This adds stack layer for eXtensible Host Controller Interface which facilitates use of USB 3.0 in host mode. Adapting xHCI host controller driver in linux-kernel by Sarah Sharp to needs in u-boot. Initial porting from Linux kernel version 3.4, with following top commit history of drivers/usb/host/xhci* : cf84055 xHCI: Cleanup isoc transfer ring when TD length mismatch found This adds the basic xHCI host controller driver with bare minimum features: - Control/Bulk transfer support has been added with required infrastructure for necessary xHC data structures. - Stream protocol hasn't been supported yet. - No support for quirky devices has been added. Signed-off-by: Vikas C Sajjan <vikas.sajjan@samsung.com> Signed-off-by: Julius Werner <jwerner@chromium.org> Signed-off-by: Vivek Gautam <gautam.vivek@samsung.com> Cc: Simon Glass <sjg@chromium.org> Cc: Minkyu Kang <mk7.kang@samsung.com> Cc: Dan Murphy <dmurphy@ti.com> Cc: Marek Vasut <marex@denx.de>master
parent
e3d7440c22
commit
5853e1335c
@ -0,0 +1,720 @@ |
||||
/*
|
||||
* USB HOST XHCI Controller stack |
||||
* |
||||
* Based on xHCI host controller driver in linux-kernel |
||||
* by Sarah Sharp. |
||||
* |
||||
* Copyright (C) 2008 Intel Corp. |
||||
* Author: Sarah Sharp |
||||
* |
||||
* Copyright (C) 2013 Samsung Electronics Co.Ltd |
||||
* Authors: Vivek Gautam <gautam.vivek@samsung.com> |
||||
* Vikas Sajjan <vikas.sajjan@samsung.com> |
||||
* |
||||
* SPDX-License-Identifier: GPL-2.0+ |
||||
*/ |
||||
|
||||
#include <common.h> |
||||
#include <asm/byteorder.h> |
||||
#include <usb.h> |
||||
#include <malloc.h> |
||||
#include <asm/cache.h> |
||||
#include <asm-generic/errno.h> |
||||
|
||||
#include "xhci.h" |
||||
|
||||
#define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE |
||||
/**
|
||||
* flushes the address passed till the length |
||||
* |
||||
* @param addr pointer to memory region to be flushed |
||||
* @param len the length of the cache line to be flushed |
||||
* @return none |
||||
*/ |
||||
void xhci_flush_cache(uint32_t addr, u32 len) |
||||
{ |
||||
BUG_ON((void *)addr == NULL || len == 0); |
||||
|
||||
flush_dcache_range(addr & ~(CACHELINE_SIZE - 1), |
||||
ALIGN(addr + len, CACHELINE_SIZE)); |
||||
} |
||||
|
||||
/**
|
||||
* invalidates the address passed till the length |
||||
* |
||||
* @param addr pointer to memory region to be invalidates |
||||
* @param len the length of the cache line to be invalidated |
||||
* @return none |
||||
*/ |
||||
void xhci_inval_cache(uint32_t addr, u32 len) |
||||
{ |
||||
BUG_ON((void *)addr == NULL || len == 0); |
||||
|
||||
invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1), |
||||
ALIGN(addr + len, CACHELINE_SIZE)); |
||||
} |
||||
|
||||
|
||||
/**
|
||||
* frees the "segment" pointer passed |
||||
* |
||||
* @param ptr pointer to "segement" to be freed |
||||
* @return none |
||||
*/ |
||||
static void xhci_segment_free(struct xhci_segment *seg) |
||||
{ |
||||
free(seg->trbs); |
||||
seg->trbs = NULL; |
||||
|
||||
free(seg); |
||||
} |
||||
|
||||
/**
|
||||
* frees the "ring" pointer passed |
||||
* |
||||
* @param ptr pointer to "ring" to be freed |
||||
* @return none |
||||
*/ |
||||
static void xhci_ring_free(struct xhci_ring *ring) |
||||
{ |
||||
struct xhci_segment *seg; |
||||
struct xhci_segment *first_seg; |
||||
|
||||
BUG_ON(!ring); |
||||
|
||||
first_seg = ring->first_seg; |
||||
seg = first_seg->next; |
||||
while (seg != first_seg) { |
||||
struct xhci_segment *next = seg->next; |
||||
xhci_segment_free(seg); |
||||
seg = next; |
||||
} |
||||
xhci_segment_free(first_seg); |
||||
|
||||
free(ring); |
||||
} |
||||
|
||||
/**
|
||||
* frees the "xhci_container_ctx" pointer passed |
||||
* |
||||
* @param ptr pointer to "xhci_container_ctx" to be freed |
||||
* @return none |
||||
*/ |
||||
static void xhci_free_container_ctx(struct xhci_container_ctx *ctx) |
||||
{ |
||||
free(ctx->bytes); |
||||
free(ctx); |
||||
} |
||||
|
||||
/**
|
||||
* frees the virtual devices for "xhci_ctrl" pointer passed |
||||
* |
||||
* @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed |
||||
* @return none |
||||
*/ |
||||
static void xhci_free_virt_devices(struct xhci_ctrl *ctrl) |
||||
{ |
||||
int i; |
||||
int slot_id; |
||||
struct xhci_virt_device *virt_dev; |
||||
|
||||
/*
|
||||
* refactored here to loop through all virt_dev |
||||
* Slot ID 0 is reserved |
||||
*/ |
||||
for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) { |
||||
virt_dev = ctrl->devs[slot_id]; |
||||
if (!virt_dev) |
||||
continue; |
||||
|
||||
ctrl->dcbaa->dev_context_ptrs[slot_id] = 0; |
||||
|
||||
for (i = 0; i < 31; ++i) |
||||
if (virt_dev->eps[i].ring) |
||||
xhci_ring_free(virt_dev->eps[i].ring); |
||||
|
||||
if (virt_dev->in_ctx) |
||||
xhci_free_container_ctx(virt_dev->in_ctx); |
||||
if (virt_dev->out_ctx) |
||||
xhci_free_container_ctx(virt_dev->out_ctx); |
||||
|
||||
free(virt_dev); |
||||
/* make sure we are pointing to NULL */ |
||||
ctrl->devs[slot_id] = NULL; |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* frees all the memory allocated |
||||
* |
||||
* @param ptr pointer to "xhci_ctrl" to be cleaned up |
||||
* @return none |
||||
*/ |
||||
void xhci_cleanup(struct xhci_ctrl *ctrl) |
||||
{ |
||||
xhci_ring_free(ctrl->event_ring); |
||||
xhci_ring_free(ctrl->cmd_ring); |
||||
xhci_free_virt_devices(ctrl); |
||||
free(ctrl->erst.entries); |
||||
free(ctrl->dcbaa); |
||||
memset(ctrl, '\0', sizeof(struct xhci_ctrl)); |
||||
} |
||||
|
||||
/**
|
||||
* Malloc the aligned memory |
||||
* |
||||
* @param size size of memory to be allocated |
||||
* @return allocates the memory and returns the aligned pointer |
||||
*/ |
||||
static void *xhci_malloc(unsigned int size) |
||||
{ |
||||
void *ptr; |
||||
size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE); |
||||
|
||||
ptr = memalign(cacheline_size, ALIGN(size, cacheline_size)); |
||||
BUG_ON(!ptr); |
||||
memset(ptr, '\0', size); |
||||
|
||||
xhci_flush_cache((uint32_t)ptr, size); |
||||
|
||||
return ptr; |
||||
} |
||||
|
||||
/**
|
||||
* Make the prev segment point to the next segment. |
||||
* Change the last TRB in the prev segment to be a Link TRB which points to the |
||||
* address of the next segment. The caller needs to set any Link TRB |
||||
* related flags, such as End TRB, Toggle Cycle, and no snoop. |
||||
* |
||||
* @param prev pointer to the previous segment |
||||
* @param next pointer to the next segment |
||||
* @param link_trbs flag to indicate whether to link the trbs or NOT |
||||
* @return none |
||||
*/ |
||||
static void xhci_link_segments(struct xhci_segment *prev, |
||||
struct xhci_segment *next, bool link_trbs) |
||||
{ |
||||
u32 val; |
||||
u64 val_64 = 0; |
||||
|
||||
if (!prev || !next) |
||||
return; |
||||
prev->next = next; |
||||
if (link_trbs) { |
||||
val_64 = (uintptr_t)next->trbs; |
||||
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64; |
||||
|
||||
/*
|
||||
* Set the last TRB in the segment to |
||||
* have a TRB type ID of Link TRB |
||||
*/ |
||||
val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); |
||||
val &= ~TRB_TYPE_BITMASK; |
||||
val |= (TRB_LINK << TRB_TYPE_SHIFT); |
||||
|
||||
prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* Initialises the Ring's enqueue,dequeue,enq_seg pointers |
||||
* |
||||
* @param ring pointer to the RING to be intialised |
||||
* @return none |
||||
*/ |
||||
static void xhci_initialize_ring_info(struct xhci_ring *ring) |
||||
{ |
||||
/*
|
||||
* The ring is empty, so the enqueue pointer == dequeue pointer |
||||
*/ |
||||
ring->enqueue = ring->first_seg->trbs; |
||||
ring->enq_seg = ring->first_seg; |
||||
ring->dequeue = ring->enqueue; |
||||
ring->deq_seg = ring->first_seg; |
||||
|
||||
/*
|
||||
* The ring is initialized to 0. The producer must write 1 to the |
||||
* cycle bit to handover ownership of the TRB, so PCS = 1. |
||||
* The consumer must compare CCS to the cycle bit to |
||||
* check ownership, so CCS = 1. |
||||
*/ |
||||
ring->cycle_state = 1; |
||||
} |
||||
|
||||
/**
|
||||
* Allocates a generic ring segment from the ring pool, sets the dma address, |
||||
* initializes the segment to zero, and sets the private next pointer to NULL. |
||||
* Section 4.11.1.1: |
||||
* "All components of all Command and Transfer TRBs shall be initialized to '0'" |
||||
* |
||||
* @param none |
||||
* @return pointer to the newly allocated SEGMENT |
||||
*/ |
||||
static struct xhci_segment *xhci_segment_alloc(void) |
||||
{ |
||||
struct xhci_segment *seg; |
||||
|
||||
seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment)); |
||||
BUG_ON(!seg); |
||||
|
||||
seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE); |
||||
|
||||
seg->next = NULL; |
||||
|
||||
return seg; |
||||
} |
||||
|
||||
/**
|
||||
* Create a new ring with zero or more segments. |
||||
* TODO: current code only uses one-time-allocated single-segment rings |
||||
* of 1KB anyway, so we might as well get rid of all the segment and |
||||
* linking code (and maybe increase the size a bit, e.g. 4KB). |
||||
* |
||||
* |
||||
* Link each segment together into a ring. |
||||
* Set the end flag and the cycle toggle bit on the last segment. |
||||
* See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0. |
||||
* |
||||
* @param num_segs number of segments in the ring |
||||
* @param link_trbs flag to indicate whether to link the trbs or NOT |
||||
* @return pointer to the newly created RING |
||||
*/ |
||||
struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs) |
||||
{ |
||||
struct xhci_ring *ring; |
||||
struct xhci_segment *prev; |
||||
|
||||
ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring)); |
||||
BUG_ON(!ring); |
||||
|
||||
if (num_segs == 0) |
||||
return ring; |
||||
|
||||
ring->first_seg = xhci_segment_alloc(); |
||||
BUG_ON(!ring->first_seg); |
||||
|
||||
num_segs--; |
||||
|
||||
prev = ring->first_seg; |
||||
while (num_segs > 0) { |
||||
struct xhci_segment *next; |
||||
|
||||
next = xhci_segment_alloc(); |
||||
BUG_ON(!next); |
||||
|
||||
xhci_link_segments(prev, next, link_trbs); |
||||
|
||||
prev = next; |
||||
num_segs--; |
||||
} |
||||
xhci_link_segments(prev, ring->first_seg, link_trbs); |
||||
if (link_trbs) { |
||||
/* See section 4.9.2.1 and 6.4.4.1 */ |
||||
prev->trbs[TRBS_PER_SEGMENT-1].link.control |= |
||||
cpu_to_le32(LINK_TOGGLE); |
||||
} |
||||
xhci_initialize_ring_info(ring); |
||||
|
||||
return ring; |
||||
} |
||||
|
||||
/**
|
||||
* Allocates the Container context |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param type type of XHCI Container Context |
||||
* @return NULL if failed else pointer to the context on success |
||||
*/ |
||||
static struct xhci_container_ctx |
||||
*xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type) |
||||
{ |
||||
struct xhci_container_ctx *ctx; |
||||
|
||||
ctx = (struct xhci_container_ctx *) |
||||
malloc(sizeof(struct xhci_container_ctx)); |
||||
BUG_ON(!ctx); |
||||
|
||||
BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); |
||||
ctx->type = type; |
||||
ctx->size = (MAX_EP_CTX_NUM + 1) * |
||||
CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)); |
||||
if (type == XHCI_CTX_TYPE_INPUT) |
||||
ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)); |
||||
|
||||
ctx->bytes = (u8 *)xhci_malloc(ctx->size); |
||||
|
||||
return ctx; |
||||
} |
||||
|
||||
/**
|
||||
* Allocating virtual device |
||||
* |
||||
* @param udev pointer to USB deivce structure |
||||
* @return 0 on success else -1 on failure |
||||
*/ |
||||
int xhci_alloc_virt_device(struct usb_device *udev) |
||||
{ |
||||
u64 byte_64 = 0; |
||||
unsigned int slot_id = udev->slot_id; |
||||
struct xhci_virt_device *virt_dev; |
||||
struct xhci_ctrl *ctrl = udev->controller; |
||||
|
||||
/* Slot ID 0 is reserved */ |
||||
if (ctrl->devs[slot_id]) { |
||||
printf("Virt dev for slot[%d] already allocated\n", slot_id); |
||||
return -EEXIST; |
||||
} |
||||
|
||||
ctrl->devs[slot_id] = (struct xhci_virt_device *) |
||||
malloc(sizeof(struct xhci_virt_device)); |
||||
|
||||
if (!ctrl->devs[slot_id]) { |
||||
puts("Failed to allocate virtual device\n"); |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device)); |
||||
virt_dev = ctrl->devs[slot_id]; |
||||
|
||||
/* Allocate the (output) device context that will be used in the HC. */ |
||||
virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl, |
||||
XHCI_CTX_TYPE_DEVICE); |
||||
if (!virt_dev->out_ctx) { |
||||
puts("Failed to allocate out context for virt dev\n"); |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
/* Allocate the (input) device context for address device command */ |
||||
virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl, |
||||
XHCI_CTX_TYPE_INPUT); |
||||
if (!virt_dev->in_ctx) { |
||||
puts("Failed to allocate in context for virt dev\n"); |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
/* Allocate endpoint 0 ring */ |
||||
virt_dev->eps[0].ring = xhci_ring_alloc(1, true); |
||||
|
||||
byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes); |
||||
|
||||
/* Point to output device context in dcbaa. */ |
||||
ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64; |
||||
|
||||
xhci_flush_cache((uint32_t)&ctrl->dcbaa->dev_context_ptrs[slot_id], |
||||
sizeof(__le64)); |
||||
return 0; |
||||
} |
||||
|
||||
/**
|
||||
* Allocates the necessary data structures |
||||
* for XHCI host controller |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param hccr pointer to HOST Controller Control Registers |
||||
* @param hcor pointer to HOST Controller Operational Registers |
||||
* @return 0 if successful else -1 on failure |
||||
*/ |
||||
int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr, |
||||
struct xhci_hcor *hcor) |
||||
{ |
||||
uint64_t val_64; |
||||
uint64_t trb_64; |
||||
uint32_t val; |
||||
unsigned long deq; |
||||
int i; |
||||
struct xhci_segment *seg; |
||||
|
||||
/* DCBAA initialization */ |
||||
ctrl->dcbaa = (struct xhci_device_context_array *) |
||||
xhci_malloc(sizeof(struct xhci_device_context_array)); |
||||
if (ctrl->dcbaa == NULL) { |
||||
puts("unable to allocate DCBA\n"); |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
val_64 = (uintptr_t)ctrl->dcbaa; |
||||
/* Set the pointer in DCBAA register */ |
||||
xhci_writeq(&hcor->or_dcbaap, val_64); |
||||
|
||||
/* Command ring control pointer register initialization */ |
||||
ctrl->cmd_ring = xhci_ring_alloc(1, true); |
||||
|
||||
/* Set the address in the Command Ring Control register */ |
||||
trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs; |
||||
val_64 = xhci_readq(&hcor->or_crcr); |
||||
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | |
||||
(trb_64 & (u64) ~CMD_RING_RSVD_BITS) | |
||||
ctrl->cmd_ring->cycle_state; |
||||
xhci_writeq(&hcor->or_crcr, val_64); |
||||
|
||||
/* write the address of db register */ |
||||
val = xhci_readl(&hccr->cr_dboff); |
||||
val &= DBOFF_MASK; |
||||
ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val); |
||||
|
||||
/* write the address of runtime register */ |
||||
val = xhci_readl(&hccr->cr_rtsoff); |
||||
val &= RTSOFF_MASK; |
||||
ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val); |
||||
|
||||
/* writting the address of ir_set structure */ |
||||
ctrl->ir_set = &ctrl->run_regs->ir_set[0]; |
||||
|
||||
/* Event ring does not maintain link TRB */ |
||||
ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false); |
||||
ctrl->erst.entries = (struct xhci_erst_entry *) |
||||
xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS); |
||||
|
||||
ctrl->erst.num_entries = ERST_NUM_SEGS; |
||||
|
||||
for (val = 0, seg = ctrl->event_ring->first_seg; |
||||
val < ERST_NUM_SEGS; |
||||
val++) { |
||||
trb_64 = 0; |
||||
trb_64 = (uintptr_t)seg->trbs; |
||||
struct xhci_erst_entry *entry = &ctrl->erst.entries[val]; |
||||
xhci_writeq(&entry->seg_addr, trb_64); |
||||
entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
||||
entry->rsvd = 0; |
||||
seg = seg->next; |
||||
} |
||||
xhci_flush_cache((uint32_t)ctrl->erst.entries, |
||||
ERST_NUM_SEGS * sizeof(struct xhci_erst_entry)); |
||||
|
||||
deq = (unsigned long)ctrl->event_ring->dequeue; |
||||
|
||||
/* Update HC event ring dequeue pointer */ |
||||
xhci_writeq(&ctrl->ir_set->erst_dequeue, |
||||
(u64)deq & (u64)~ERST_PTR_MASK); |
||||
|
||||
/* set ERST count with the number of entries in the segment table */ |
||||
val = xhci_readl(&ctrl->ir_set->erst_size); |
||||
val &= ERST_SIZE_MASK; |
||||
val |= ERST_NUM_SEGS; |
||||
xhci_writel(&ctrl->ir_set->erst_size, val); |
||||
|
||||
/* this is the event ring segment table pointer */ |
||||
val_64 = xhci_readq(&ctrl->ir_set->erst_base); |
||||
val_64 &= ERST_PTR_MASK; |
||||
val_64 |= ((u32)(ctrl->erst.entries) & ~ERST_PTR_MASK); |
||||
|
||||
xhci_writeq(&ctrl->ir_set->erst_base, val_64); |
||||
|
||||
/* initializing the virtual devices to NULL */ |
||||
for (i = 0; i < MAX_HC_SLOTS; ++i) |
||||
ctrl->devs[i] = NULL; |
||||
|
||||
/*
|
||||
* Just Zero'ing this register completely, |
||||
* or some spurious Device Notification Events |
||||
* might screw things here. |
||||
*/ |
||||
xhci_writel(&hcor->or_dnctrl, 0x0); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/**
|
||||
* Give the input control context for the passed container context |
||||
* |
||||
* @param ctx pointer to the context |
||||
* @return pointer to the Input control context data |
||||
*/ |
||||
struct xhci_input_control_ctx |
||||
*xhci_get_input_control_ctx(struct xhci_container_ctx *ctx) |
||||
{ |
||||
BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); |
||||
return (struct xhci_input_control_ctx *)ctx->bytes; |
||||
} |
||||
|
||||
/**
|
||||
* Give the slot context for the passed container context |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ctx pointer to the context |
||||
* @return pointer to the slot control context data |
||||
*/ |
||||
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl, |
||||
struct xhci_container_ctx *ctx) |
||||
{ |
||||
if (ctx->type == XHCI_CTX_TYPE_DEVICE) |
||||
return (struct xhci_slot_ctx *)ctx->bytes; |
||||
|
||||
return (struct xhci_slot_ctx *) |
||||
(ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))); |
||||
} |
||||
|
||||
/**
|
||||
* Gets the EP context from based on the ep_index |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ctx context container |
||||
* @param ep_index index of the endpoint |
||||
* @return pointer to the End point context |
||||
*/ |
||||
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl, |
||||
struct xhci_container_ctx *ctx, |
||||
unsigned int ep_index) |
||||
{ |
||||
/* increment ep index by offset of start of ep ctx array */ |
||||
ep_index++; |
||||
if (ctx->type == XHCI_CTX_TYPE_INPUT) |
||||
ep_index++; |
||||
|
||||
return (struct xhci_ep_ctx *) |
||||
(ctx->bytes + |
||||
(ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)))); |
||||
} |
||||
|
||||
/**
|
||||
* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. |
||||
* Useful when you want to change one particular aspect of the endpoint |
||||
* and then issue a configure endpoint command. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param in_ctx contains the input context |
||||
* @param out_ctx contains the input context |
||||
* @param ep_index index of the end point |
||||
* @return none |
||||
*/ |
||||
void xhci_endpoint_copy(struct xhci_ctrl *ctrl, |
||||
struct xhci_container_ctx *in_ctx, |
||||
struct xhci_container_ctx *out_ctx, |
||||
unsigned int ep_index) |
||||
{ |
||||
struct xhci_ep_ctx *out_ep_ctx; |
||||
struct xhci_ep_ctx *in_ep_ctx; |
||||
|
||||
out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index); |
||||
in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); |
||||
|
||||
in_ep_ctx->ep_info = out_ep_ctx->ep_info; |
||||
in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; |
||||
in_ep_ctx->deq = out_ep_ctx->deq; |
||||
in_ep_ctx->tx_info = out_ep_ctx->tx_info; |
||||
} |
||||
|
||||
/**
|
||||
* Copy output xhci_slot_ctx to the input xhci_slot_ctx. |
||||
* Useful when you want to change one particular aspect of the endpoint |
||||
* and then issue a configure endpoint command. |
||||
* Only the context entries field matters, but |
||||
* we'll copy the whole thing anyway. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param in_ctx contains the inpout context |
||||
* @param out_ctx contains the inpout context |
||||
* @return none |
||||
*/ |
||||
void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx, |
||||
struct xhci_container_ctx *out_ctx) |
||||
{ |
||||
struct xhci_slot_ctx *in_slot_ctx; |
||||
struct xhci_slot_ctx *out_slot_ctx; |
||||
|
||||
in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); |
||||
out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx); |
||||
|
||||
in_slot_ctx->dev_info = out_slot_ctx->dev_info; |
||||
in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; |
||||
in_slot_ctx->tt_info = out_slot_ctx->tt_info; |
||||
in_slot_ctx->dev_state = out_slot_ctx->dev_state; |
||||
} |
||||
|
||||
/**
|
||||
* Setup an xHCI virtual device for a Set Address command |
||||
* |
||||
* @param udev pointer to the Device Data Structure |
||||
* @return returns negative value on failure else 0 on success |
||||
*/ |
||||
void xhci_setup_addressable_virt_dev(struct usb_device *udev) |
||||
{ |
||||
struct usb_device *hop = udev; |
||||
struct xhci_virt_device *virt_dev; |
||||
struct xhci_ep_ctx *ep0_ctx; |
||||
struct xhci_slot_ctx *slot_ctx; |
||||
u32 port_num = 0; |
||||
u64 trb_64 = 0; |
||||
struct xhci_ctrl *ctrl = udev->controller; |
||||
|
||||
virt_dev = ctrl->devs[udev->slot_id]; |
||||
|
||||
BUG_ON(!virt_dev); |
||||
|
||||
/* Extract the EP0 and Slot Ctrl */ |
||||
ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0); |
||||
slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx); |
||||
|
||||
/* Only the control endpoint is valid - one endpoint context */ |
||||
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | 0); |
||||
|
||||
switch (udev->speed) { |
||||
case USB_SPEED_SUPER: |
||||
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
||||
break; |
||||
case USB_SPEED_HIGH: |
||||
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
||||
break; |
||||
case USB_SPEED_FULL: |
||||
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
||||
break; |
||||
case USB_SPEED_LOW: |
||||
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); |
||||
break; |
||||
default: |
||||
/* Speed was set earlier, this shouldn't happen. */ |
||||
BUG(); |
||||
} |
||||
|
||||
/* Extract the root hub port number */ |
||||
if (hop->parent) |
||||
while (hop->parent->parent) |
||||
hop = hop->parent; |
||||
port_num = hop->portnr; |
||||
debug("port_num = %d\n", port_num); |
||||
|
||||
slot_ctx->dev_info2 |= |
||||
cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) << |
||||
ROOT_HUB_PORT_SHIFT)); |
||||
|
||||
/* Step 4 - ring already allocated */ |
||||
/* Step 5 */ |
||||
ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT); |
||||
debug("SPEED = %d\n", udev->speed); |
||||
|
||||
switch (udev->speed) { |
||||
case USB_SPEED_SUPER: |
||||
ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) << |
||||
MAX_PACKET_SHIFT)); |
||||
debug("Setting Packet size = 512bytes\n"); |
||||
break; |
||||
case USB_SPEED_HIGH: |
||||
/* USB core guesses at a 64-byte max packet first for FS devices */ |
||||
case USB_SPEED_FULL: |
||||
ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) << |
||||
MAX_PACKET_SHIFT)); |
||||
debug("Setting Packet size = 64bytes\n"); |
||||
break; |
||||
case USB_SPEED_LOW: |
||||
ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) << |
||||
MAX_PACKET_SHIFT)); |
||||
debug("Setting Packet size = 8bytes\n"); |
||||
break; |
||||
default: |
||||
/* New speed? */ |
||||
BUG(); |
||||
} |
||||
|
||||
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
||||
ep0_ctx->ep_info2 |= |
||||
cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) | |
||||
((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT)); |
||||
|
||||
trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs; |
||||
ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state); |
||||
|
||||
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
||||
|
||||
xhci_flush_cache((uint32_t)ep0_ctx, sizeof(struct xhci_ep_ctx)); |
||||
xhci_flush_cache((uint32_t)slot_ctx, sizeof(struct xhci_slot_ctx)); |
||||
} |
@ -0,0 +1,939 @@ |
||||
/*
|
||||
* USB HOST XHCI Controller stack |
||||
* |
||||
* Based on xHCI host controller driver in linux-kernel |
||||
* by Sarah Sharp. |
||||
* |
||||
* Copyright (C) 2008 Intel Corp. |
||||
* Author: Sarah Sharp |
||||
* |
||||
* Copyright (C) 2013 Samsung Electronics Co.Ltd |
||||
* Authors: Vivek Gautam <gautam.vivek@samsung.com> |
||||
* Vikas Sajjan <vikas.sajjan@samsung.com> |
||||
* |
||||
* SPDX-License-Identifier: GPL-2.0+ |
||||
*/ |
||||
|
||||
#include <common.h> |
||||
#include <asm/byteorder.h> |
||||
#include <usb.h> |
||||
#include <asm/unaligned.h> |
||||
#include <asm-generic/errno.h> |
||||
|
||||
#include "xhci.h" |
||||
|
||||
/**
|
||||
* Is this TRB a link TRB or was the last TRB the last TRB in this event ring |
||||
* segment? I.e. would the updated event TRB pointer step off the end of the |
||||
* event seg ? |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ring pointer to the ring |
||||
* @param seg poniter to the segment to which TRB belongs |
||||
* @param trb poniter to the ring trb |
||||
* @return 1 if this TRB a link TRB else 0 |
||||
*/ |
||||
static int last_trb(struct xhci_ctrl *ctrl, struct xhci_ring *ring, |
||||
struct xhci_segment *seg, union xhci_trb *trb) |
||||
{ |
||||
if (ring == ctrl->event_ring) |
||||
return trb == &seg->trbs[TRBS_PER_SEGMENT]; |
||||
else |
||||
return TRB_TYPE_LINK_LE32(trb->link.control); |
||||
} |
||||
|
||||
/**
|
||||
* Does this link TRB point to the first segment in a ring, |
||||
* or was the previous TRB the last TRB on the last segment in the ERST? |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ring pointer to the ring |
||||
* @param seg poniter to the segment to which TRB belongs |
||||
* @param trb poniter to the ring trb |
||||
* @return 1 if this TRB is the last TRB on the last segment else 0 |
||||
*/ |
||||
static bool last_trb_on_last_seg(struct xhci_ctrl *ctrl, |
||||
struct xhci_ring *ring, |
||||
struct xhci_segment *seg, |
||||
union xhci_trb *trb) |
||||
{ |
||||
if (ring == ctrl->event_ring) |
||||
return ((trb == &seg->trbs[TRBS_PER_SEGMENT]) && |
||||
(seg->next == ring->first_seg)); |
||||
else |
||||
return le32_to_cpu(trb->link.control) & LINK_TOGGLE; |
||||
} |
||||
|
||||
/**
|
||||
* See Cycle bit rules. SW is the consumer for the event ring only. |
||||
* Don't make a ring full of link TRBs. That would be dumb and this would loop. |
||||
* |
||||
* If we've just enqueued a TRB that is in the middle of a TD (meaning the |
||||
* chain bit is set), then set the chain bit in all the following link TRBs. |
||||
* If we've enqueued the last TRB in a TD, make sure the following link TRBs |
||||
* have their chain bit cleared (so that each Link TRB is a separate TD). |
||||
* |
||||
* Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit |
||||
* set, but other sections talk about dealing with the chain bit set. This was |
||||
* fixed in the 0.96 specification errata, but we have to assume that all 0.95 |
||||
* xHCI hardware can't handle the chain bit being cleared on a link TRB. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ring pointer to the ring |
||||
* @param more_trbs_coming flag to indicate whether more trbs |
||||
* are expected or NOT. |
||||
* Will you enqueue more TRBs before calling |
||||
* prepare_ring()? |
||||
* @return none |
||||
*/ |
||||
static void inc_enq(struct xhci_ctrl *ctrl, struct xhci_ring *ring, |
||||
bool more_trbs_coming) |
||||
{ |
||||
u32 chain; |
||||
union xhci_trb *next; |
||||
|
||||
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; |
||||
next = ++(ring->enqueue); |
||||
|
||||
/*
|
||||
* Update the dequeue pointer further if that was a link TRB or we're at |
||||
* the end of an event ring segment (which doesn't have link TRBS) |
||||
*/ |
||||
while (last_trb(ctrl, ring, ring->enq_seg, next)) { |
||||
if (ring != ctrl->event_ring) { |
||||
/*
|
||||
* If the caller doesn't plan on enqueueing more |
||||
* TDs before ringing the doorbell, then we |
||||
* don't want to give the link TRB to the |
||||
* hardware just yet. We'll give the link TRB |
||||
* back in prepare_ring() just before we enqueue |
||||
* the TD at the top of the ring. |
||||
*/ |
||||
if (!chain && !more_trbs_coming) |
||||
break; |
||||
|
||||
/*
|
||||
* If we're not dealing with 0.95 hardware or |
||||
* isoc rings on AMD 0.96 host, |
||||
* carry over the chain bit of the previous TRB |
||||
* (which may mean the chain bit is cleared). |
||||
*/ |
||||
next->link.control &= cpu_to_le32(~TRB_CHAIN); |
||||
next->link.control |= cpu_to_le32(chain); |
||||
|
||||
next->link.control ^= cpu_to_le32(TRB_CYCLE); |
||||
xhci_flush_cache((uint32_t)next, |
||||
sizeof(union xhci_trb)); |
||||
} |
||||
/* Toggle the cycle bit after the last ring segment. */ |
||||
if (last_trb_on_last_seg(ctrl, ring, |
||||
ring->enq_seg, next)) |
||||
ring->cycle_state = (ring->cycle_state ? 0 : 1); |
||||
|
||||
ring->enq_seg = ring->enq_seg->next; |
||||
ring->enqueue = ring->enq_seg->trbs; |
||||
next = ring->enqueue; |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* See Cycle bit rules. SW is the consumer for the event ring only. |
||||
* Don't make a ring full of link TRBs. That would be dumb and this would loop. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ring Ring whose Dequeue TRB pointer needs to be incremented. |
||||
* return none |
||||
*/ |
||||
static void inc_deq(struct xhci_ctrl *ctrl, struct xhci_ring *ring) |
||||
{ |
||||
do { |
||||
/*
|
||||
* Update the dequeue pointer further if that was a link TRB or |
||||
* we're at the end of an event ring segment (which doesn't have |
||||
* link TRBS) |
||||
*/ |
||||
if (last_trb(ctrl, ring, ring->deq_seg, ring->dequeue)) { |
||||
if (ring == ctrl->event_ring && |
||||
last_trb_on_last_seg(ctrl, ring, |
||||
ring->deq_seg, ring->dequeue)) { |
||||
ring->cycle_state = (ring->cycle_state ? 0 : 1); |
||||
} |
||||
ring->deq_seg = ring->deq_seg->next; |
||||
ring->dequeue = ring->deq_seg->trbs; |
||||
} else { |
||||
ring->dequeue++; |
||||
} |
||||
} while (last_trb(ctrl, ring, ring->deq_seg, ring->dequeue)); |
||||
} |
||||
|
||||
/**
|
||||
* Generic function for queueing a TRB on a ring. |
||||
* The caller must have checked to make sure there's room on the ring. |
||||
* |
||||
* @param more_trbs_coming: Will you enqueue more TRBs before calling |
||||
* prepare_ring()? |
||||
* @param ctrl Host controller data structure |
||||
* @param ring pointer to the ring |
||||
* @param more_trbs_coming flag to indicate whether more trbs |
||||
* @param trb_fields pointer to trb field array containing TRB contents |
||||
* @return pointer to the enqueued trb |
||||
*/ |
||||
static struct xhci_generic_trb *queue_trb(struct xhci_ctrl *ctrl, |
||||
struct xhci_ring *ring, |
||||
bool more_trbs_coming, |
||||
unsigned int *trb_fields) |
||||
{ |
||||
struct xhci_generic_trb *trb; |
||||
int i; |
||||
|
||||
trb = &ring->enqueue->generic; |
||||
|
||||
for (i = 0; i < 4; i++) |
||||
trb->field[i] = cpu_to_le32(trb_fields[i]); |
||||
|
||||
xhci_flush_cache((uint32_t)trb, sizeof(struct xhci_generic_trb)); |
||||
|
||||
inc_enq(ctrl, ring, more_trbs_coming); |
||||
|
||||
return trb; |
||||
} |
||||
|
||||
/**
|
||||
* Does various checks on the endpoint ring, and makes it ready |
||||
* to queue num_trbs. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ep_ring pointer to the EP Transfer Ring |
||||
* @param ep_state State of the End Point |
||||
* @return error code in case of invalid ep_state, 0 on success |
||||
*/ |
||||
static int prepare_ring(struct xhci_ctrl *ctrl, struct xhci_ring *ep_ring, |
||||
u32 ep_state) |
||||
{ |
||||
union xhci_trb *next = ep_ring->enqueue; |
||||
|
||||
/* Make sure the endpoint has been added to xHC schedule */ |
||||
switch (ep_state) { |
||||
case EP_STATE_DISABLED: |
||||
/*
|
||||
* USB core changed config/interfaces without notifying us, |
||||
* or hardware is reporting the wrong state. |
||||
*/ |
||||
puts("WARN urb submitted to disabled ep\n"); |
||||
return -ENOENT; |
||||
case EP_STATE_ERROR: |
||||
puts("WARN waiting for error on ep to be cleared\n"); |
||||
return -EINVAL; |
||||
case EP_STATE_HALTED: |
||||
puts("WARN halted endpoint, queueing URB anyway.\n"); |
||||
case EP_STATE_STOPPED: |
||||
case EP_STATE_RUNNING: |
||||
debug("EP STATE RUNNING.\n"); |
||||
break; |
||||
default: |
||||
puts("ERROR unknown endpoint state for ep\n"); |
||||
return -EINVAL; |
||||
} |
||||
|
||||
while (last_trb(ctrl, ep_ring, ep_ring->enq_seg, next)) { |
||||
/*
|
||||
* If we're not dealing with 0.95 hardware or isoc rings |
||||
* on AMD 0.96 host, clear the chain bit. |
||||
*/ |
||||
next->link.control &= cpu_to_le32(~TRB_CHAIN); |
||||
|
||||
next->link.control ^= cpu_to_le32(TRB_CYCLE); |
||||
|
||||
xhci_flush_cache((uint32_t)next, sizeof(union xhci_trb)); |
||||
|
||||
/* Toggle the cycle bit after the last ring segment. */ |
||||
if (last_trb_on_last_seg(ctrl, ep_ring, |
||||
ep_ring->enq_seg, next)) |
||||
ep_ring->cycle_state = (ep_ring->cycle_state ? 0 : 1); |
||||
ep_ring->enq_seg = ep_ring->enq_seg->next; |
||||
ep_ring->enqueue = ep_ring->enq_seg->trbs; |
||||
next = ep_ring->enqueue; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/**
|
||||
* Generic function for queueing a command TRB on the command ring. |
||||
* Check to make sure there's room on the command ring for one command TRB. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param ptr Pointer address to write in the first two fields (opt.) |
||||
* @param slot_id Slot ID to encode in the flags field (opt.) |
||||
* @param ep_index Endpoint index to encode in the flags field (opt.) |
||||
* @param cmd Command type to enqueue |
||||
* @return none |
||||
*/ |
||||
void xhci_queue_command(struct xhci_ctrl *ctrl, u8 *ptr, u32 slot_id, |
||||
u32 ep_index, trb_type cmd) |
||||
{ |
||||
u32 fields[4]; |
||||
u64 val_64 = (uintptr_t)ptr; |
||||
|
||||
BUG_ON(prepare_ring(ctrl, ctrl->cmd_ring, EP_STATE_RUNNING)); |
||||
|
||||
fields[0] = lower_32_bits(val_64); |
||||
fields[1] = upper_32_bits(val_64); |
||||
fields[2] = 0; |
||||
fields[3] = TRB_TYPE(cmd) | EP_ID_FOR_TRB(ep_index) | |
||||
SLOT_ID_FOR_TRB(slot_id) | ctrl->cmd_ring->cycle_state; |
||||
|
||||
queue_trb(ctrl, ctrl->cmd_ring, false, fields); |
||||
|
||||
/* Ring the command ring doorbell */ |
||||
xhci_writel(&ctrl->dba->doorbell[0], DB_VALUE_HOST); |
||||
} |
||||
|
||||
/**
|
||||
* The TD size is the number of bytes remaining in the TD (including this TRB), |
||||
* right shifted by 10. |
||||
* It must fit in bits 21:17, so it can't be bigger than 31. |
||||
* |
||||
* @param remainder remaining packets to be sent |
||||
* @return remainder if remainder is less than max else max |
||||
*/ |
||||
static u32 xhci_td_remainder(unsigned int remainder) |
||||
{ |
||||
u32 max = (1 << (21 - 17 + 1)) - 1; |
||||
|
||||
if ((remainder >> 10) >= max) |
||||
return max << 17; |
||||
else |
||||
return (remainder >> 10) << 17; |
||||
} |
||||
|
||||
/**
|
||||
* Finds out the remanining packets to be sent |
||||
* |
||||
* @param running_total total size sent so far |
||||
* @param trb_buff_len length of the TRB Buffer |
||||
* @param total_packet_count total packet count |
||||
* @param maxpacketsize max packet size of current pipe |
||||
* @param num_trbs_left number of TRBs left to be processed |
||||
* @return 0 if running_total or trb_buff_len is 0, else remainder |
||||
*/ |
||||
static u32 xhci_v1_0_td_remainder(int running_total, |
||||
int trb_buff_len, |
||||
unsigned int total_packet_count, |
||||
int maxpacketsize, |
||||
unsigned int num_trbs_left) |
||||
{ |
||||
int packets_transferred; |
||||
|
||||
/* One TRB with a zero-length data packet. */ |
||||
if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) |
||||
return 0; |
||||
|
||||
/*
|
||||
* All the TRB queueing functions don't count the current TRB in |
||||
* running_total. |
||||
*/ |
||||
packets_transferred = (running_total + trb_buff_len) / maxpacketsize; |
||||
|
||||
if ((total_packet_count - packets_transferred) > 31) |
||||
return 31 << 17; |
||||
return (total_packet_count - packets_transferred) << 17; |
||||
} |
||||
|
||||
/**
|
||||
* Ring the doorbell of the End Point |
||||
* |
||||
* @param udev pointer to the USB device structure |
||||
* @param ep_index index of the endpoint |
||||
* @param start_cycle cycle flag of the first TRB |
||||
* @param start_trb pionter to the first TRB |
||||
* @return none |
||||
*/ |
||||
static void giveback_first_trb(struct usb_device *udev, int ep_index, |
||||
int start_cycle, |
||||
struct xhci_generic_trb *start_trb) |
||||
{ |
||||
struct xhci_ctrl *ctrl = udev->controller; |
||||
|
||||
/*
|
||||
* Pass all the TRBs to the hardware at once and make sure this write |
||||
* isn't reordered. |
||||
*/ |
||||
if (start_cycle) |
||||
start_trb->field[3] |= cpu_to_le32(start_cycle); |
||||
else |
||||
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); |
||||
|
||||
xhci_flush_cache((uint32_t)start_trb, sizeof(struct xhci_generic_trb)); |
||||
|
||||
/* Ringing EP doorbell here */ |
||||
xhci_writel(&ctrl->dba->doorbell[udev->slot_id], |
||||
DB_VALUE(ep_index, 0)); |
||||
|
||||
return; |
||||
} |
||||
|
||||
/**** POLLING mechanism for XHCI ****/ |
||||
|
||||
/**
|
||||
* Finalizes a handled event TRB by advancing our dequeue pointer and giving |
||||
* the TRB back to the hardware for recycling. Must call this exactly once at |
||||
* the end of each event handler, and not touch the TRB again afterwards. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @return none |
||||
*/ |
||||
void xhci_acknowledge_event(struct xhci_ctrl *ctrl) |
||||
{ |
||||
/* Advance our dequeue pointer to the next event */ |
||||
inc_deq(ctrl, ctrl->event_ring); |
||||
|
||||
/* Inform the hardware */ |
||||
xhci_writeq(&ctrl->ir_set->erst_dequeue, |
||||
(uintptr_t)ctrl->event_ring->dequeue | ERST_EHB); |
||||
} |
||||
|
||||
/**
|
||||
* Checks if there is a new event to handle on the event ring. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @return 0 if failure else 1 on success |
||||
*/ |
||||
static int event_ready(struct xhci_ctrl *ctrl) |
||||
{ |
||||
union xhci_trb *event; |
||||
|
||||
xhci_inval_cache((uint32_t)ctrl->event_ring->dequeue, |
||||
sizeof(union xhci_trb)); |
||||
|
||||
event = ctrl->event_ring->dequeue; |
||||
|
||||
/* Does the HC or OS own the TRB? */ |
||||
if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != |
||||
ctrl->event_ring->cycle_state) |
||||
return 0; |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
/**
|
||||
* Waits for a specific type of event and returns it. Discards unexpected |
||||
* events. Caller *must* call xhci_acknowledge_event() after it is finished |
||||
* processing the event, and must not access the returned pointer afterwards. |
||||
* |
||||
* @param ctrl Host controller data structure |
||||
* @param expected TRB type expected from Event TRB |
||||
* @return pointer to event trb |
||||
*/ |
||||
union xhci_trb *xhci_wait_for_event(struct xhci_ctrl *ctrl, trb_type expected) |
||||
{ |
||||
trb_type type; |
||||
unsigned long ts = get_timer(0); |
||||
|
||||
do { |
||||
union xhci_trb *event = ctrl->event_ring->dequeue; |
||||
|
||||
if (!event_ready(ctrl)) |
||||
continue; |
||||
|
||||
type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); |
||||
if (type == expected) |
||||
return event; |
||||
|
||||
if (type == TRB_PORT_STATUS) |
||||
/* TODO: remove this once enumeration has been reworked */ |
||||
/*
|
||||
* Port status change events always have a |
||||
* successful completion code |
||||
*/ |
||||
BUG_ON(GET_COMP_CODE( |
||||
le32_to_cpu(event->generic.field[2])) != |
||||
COMP_SUCCESS); |
||||
else |
||||
printf("Unexpected XHCI event TRB, skipping... " |
||||
"(%08x %08x %08x %08x)\n", |
||||
le32_to_cpu(event->generic.field[0]), |
||||
le32_to_cpu(event->generic.field[1]), |
||||
le32_to_cpu(event->generic.field[2]), |
||||
le32_to_cpu(event->generic.field[3])); |
||||
|
||||
xhci_acknowledge_event(ctrl); |
||||
} while (get_timer(ts) < XHCI_TIMEOUT); |
||||
|
||||
if (expected == TRB_TRANSFER) |
||||
return NULL; |
||||
|
||||
printf("XHCI timeout on event type %d... cannot recover.\n", expected); |
||||
BUG(); |
||||
} |
||||
|
||||
/*
|
||||
* Stops transfer processing for an endpoint and throws away all unprocessed |
||||
* TRBs by setting the xHC's dequeue pointer to our enqueue pointer. The next |
||||
* xhci_bulk_tx/xhci_ctrl_tx on this enpoint will add new transfers there and |
||||
* ring the doorbell, causing this endpoint to start working again. |
||||
* (Careful: This will BUG() when there was no transfer in progress. Shouldn't |
||||
* happen in practice for current uses and is too complicated to fix right now.) |
||||
*/ |
||||
static void abort_td(struct usb_device *udev, int ep_index) |
||||
{ |
||||
struct xhci_ctrl *ctrl = udev->controller; |
||||
struct xhci_ring *ring = ctrl->devs[udev->slot_id]->eps[ep_index].ring; |
||||
union xhci_trb *event; |
||||
u32 field; |
||||
|
||||
xhci_queue_command(ctrl, NULL, udev->slot_id, ep_index, TRB_STOP_RING); |
||||
|
||||
event = xhci_wait_for_event(ctrl, TRB_TRANSFER); |
||||
field = le32_to_cpu(event->trans_event.flags); |
||||
BUG_ON(TRB_TO_SLOT_ID(field) != udev->slot_id); |
||||
BUG_ON(TRB_TO_EP_INDEX(field) != ep_index); |
||||
BUG_ON(GET_COMP_CODE(le32_to_cpu(event->trans_event.transfer_len |
||||
!= COMP_STOP))); |
||||
xhci_acknowledge_event(ctrl); |
||||
|
||||
event = xhci_wait_for_event(ctrl, TRB_COMPLETION); |
||||
BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) |
||||
!= udev->slot_id || GET_COMP_CODE(le32_to_cpu( |
||||
event->event_cmd.status)) != COMP_SUCCESS); |
||||
xhci_acknowledge_event(ctrl); |
||||
|
||||
xhci_queue_command(ctrl, (void *)((uintptr_t)ring->enqueue | |
||||
ring->cycle_state), udev->slot_id, ep_index, TRB_SET_DEQ); |
||||
event = xhci_wait_for_event(ctrl, TRB_COMPLETION); |
||||
BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) |
||||
!= udev->slot_id || GET_COMP_CODE(le32_to_cpu( |
||||
event->event_cmd.status)) != COMP_SUCCESS); |
||||
xhci_acknowledge_event(ctrl); |
||||
} |
||||
|
||||
static void record_transfer_result(struct usb_device *udev, |
||||
union xhci_trb *event, int length) |
||||
{ |
||||
udev->act_len = min(length, length - |
||||
EVENT_TRB_LEN(le32_to_cpu(event->trans_event.transfer_len))); |
||||
|
||||
switch (GET_COMP_CODE(le32_to_cpu(event->trans_event.transfer_len))) { |
||||
case COMP_SUCCESS: |
||||
BUG_ON(udev->act_len != length); |
||||
/* fallthrough */ |
||||
case COMP_SHORT_TX: |
||||
udev->status = 0; |
||||
break; |
||||
case COMP_STALL: |
||||
udev->status = USB_ST_STALLED; |
||||
break; |
||||
case COMP_DB_ERR: |
||||
case COMP_TRB_ERR: |
||||
udev->status = USB_ST_BUF_ERR; |
||||
break; |
||||
case COMP_BABBLE: |
||||
udev->status = USB_ST_BABBLE_DET; |
||||
break; |
||||
default: |
||||
udev->status = 0x80; /* USB_ST_TOO_LAZY_TO_MAKE_A_NEW_MACRO */ |
||||
} |
||||
} |
||||
|
||||
/**** Bulk and Control transfer methods ****/ |
||||
/**
|
||||
* Queues up the BULK Request |
||||
* |
||||
* @param udev pointer to the USB device structure |
||||
* @param pipe contains the DIR_IN or OUT , devnum |
||||
* @param length length of the buffer |
||||
* @param buffer buffer to be read/written based on the request |
||||
* @return returns 0 if successful else -1 on failure |
||||
*/ |
||||
int xhci_bulk_tx(struct usb_device *udev, unsigned long pipe, |
||||
int length, void *buffer) |
||||
{ |
||||
int num_trbs = 0; |
||||
struct xhci_generic_trb *start_trb; |
||||
bool first_trb = 0; |
||||
int start_cycle; |
||||
u32 field = 0; |
||||
u32 length_field = 0; |
||||
struct xhci_ctrl *ctrl = udev->controller; |
||||
int slot_id = udev->slot_id; |
||||
int ep_index; |
||||
struct xhci_virt_device *virt_dev; |
||||
struct xhci_ep_ctx *ep_ctx; |
||||
struct xhci_ring *ring; /* EP transfer ring */ |
||||
union xhci_trb *event; |
||||
|
||||
int running_total, trb_buff_len; |
||||
unsigned int total_packet_count; |
||||
int maxpacketsize; |
||||
u64 addr; |
||||
int ret; |
||||
u32 trb_fields[4]; |
||||
u64 val_64 = (uintptr_t)buffer; |
||||
|
||||
debug("dev=%p, pipe=%lx, buffer=%p, length=%d\n", |
||||
udev, pipe, buffer, length); |
||||
|
||||
ep_index = usb_pipe_ep_index(pipe); |
||||
virt_dev = ctrl->devs[slot_id]; |
||||
|
||||
xhci_inval_cache((uint32_t)virt_dev->out_ctx->bytes, |
||||
virt_dev->out_ctx->size); |
||||
|
||||
ep_ctx = xhci_get_ep_ctx(ctrl, virt_dev->out_ctx, ep_index); |
||||
|
||||
ring = virt_dev->eps[ep_index].ring; |
||||
/*
|
||||
* How much data is (potentially) left before the 64KB boundary? |
||||
* XHCI Spec puts restriction( TABLE 49 and 6.4.1 section of XHCI Spec) |
||||
* that the buffer should not span 64KB boundary. if so |
||||
* we send request in more than 1 TRB by chaining them. |
||||
*/ |
||||
running_total = TRB_MAX_BUFF_SIZE - |
||||
(lower_32_bits(val_64) & (TRB_MAX_BUFF_SIZE - 1)); |
||||
trb_buff_len = running_total; |
||||
running_total &= TRB_MAX_BUFF_SIZE - 1; |
||||
|
||||
/*
|
||||
* If there's some data on this 64KB chunk, or we have to send a |
||||
* zero-length transfer, we need at least one TRB |
||||
*/ |
||||
if (running_total != 0 || length == 0) |
||||
num_trbs++; |
||||
|
||||
/* How many more 64KB chunks to transfer, how many more TRBs? */ |
||||
while (running_total < length) { |
||||
num_trbs++; |
||||
running_total += TRB_MAX_BUFF_SIZE; |
||||
} |
||||
|
||||
/*
|
||||
* XXX: Calling routine prepare_ring() called in place of |
||||
* prepare_trasfer() as there in 'Linux' since we are not |
||||
* maintaining multiple TDs/transfer at the same time. |
||||
*/ |
||||
ret = prepare_ring(ctrl, ring, |
||||
le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK); |
||||
if (ret < 0) |
||||
return ret; |
||||
|
||||
/*
|
||||
* Don't give the first TRB to the hardware (by toggling the cycle bit) |
||||
* until we've finished creating all the other TRBs. The ring's cycle |
||||
* state may change as we enqueue the other TRBs, so save it too. |
||||
*/ |
||||
start_trb = &ring->enqueue->generic; |
||||
start_cycle = ring->cycle_state; |
||||
|
||||
running_total = 0; |
||||
maxpacketsize = usb_maxpacket(udev, pipe); |
||||
|
||||
total_packet_count = DIV_ROUND_UP(length, maxpacketsize); |
||||
|
||||
/* How much data is in the first TRB? */ |
||||
/*
|
||||
* How much data is (potentially) left before the 64KB boundary? |
||||
* XHCI Spec puts restriction( TABLE 49 and 6.4.1 section of XHCI Spec) |
||||
* that the buffer should not span 64KB boundary. if so |
||||
* we send request in more than 1 TRB by chaining them. |
||||
*/ |
||||
addr = val_64; |
||||
|
||||
if (trb_buff_len > length) |
||||
trb_buff_len = length; |
||||
|
||||
first_trb = true; |
||||
|
||||
/* flush the buffer before use */ |
||||
xhci_flush_cache((uint32_t)buffer, length); |
||||
|
||||
/* Queue the first TRB, even if it's zero-length */ |
||||
do { |
||||
u32 remainder = 0; |
||||
field = 0; |
||||
/* Don't change the cycle bit of the first TRB until later */ |
||||
if (first_trb) { |
||||
first_trb = false; |
||||
if (start_cycle == 0) |
||||
field |= TRB_CYCLE; |
||||
} else { |
||||
field |= ring->cycle_state; |
||||
} |
||||
|
||||
/*
|
||||
* Chain all the TRBs together; clear the chain bit in the last |
||||
* TRB to indicate it's the last TRB in the chain. |
||||
*/ |
||||
if (num_trbs > 1) |
||||
field |= TRB_CHAIN; |
||||
else |
||||
field |= TRB_IOC; |
||||
|
||||
/* Only set interrupt on short packet for IN endpoints */ |
||||
if (usb_pipein(pipe)) |
||||
field |= TRB_ISP; |
||||
|
||||
/* Set the TRB length, TD size, and interrupter fields. */ |
||||
if (HC_VERSION(xhci_readl(&ctrl->hccr->cr_capbase)) < 0x100) |
||||
remainder = xhci_td_remainder(length - running_total); |
||||
else |
||||
remainder = xhci_v1_0_td_remainder(running_total, |
||||
trb_buff_len, |
||||
total_packet_count, |
||||
maxpacketsize, |
||||
num_trbs - 1); |
||||
|
||||
length_field = ((trb_buff_len & TRB_LEN_MASK) | |
||||
remainder | |
||||
((0 & TRB_INTR_TARGET_MASK) << |
||||
TRB_INTR_TARGET_SHIFT)); |
||||
|
||||
trb_fields[0] = lower_32_bits(addr); |
||||
trb_fields[1] = upper_32_bits(addr); |
||||
trb_fields[2] = length_field; |
||||
trb_fields[3] = field | (TRB_NORMAL << TRB_TYPE_SHIFT); |
||||
|
||||
queue_trb(ctrl, ring, (num_trbs > 1), trb_fields); |
||||
|
||||
--num_trbs; |
||||
|
||||
running_total += trb_buff_len; |
||||
|
||||
/* Calculate length for next transfer */ |
||||
addr += trb_buff_len; |
||||
trb_buff_len = min((length - running_total), TRB_MAX_BUFF_SIZE); |
||||
} while (running_total < length); |
||||
|
||||
giveback_first_trb(udev, ep_index, start_cycle, start_trb); |
||||
|
||||
event = xhci_wait_for_event(ctrl, TRB_TRANSFER); |
||||
if (!event) { |
||||
debug("XHCI bulk transfer timed out, aborting...\n"); |
||||
abort_td(udev, ep_index); |
||||
udev->status = USB_ST_NAK_REC; /* closest thing to a timeout */ |
||||
udev->act_len = 0; |
||||
return -ETIMEDOUT; |
||||
} |
||||
field = le32_to_cpu(event->trans_event.flags); |
||||
|
||||
BUG_ON(TRB_TO_SLOT_ID(field) != slot_id); |
||||
BUG_ON(TRB_TO_EP_INDEX(field) != ep_index); |
||||
BUG_ON(*(void **)(uintptr_t)le64_to_cpu(event->trans_event.buffer) - |
||||
buffer > (size_t)length); |
||||
|
||||
record_transfer_result(udev, event, length); |
||||
xhci_acknowledge_event(ctrl); |
||||
xhci_inval_cache((uint32_t)buffer, length); |
||||
|
||||
return (udev->status != USB_ST_NOT_PROC) ? 0 : -1; |
||||
} |
||||
|
||||
/**
|
||||
* Queues up the Control Transfer Request |
||||
* |
||||
* @param udev pointer to the USB device structure |
||||
* @param pipe contains the DIR_IN or OUT , devnum |
||||
* @param req request type |
||||
* @param length length of the buffer |
||||
* @param buffer buffer to be read/written based on the request |
||||
* @return returns 0 if successful else error code on failure |
||||
*/ |
||||
int xhci_ctrl_tx(struct usb_device *udev, unsigned long pipe, |
||||
struct devrequest *req, int length, |
||||
void *buffer) |
||||
{ |
||||
int ret; |
||||
int start_cycle; |
||||
int num_trbs; |
||||
u32 field; |
||||
u32 length_field; |
||||
u64 buf_64 = 0; |
||||
struct xhci_generic_trb *start_trb; |
||||
struct xhci_ctrl *ctrl = udev->controller; |
||||
int slot_id = udev->slot_id; |
||||
int ep_index; |
||||
u32 trb_fields[4]; |
||||
struct xhci_virt_device *virt_dev = ctrl->devs[slot_id]; |
||||
struct xhci_ring *ep_ring; |
||||
union xhci_trb *event; |
||||
|
||||
debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n", |
||||
req->request, req->request, |
||||
req->requesttype, req->requesttype, |
||||
le16_to_cpu(req->value), le16_to_cpu(req->value), |
||||
le16_to_cpu(req->index)); |
||||
|
||||
ep_index = usb_pipe_ep_index(pipe); |
||||
|
||||
ep_ring = virt_dev->eps[ep_index].ring; |
||||
|
||||
/*
|
||||
* Check to see if the max packet size for the default control |
||||
* endpoint changed during FS device enumeration |
||||
*/ |
||||
if (udev->speed == USB_SPEED_FULL) { |
||||
ret = xhci_check_maxpacket(udev); |
||||
if (ret < 0) |
||||
return ret; |
||||
} |
||||
|
||||
xhci_inval_cache((uint32_t)virt_dev->out_ctx->bytes, |
||||
virt_dev->out_ctx->size); |
||||
|
||||
struct xhci_ep_ctx *ep_ctx = NULL; |
||||
ep_ctx = xhci_get_ep_ctx(ctrl, virt_dev->out_ctx, ep_index); |
||||
|
||||
/* 1 TRB for setup, 1 for status */ |
||||
num_trbs = 2; |
||||
/*
|
||||
* Don't need to check if we need additional event data and normal TRBs, |
||||
* since data in control transfers will never get bigger than 16MB |
||||
* XXX: can we get a buffer that crosses 64KB boundaries? |
||||
*/ |
||||
|
||||
if (length > 0) |
||||
num_trbs++; |
||||
/*
|
||||
* XXX: Calling routine prepare_ring() called in place of |
||||
* prepare_trasfer() as there in 'Linux' since we are not |
||||
* maintaining multiple TDs/transfer at the same time. |
||||
*/ |
||||
ret = prepare_ring(ctrl, ep_ring, |
||||
le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK); |
||||
|
||||
if (ret < 0) |
||||
return ret; |
||||
|
||||
/*
|
||||
* Don't give the first TRB to the hardware (by toggling the cycle bit) |
||||
* until we've finished creating all the other TRBs. The ring's cycle |
||||
* state may change as we enqueue the other TRBs, so save it too. |
||||
*/ |
||||
start_trb = &ep_ring->enqueue->generic; |
||||
start_cycle = ep_ring->cycle_state; |
||||
|
||||
debug("start_trb %p, start_cycle %d\n", start_trb, start_cycle); |
||||
|
||||
/* Queue setup TRB - see section 6.4.1.2.1 */ |
||||
/* FIXME better way to translate setup_packet into two u32 fields? */ |
||||
field = 0; |
||||
field |= TRB_IDT | (TRB_SETUP << TRB_TYPE_SHIFT); |
||||
if (start_cycle == 0) |
||||
field |= 0x1; |
||||
|
||||
/* xHCI 1.0 6.4.1.2.1: Transfer Type field */ |
||||
if (HC_VERSION(xhci_readl(&ctrl->hccr->cr_capbase)) == 0x100) { |
||||
if (length > 0) { |
||||
if (req->requesttype & USB_DIR_IN) |
||||
field |= (TRB_DATA_IN << TRB_TX_TYPE_SHIFT); |
||||
else |
||||
field |= (TRB_DATA_OUT << TRB_TX_TYPE_SHIFT); |
||||
} |
||||
} |
||||
|
||||
debug("req->requesttype = %d, req->request = %d," |
||||
"le16_to_cpu(req->value) = %d," |
||||
"le16_to_cpu(req->index) = %d," |
||||
"le16_to_cpu(req->length) = %d\n", |
||||
req->requesttype, req->request, le16_to_cpu(req->value), |
||||
le16_to_cpu(req->index), le16_to_cpu(req->length)); |
||||
|
||||
trb_fields[0] = req->requesttype | req->request << 8 | |
||||
le16_to_cpu(req->value) << 16; |
||||
trb_fields[1] = le16_to_cpu(req->index) | |
||||
le16_to_cpu(req->length) << 16; |
||||
/* TRB_LEN | (TRB_INTR_TARGET) */ |
||||
trb_fields[2] = (8 | ((0 & TRB_INTR_TARGET_MASK) << |
||||
TRB_INTR_TARGET_SHIFT)); |
||||
/* Immediate data in pointer */ |
||||
trb_fields[3] = field; |
||||
queue_trb(ctrl, ep_ring, true, trb_fields); |
||||
|
||||
/* Re-initializing field to zero */ |
||||
field = 0; |
||||
/* If there's data, queue data TRBs */ |
||||
/* Only set interrupt on short packet for IN endpoints */ |
||||
if (usb_pipein(pipe)) |
||||
field = TRB_ISP | (TRB_DATA << TRB_TYPE_SHIFT); |
||||
else |
||||
field = (TRB_DATA << TRB_TYPE_SHIFT); |
||||
|
||||
length_field = (length & TRB_LEN_MASK) | xhci_td_remainder(length) | |
||||
((0 & TRB_INTR_TARGET_MASK) << TRB_INTR_TARGET_SHIFT); |
||||
debug("length_field = %d, length = %d," |
||||
"xhci_td_remainder(length) = %d , TRB_INTR_TARGET(0) = %d\n", |
||||
length_field, (length & TRB_LEN_MASK), |
||||
xhci_td_remainder(length), 0); |
||||
|
||||
if (length > 0) { |
||||
if (req->requesttype & USB_DIR_IN) |
||||
field |= TRB_DIR_IN; |
||||
buf_64 = (uintptr_t)buffer; |
||||
|
||||
trb_fields[0] = lower_32_bits(buf_64); |
||||
trb_fields[1] = upper_32_bits(buf_64); |
||||
trb_fields[2] = length_field; |
||||
trb_fields[3] = field | ep_ring->cycle_state; |
||||
|
||||
xhci_flush_cache((uint32_t)buffer, length); |
||||
queue_trb(ctrl, ep_ring, true, trb_fields); |
||||
} |
||||
|
||||
/*
|
||||
* Queue status TRB - |
||||
* see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 |
||||
*/ |
||||
|
||||
/* If the device sent data, the status stage is an OUT transfer */ |
||||
field = 0; |
||||
if (length > 0 && req->requesttype & USB_DIR_IN) |
||||
field = 0; |
||||
else |
||||
field = TRB_DIR_IN; |
||||
|
||||
trb_fields[0] = 0; |
||||
trb_fields[1] = 0; |
||||
trb_fields[2] = ((0 & TRB_INTR_TARGET_MASK) << TRB_INTR_TARGET_SHIFT); |
||||
/* Event on completion */ |
||||
trb_fields[3] = field | TRB_IOC | |
||||
(TRB_STATUS << TRB_TYPE_SHIFT) | |
||||
ep_ring->cycle_state; |
||||
|
||||
queue_trb(ctrl, ep_ring, false, trb_fields); |
||||
|
||||
giveback_first_trb(udev, ep_index, start_cycle, start_trb); |
||||
|
||||
event = xhci_wait_for_event(ctrl, TRB_TRANSFER); |
||||
if (!event) |
||||
goto abort; |
||||
field = le32_to_cpu(event->trans_event.flags); |
||||
|
||||
BUG_ON(TRB_TO_SLOT_ID(field) != slot_id); |
||||
BUG_ON(TRB_TO_EP_INDEX(field) != ep_index); |
||||
|
||||
record_transfer_result(udev, event, length); |
||||
xhci_acknowledge_event(ctrl); |
||||
|
||||
/* Invalidate buffer to make it available to usb-core */ |
||||
if (length > 0) |
||||
xhci_inval_cache((uint32_t)buffer, length); |
||||
|
||||
if (GET_COMP_CODE(le32_to_cpu(event->trans_event.transfer_len)) |
||||
== COMP_SHORT_TX) { |
||||
/* Short data stage, clear up additional status stage event */ |
||||
event = xhci_wait_for_event(ctrl, TRB_TRANSFER); |
||||
if (!event) |
||||
goto abort; |
||||
BUG_ON(TRB_TO_SLOT_ID(field) != slot_id); |
||||
BUG_ON(TRB_TO_EP_INDEX(field) != ep_index); |
||||
xhci_acknowledge_event(ctrl); |
||||
} |
||||
|
||||
return (udev->status != USB_ST_NOT_PROC) ? 0 : -1; |
||||
|
||||
abort: |
||||
debug("XHCI control transfer timed out, aborting...\n"); |
||||
abort_td(udev, ep_index); |
||||
udev->status = USB_ST_NAK_REC; |
||||
udev->act_len = 0; |
||||
return -ETIMEDOUT; |
||||
} |
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue