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); |
||||
|
||||
for (i = bufnum; i <= bufnum_end; i++) { |
||||
if (check_read_ecc(buf, eccstat, i, page_size)) |
||||
break; |
||||
} |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_evter_stat, status); |
||||
} |
||||
|
||||
static inline int bad_block(uchar *marker, int port_size) |
||||
{ |
||||
if (port_size == 8) |
||||
return __raw_readb(marker) != 0xff; |
||||
else |
||||
return __raw_readw((u16 *)marker) != 0xffff; |
||||
} |
||||
|
||||
static void nand_load(unsigned int offs, int uboot_size, uchar *dst) |
||||
{ |
||||
struct fsl_ifc *ifc = IFC_BASE_ADDR; |
||||
uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE; |
||||
int page_size; |
||||
int port_size; |
||||
int pages_per_blk; |
||||
int blk_size; |
||||
int bad_marker = 0; |
||||
int bufnum_mask, bufnum; |
||||
|
||||
int csor, cspr; |
||||
int pos = 0; |
||||
int j = 0; |
||||
|
||||
int sram_addr; |
||||
int pg_no; |
||||
|
||||
/* Get NAND Flash configuration */ |
||||
csor = CONFIG_SYS_NAND_CSOR; |
||||
cspr = CONFIG_SYS_NAND_CSPR; |
||||
|
||||
if (!(csor & CSOR_NAND_ECC_DEC_EN)) { |
||||
/* soft ECC in SPL is unimplemented */ |
||||
puts("WARNING: soft ECC not checked in SPL\n"); |
||||
} else { |
||||
u32 hwcsor; |
||||
|
||||
/* make sure board is configured with ECC on boot */ |
||||
hwcsor = in_be32(&ifc->csor_cs[0].csor); |
||||
if (!(hwcsor & CSOR_NAND_ECC_DEC_EN)) |
||||
puts("WARNING: ECC not checked in SPL, " |
||||
"check board cfg\n"); |
||||
} |
||||
|
||||
port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8; |
||||
|
||||
if (csor & CSOR_NAND_PGS_4K) { |
||||
page_size = 4096; |
||||
bufnum_mask = 1; |
||||
} else if (csor & CSOR_NAND_PGS_2K) { |
||||
page_size = 2048; |
||||
bufnum_mask = 3; |
||||
} else { |
||||
page_size = 512; |
||||
bufnum_mask = 15; |
||||
|
||||
if (port_size == 8) |
||||
bad_marker = 5; |
||||
} |
||||
|
||||
pages_per_blk = |
||||
32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT); |
||||
|
||||
blk_size = pages_per_blk * page_size; |
||||
|
||||
/* Open Full SRAM mapping for spare are access */ |
||||
out_be32(&ifc->ifc_nand.ncfgr, 0x0); |
||||
|
||||
/* Clear Boot events */ |
||||
out_be32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff); |
||||
|
||||
/* Program FIR/FCR for Large/Small page */ |
||||
if (page_size > 512) { |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
||||
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | |
||||
(IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fir1, 0x0); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | |
||||
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); |
||||
} else { |
||||
out_be32(&ifc->ifc_nand.nand_fir0, |
||||
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
||||
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
||||
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
||||
(IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT)); |
||||
out_be32(&ifc->ifc_nand.nand_fir1, 0x0); |
||||
|
||||
out_be32(&ifc->ifc_nand.nand_fcr0, |
||||
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); |
||||
} |
||||
|
||||
/* Program FBCR = 0 for full page read */ |
||||
out_be32(&ifc->ifc_nand.nand_fbcr, 0); |
||||
|
||||
/* Read and copy u-boot on SDRAM from NAND device, In parallel
|
||||
* check for Bad block if found skip it and read continue to |
||||
* next Block |
||||
*/ |
||||
while (pos < uboot_size) { |
||||
int i = 0; |
||||
do { |
||||
pg_no = offs / page_size; |
||||
bufnum = pg_no & bufnum_mask; |
||||
sram_addr = bufnum * page_size * 2; |
||||
|
||||
out_be32(&ifc->ifc_nand.row0, pg_no); |
||||
out_be32(&ifc->ifc_nand.col0, 0); |
||||
/* start read */ |
||||
out_be32(&ifc->ifc_nand.nandseq_strt, |
||||
IFC_NAND_SEQ_STRT_FIR_STRT); |
||||
|
||||
/* wait for read to complete */ |
||||
nand_wait(&buf[sram_addr], bufnum, page_size); |
||||
|
||||
/*
|
||||
* If either of the first two pages are marked bad, |
||||
* continue to the next block. |
||||
*/ |
||||
if (i++ < 2 && |
||||
bad_block(&buf[sram_addr + page_size + bad_marker], |
||||
port_size)) { |
||||
puts("skipping\n"); |
||||
offs = (offs + blk_size) & ~(blk_size - 1); |
||||
pos &= ~(blk_size - 1); |
||||
break; |
||||
} |
||||
|
||||
for (j = 0; j < page_size; j++) |
||||
dst[pos + j] = __raw_readb(&buf[sram_addr + j]); |
||||
|
||||
pos += page_size; |
||||
offs += page_size; |
||||
} while ((offs & (blk_size - 1)) && (pos < uboot_size)); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
* Main entrypoint for NAND Boot. It's necessary that SDRAM is already |
||||
* configured and available since this code loads the main U-boot image |
||||
* from NAND into SDRAM and starts from there. |
||||
*/ |
||||
void nand_boot(void) |
||||
{ |
||||
__attribute__((noreturn)) void (*uboot)(void); |
||||
|
||||
/*
|
||||
* Load U-Boot image from NAND into RAM |
||||
*/ |
||||
nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE, |
||||
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST); |
||||
|
||||
#ifdef CONFIG_NAND_ENV_DST |
||||
nand_load(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, |
||||
(uchar *)CONFIG_NAND_ENV_DST); |
||||
|
||||
#ifdef CONFIG_ENV_OFFSET_REDUND |
||||
nand_load(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, |
||||
(uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); |
||||
#endif |
||||
#endif |
||||
|
||||
/*
|
||||
* Jump to U-Boot image |
||||
*/ |
||||
/*
|
||||
* Clean d-cache and invalidate i-cache, to |
||||
* make sure that no stale data is executed. |
||||
*/ |
||||
flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE); |
||||
uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; |
||||
uboot(); |
||||
} |
Loading…
Reference in new issue