Merge branch 'u-boot-ti/master' into 'u-boot-arm/master'

This required manual merging drivers/mtd/nand/Makefile
and adding am335x_evm support for CONFIG_SPL_NAND_DRIVERS
master
Albert ARIBAUD 12 years ago
commit 79f3877794
  1. 2
      arch/arm/cpu/arm926ejs/davinci/reset.c
  2. 2
      arch/arm/cpu/armv7/am33xx/Makefile
  3. 1
      arch/arm/cpu/armv7/am33xx/board.c
  4. 10
      arch/arm/cpu/armv7/am33xx/clock.c
  5. 212
      arch/arm/cpu/armv7/am33xx/elm.c
  6. 101
      arch/arm/cpu/armv7/am33xx/mem.c
  7. 5
      arch/arm/cpu/armv7/omap-common/Makefile
  8. 1
      arch/arm/cpu/armv7/omap-common/boot-common.c
  9. 41
      arch/arm/cpu/armv7/omap-common/emif-common.c
  10. 4
      arch/arm/cpu/armv7/omap3/board.c
  11. 18
      arch/arm/cpu/armv7/omap3/mem.c
  12. 36
      arch/arm/cpu/armv7/omap3/sdrc.c
  13. 2
      arch/arm/cpu/armv7/omap4/clocks.c
  14. 4
      arch/arm/cpu/armv7/omap4/hwinit.c
  15. 53
      arch/arm/include/asm/arch-am33xx/cpu.h
  16. 93
      arch/arm/include/asm/arch-am33xx/elm.h
  17. 3
      arch/arm/include/asm/arch-am33xx/hardware.h
  18. 83
      arch/arm/include/asm/arch-am33xx/mem.h
  19. 120
      arch/arm/include/asm/arch-am33xx/omap_gpmc.h
  20. 3
      arch/arm/include/asm/arch-am33xx/sys_proto.h
  21. 13
      arch/arm/include/asm/arch-omap3/sys_proto.h
  22. 7
      arch/arm/include/asm/omap_gpio.h
  23. 13
      board/corscience/tricorder/tricorder.c
  24. 29
      board/isee/igep0020/igep0020.c
  25. 29
      board/isee/igep0030/igep0030.c
  26. 37
      board/overo/overo.c
  27. 10
      board/technexion/twister/twister.c
  28. 23
      board/teejet/mt_ventoux/mt_ventoux.c
  29. 4
      board/ti/am335x/board.c
  30. 22
      board/ti/am335x/mux.c
  31. 53
      board/ti/beagle/beagle.c
  32. 19
      board/ti/evm/evm.c
  33. 13
      board/timll/devkit8000/devkit8000.c
  34. 10
      drivers/gpio/omap_gpio.c
  35. 20
      drivers/i2c/omap24xx_i2c.c
  36. 5
      drivers/mtd/nand/Makefile
  37. 238
      drivers/mtd/nand/am335x_spl_bch.c
  38. 403
      drivers/mtd/nand/omap_gpmc.c
  39. 5
      drivers/net/cpsw.c
  40. 17
      drivers/power/twl6035.c
  41. 76
      drivers/spi/omap3_spi.c
  42. 1
      drivers/spi/omap3_spi.h
  43. 50
      include/configs/am335x_evm.h
  44. 2
      include/configs/cm_t35.h
  45. 1
      include/configs/dig297.h
  46. 1
      include/configs/igep00x0.h
  47. 1
      include/configs/mcx.h
  48. 2
      include/configs/omap3_beagle.h
  49. 1
      include/configs/omap3_mvblx.h
  50. 1
      include/configs/omap3_pandora.h
  51. 1
      include/configs/omap3_sdp3430.h
  52. 1
      include/configs/omap3_zoom1.h
  53. 1
      include/configs/omap3_zoom2.h
  54. 59
      include/configs/tam3517-common.h
  55. 1
      include/configs/tricorder.h
  56. 2
      include/twl6035.h

@ -16,7 +16,7 @@
void reset_cpu(unsigned long a)
{
struct davinci_timer *const wdttimer =
(struct davinci_timer *)DAVINCI_TIMER1_BASE;
(struct davinci_timer *)DAVINCI_WDOG_BASE;
writel(0x08, &wdttimer->tgcr);
writel(readl(&wdttimer->tgcr) | 0x03, &wdttimer->tgcr);
writel(0, &wdttimer->tim12);

@ -18,10 +18,12 @@ LIB = $(obj)lib$(SOC).o
COBJS += clock.o
COBJS += sys_info.o
COBJS += mem.o
COBJS += ddr.o
COBJS += emif4.o
COBJS += board.o
COBJS += mux.o
COBJS-$(CONFIG_NAND_OMAP_GPMC) += elm.o
SRCS := $(SOBJS:.o=.S) $(COBJS:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS) $(COBJS-y) $(SOBJS))

@ -25,6 +25,7 @@
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mem.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/io.h>

@ -151,6 +151,16 @@ static void enable_per_clocks(void)
;
#endif /* CONFIG_SERIAL6 */
/* GPMC */
writel(PRCM_MOD_EN, &cmper->gpmcclkctrl);
while (readl(&cmper->gpmcclkctrl) != PRCM_MOD_EN)
;
/* ELM */
writel(PRCM_MOD_EN, &cmper->elmclkctrl);
while (readl(&cmper->elmclkctrl) != PRCM_MOD_EN)
;
/* MMC0*/
writel(PRCM_MOD_EN, &cmper->mmc0clkctrl);
while (readl(&cmper->mmc0clkctrl) != PRCM_MOD_EN)

@ -0,0 +1,212 @@
/*
* (C) Copyright 2010-2011 Texas Instruments, <www.ti.com>
* Mansoor Ahamed <mansoor.ahamed@ti.com>
*
* BCH Error Location Module (ELM) support.
*
* NOTE:
* 1. Supports only continuous mode. Dont see need for page mode in uboot
* 2. Supports only syndrome polynomial 0. i.e. poly local variable is
* always set to ELM_DEFAULT_POLY. Dont see need for other polynomial
* sets in uboot
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/cpu.h>
#include <asm/arch/omap_gpmc.h>
#include <asm/arch/elm.h>
#define ELM_DEFAULT_POLY (0)
struct elm *elm_cfg;
/**
* elm_load_syndromes - Load BCH syndromes based on nibble selection
* @syndrome: BCH syndrome
* @nibbles:
* @poly: Syndrome Polynomial set to use
*
* Load BCH syndromes based on nibble selection
*/
static void elm_load_syndromes(u8 *syndrome, u32 nibbles, u8 poly)
{
u32 *ptr;
u32 val;
/* reg 0 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[0];
val = syndrome[0] | (syndrome[1] << 8) | (syndrome[2] << 16) |
(syndrome[3] << 24);
writel(val, ptr);
/* reg 1 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[1];
val = syndrome[4] | (syndrome[5] << 8) | (syndrome[6] << 16) |
(syndrome[7] << 24);
writel(val, ptr);
/* BCH 8-bit with 26 nibbles (4*8=32) */
if (nibbles > 13) {
/* reg 2 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[2];
val = syndrome[8] | (syndrome[9] << 8) | (syndrome[10] << 16) |
(syndrome[11] << 24);
writel(val, ptr);
/* reg 3 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[3];
val = syndrome[12] | (syndrome[13] << 8) |
(syndrome[14] << 16) | (syndrome[15] << 24);
writel(val, ptr);
}
/* BCH 16-bit with 52 nibbles (7*8=56) */
if (nibbles > 26) {
/* reg 4 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[4];
val = syndrome[16] | (syndrome[17] << 8) |
(syndrome[18] << 16) | (syndrome[19] << 24);
writel(val, ptr);
/* reg 5 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[5];
val = syndrome[20] | (syndrome[21] << 8) |
(syndrome[22] << 16) | (syndrome[23] << 24);
writel(val, ptr);
/* reg 6 */
ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6];
val = syndrome[24] | (syndrome[25] << 8) |
(syndrome[26] << 16) | (syndrome[27] << 24);
writel(val, ptr);
}
}
/**
* elm_check_errors - Check for BCH errors and return error locations
* @syndrome: BCH syndrome
* @nibbles:
* @error_count: Returns number of errrors in the syndrome
* @error_locations: Returns error locations (in decimal) in this array
*
* Check the provided syndrome for BCH errors and return error count
* and locations in the array passed. Returns -1 if error is not correctable,
* else returns 0
*/
int elm_check_error(u8 *syndrome, u32 nibbles, u32 *error_count,
u32 *error_locations)
{
u8 poly = ELM_DEFAULT_POLY;
s8 i;
u32 location_status;
elm_load_syndromes(syndrome, nibbles, poly);
/* start processing */
writel((readl(&elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6])
| ELM_SYNDROME_FRAGMENT_6_SYNDROME_VALID),
&elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6]);
/* wait for processing to complete */
while ((readl(&elm_cfg->irqstatus) & (0x1 << poly)) != 0x1)
;
/* clear status */
writel((readl(&elm_cfg->irqstatus) | (0x1 << poly)),
&elm_cfg->irqstatus);
/* check if correctable */
location_status = readl(&elm_cfg->error_location[poly].location_status);
if (!(location_status & ELM_LOCATION_STATUS_ECC_CORRECTABLE_MASK))
return -1;
/* get error count */
*error_count = readl(&elm_cfg->error_location[poly].location_status) &
ELM_LOCATION_STATUS_ECC_NB_ERRORS_MASK;
for (i = 0; i < *error_count; i++) {
error_locations[i] =
readl(&elm_cfg->error_location[poly].error_location_x[i]);
}
return 0;
}
/**
* elm_config - Configure ELM module
* @level: 4 / 8 / 16 bit BCH
*
* Configure ELM module based on BCH level.
* Set mode as continuous mode.
* Currently we are using only syndrome 0 and syndromes 1 to 6 are not used.
* Also, the mode is set only for syndrome 0
*/
int elm_config(enum bch_level level)
{
u32 val;
u8 poly = ELM_DEFAULT_POLY;
u32 buffer_size = 0x7FF;
/* config size and level */
val = (u32)(level) & ELM_LOCATION_CONFIG_ECC_BCH_LEVEL_MASK;
val |= ((buffer_size << ELM_LOCATION_CONFIG_ECC_SIZE_POS) &
ELM_LOCATION_CONFIG_ECC_SIZE_MASK);
writel(val, &elm_cfg->location_config);
/* config continous mode */
/* enable interrupt generation for syndrome polynomial set */
writel((readl(&elm_cfg->irqenable) | (0x1 << poly)),
&elm_cfg->irqenable);
/* set continuous mode for the syndrome polynomial set */
writel((readl(&elm_cfg->page_ctrl) & ~(0x1 << poly)),
&elm_cfg->page_ctrl);
return 0;
}
/**
* elm_reset - Do a soft reset of ELM
*
* Perform a soft reset of ELM and return after reset is done.
*/
void elm_reset(void)
{
/* initiate reset */
writel((readl(&elm_cfg->sysconfig) | ELM_SYSCONFIG_SOFTRESET),
&elm_cfg->sysconfig);
/* wait for reset complete and normal operation */
while ((readl(&elm_cfg->sysstatus) & ELM_SYSSTATUS_RESETDONE) !=
ELM_SYSSTATUS_RESETDONE)
;
}
/**
* elm_init - Initialize ELM module
*
* Initialize ELM support. Currently it does only base address init
* and ELM reset.
*/
void elm_init(void)
{
elm_cfg = (struct elm *)ELM_BASE;
elm_reset();
}

@ -0,0 +1,101 @@
/*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Author :
* Mansoor Ahamed <mansoor.ahamed@ti.com>
*
* Initial Code from:
* Manikandan Pillai <mani.pillai@ti.com>
* Richard Woodruff <r-woodruff2@ti.com>
* Syed Mohammed Khasim <khasim@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/mem.h>
#include <asm/arch/sys_proto.h>
#include <command.h>
struct gpmc *gpmc_cfg;
#if defined(CONFIG_CMD_NAND)
static const u32 gpmc_m_nand[GPMC_MAX_REG] = {
M_NAND_GPMC_CONFIG1,
M_NAND_GPMC_CONFIG2,
M_NAND_GPMC_CONFIG3,
M_NAND_GPMC_CONFIG4,
M_NAND_GPMC_CONFIG5,
M_NAND_GPMC_CONFIG6, 0
};
#endif
void enable_gpmc_cs_config(const u32 *gpmc_config, struct gpmc_cs *cs, u32 base,
u32 size)
{
writel(0, &cs->config7);
sdelay(1000);
/* Delay for settling */
writel(gpmc_config[0], &cs->config1);
writel(gpmc_config[1], &cs->config2);
writel(gpmc_config[2], &cs->config3);
writel(gpmc_config[3], &cs->config4);
writel(gpmc_config[4], &cs->config5);
writel(gpmc_config[5], &cs->config6);
/* Enable the config */
writel((((size & 0xF) << 8) | ((base >> 24) & 0x3F) |
(1 << 6)), &cs->config7);
sdelay(2000);
}
/*****************************************************
* gpmc_init(): init gpmc bus
* Init GPMC for x16, MuxMode (SDRAM in x32).
* This code can only be executed from SRAM or SDRAM.
*****************************************************/
void gpmc_init(void)
{
/* putting a blanket check on GPMC based on ZeBu for now */
gpmc_cfg = (struct gpmc *)GPMC_BASE;
#ifdef CONFIG_CMD_NAND
const u32 *gpmc_config = NULL;
u32 base = 0;
u32 size = 0;
#endif
/* global settings */
writel(0x00000008, &gpmc_cfg->sysconfig);
writel(0x00000100, &gpmc_cfg->irqstatus);
writel(0x00000200, &gpmc_cfg->irqenable);
writel(0x00000012, &gpmc_cfg->config);
/*
* Disable the GPMC0 config set by ROM code
*/
writel(0, &gpmc_cfg->cs[0].config7);
sdelay(1000);
#ifdef CONFIG_CMD_NAND
gpmc_config = gpmc_m_nand;
base = PISMO1_NAND_BASE;
size = PISMO1_NAND_SIZE;
enable_gpmc_cs_config(gpmc_config, &gpmc_cfg->cs[0], base, size);
#endif
}

@ -25,9 +25,8 @@ include $(TOPDIR)/config.mk
LIB = $(obj)libomap-common.o
SOBJS := reset.o
COBJS := timer.o
COBJS := reset.o
COBJS += timer.o
COBJS += utils.o
ifneq ($(CONFIG_OMAP44XX)$(CONFIG_OMAP54XX),)

@ -21,6 +21,7 @@
#include <asm/omap_common.h>
#include <asm/arch/omap.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
/*
* This is used to verify if the configuration header

@ -33,6 +33,8 @@
#include <asm/utils.h>
#include <linux/compiler.h>
static int emif1_enabled = -1, emif2_enabled = -1;
void set_lpmode_selfrefresh(u32 base)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
@ -1109,6 +1111,7 @@ void emif_post_init_config(u32 base)
void dmm_init(u32 base)
{
const struct dmm_lisa_map_regs *lisa_map_regs;
u32 i, section, valid;
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
emif_get_dmm_regs(&lisa_map_regs);
@ -1216,6 +1219,29 @@ void dmm_init(u32 base)
writel(lisa_map_regs->dmm_lisa_map_0,
&hw_lisa_map_regs->dmm_lisa_map_0);
}
/*
* EMIF should be configured only when
* memory is mapped on it. Using emif1_enabled
* and emif2_enabled variables for this.
*/
emif1_enabled = 0;
emif2_enabled = 0;
for (i = 0; i < 4; i++) {
section = __raw_readl(DMM_BASE + i*4);
valid = (section & EMIF_SDRC_MAP_MASK) >>
(EMIF_SDRC_MAP_SHIFT);
if (valid == 3) {
emif1_enabled = 1;
emif2_enabled = 1;
break;
} else if (valid == 1) {
emif1_enabled = 1;
} else if (valid == 2) {
emif2_enabled = 1;
}
}
}
/*
@ -1255,15 +1281,20 @@ void sdram_init(void)
writel(CM_DLL_CTRL_NO_OVERRIDE, &prcm->cm_dll_ctrl);
}
do_sdram_init(EMIF1_BASE);
do_sdram_init(EMIF2_BASE);
if (!in_sdram)
dmm_init(DMM_BASE);
if (emif1_enabled)
do_sdram_init(EMIF1_BASE);
if (emif2_enabled)
do_sdram_init(EMIF2_BASE);
if (!(in_sdram || warm_reset())) {
emif_post_init_config(EMIF1_BASE);
emif_post_init_config(EMIF2_BASE);
if (emif1_enabled)
emif_post_init_config(EMIF1_BASE);
if (emif2_enabled)
emif_post_init_config(EMIF2_BASE);
}
/* for the shadow registers to take effect */

@ -478,7 +478,7 @@ void omap3_outer_cache_disable(void)
*/
omap3_update_aux_cr(0, 0x2);
}
#endif
#endif /* !CONFIG_SYS_L2CACHE_OFF */
#ifndef CONFIG_SYS_DCACHE_OFF
void enable_caches(void)
@ -486,4 +486,4 @@ void enable_caches(void)
/* Enable D-cache. I-cache is already enabled in start.S */
dcache_enable();
}
#endif
#endif /* !CONFIG_SYS_DCACHE_OFF */

@ -42,14 +42,7 @@ static const u32 gpmc_m_nand[GPMC_MAX_REG] = {
M_NAND_GPMC_CONFIG5,
M_NAND_GPMC_CONFIG6, 0
};
#if defined(CONFIG_ENV_IS_IN_NAND)
#define GPMC_CS 0
#else
#define GPMC_CS 1
#endif
#endif
#endif /* CONFIG_CMD_NAND */
#if defined(CONFIG_CMD_ONENAND)
static const u32 gpmc_onenand[GPMC_MAX_REG] = {
@ -60,14 +53,7 @@ static const u32 gpmc_onenand[GPMC_MAX_REG] = {
ONENAND_GPMC_CONFIG5,
ONENAND_GPMC_CONFIG6, 0
};
#if defined(CONFIG_ENV_IS_IN_ONENAND)
#define GPMC_CS 0
#else
#define GPMC_CS 1
#endif
#endif
#endif /* CONFIG_CMD_ONENAND */
/********************************************************
* mem_ok() - test used to see if timings are correct

@ -113,18 +113,18 @@ u32 get_sdr_cs_offset(u32 cs)
* - Test CS to make sure it's OK for use
*/
static void write_sdrc_timings(u32 cs, struct sdrc_actim *sdrc_actim_base,
u32 mcfg, u32 ctrla, u32 ctrlb, u32 rfr_ctrl, u32 mr)
struct board_sdrc_timings *timings)
{
/* Setup timings we got from the board. */
writel(mcfg, &sdrc_base->cs[cs].mcfg);
writel(ctrla, &sdrc_actim_base->ctrla);
writel(ctrlb, &sdrc_actim_base->ctrlb);
writel(rfr_ctrl, &sdrc_base->cs[cs].rfr_ctrl);
writel(timings->mcfg, &sdrc_base->cs[cs].mcfg);
writel(timings->ctrla, &sdrc_actim_base->ctrla);
writel(timings->ctrlb, &sdrc_actim_base->ctrlb);
writel(timings->rfr_ctrl, &sdrc_base->cs[cs].rfr_ctrl);
writel(CMD_NOP, &sdrc_base->cs[cs].manual);
writel(CMD_PRECHARGE, &sdrc_base->cs[cs].manual);
writel(CMD_AUTOREFRESH, &sdrc_base->cs[cs].manual);
writel(CMD_AUTOREFRESH, &sdrc_base->cs[cs].manual);
writel(mr, &sdrc_base->cs[cs].mr);
writel(timings->mr, &sdrc_base->cs[cs].mr);
/*
* Test ram in this bank
@ -143,7 +143,7 @@ static void write_sdrc_timings(u32 cs, struct sdrc_actim *sdrc_actim_base,
void do_sdrc_init(u32 cs, u32 early)
{
struct sdrc_actim *sdrc_actim_base0, *sdrc_actim_base1;
u32 mcfg, ctrla, ctrlb, rfr_ctrl, mr;
struct board_sdrc_timings timings;
sdrc_actim_base0 = (struct sdrc_actim *)SDRC_ACTIM_CTRL0_BASE;
sdrc_actim_base1 = (struct sdrc_actim *)SDRC_ACTIM_CTRL1_BASE;
@ -158,7 +158,7 @@ void do_sdrc_init(u32 cs, u32 early)
* setup CS1.
*/
#ifdef CONFIG_SPL_BUILD
get_board_mem_timings(&mcfg, &ctrla, &ctrlb, &rfr_ctrl, &mr);
get_board_mem_timings(&timings);
#endif
if (early) {
/* reset sdrc controller */
@ -177,11 +177,9 @@ void do_sdrc_init(u32 cs, u32 early)
writel(ENADLL | DLLPHASE_90, &sdrc_base->dlla_ctrl);
sdelay(0x20000);
#ifdef CONFIG_SPL_BUILD
write_sdrc_timings(CS0, sdrc_actim_base0, mcfg, ctrla, ctrlb,
rfr_ctrl, mr);
write_sdrc_timings(CS0, sdrc_actim_base0, &timings);
make_cs1_contiguous();
write_sdrc_timings(CS1, sdrc_actim_base1, mcfg, ctrla, ctrlb,
rfr_ctrl, mr);
write_sdrc_timings(CS1, sdrc_actim_base1, &timings);
#endif
}
@ -193,14 +191,12 @@ void do_sdrc_init(u32 cs, u32 early)
* so we may be asked now to setup CS1.
*/
if (cs == CS1) {
mcfg = readl(&sdrc_base->cs[CS0].mcfg),
rfr_ctrl = readl(&sdrc_base->cs[CS0].rfr_ctrl);
ctrla = readl(&sdrc_actim_base0->ctrla),
ctrlb = readl(&sdrc_actim_base0->ctrlb);
mr = readl(&sdrc_base->cs[CS0].mr);
write_sdrc_timings(cs, sdrc_actim_base1, mcfg, ctrla, ctrlb,
rfr_ctrl, mr);
timings.mcfg = readl(&sdrc_base->cs[CS0].mcfg),
timings.rfr_ctrl = readl(&sdrc_base->cs[CS0].rfr_ctrl);
timings.ctrla = readl(&sdrc_actim_base0->ctrla);
timings.ctrlb = readl(&sdrc_actim_base0->ctrlb);
timings.mr = readl(&sdrc_base->cs[CS0].mr);
write_sdrc_timings(cs, sdrc_actim_base1, &timings);
}
}

@ -44,7 +44,7 @@
*/
#define printf(fmt, args...)
#define puts(s)
#endif
#endif /* !CONFIG_SPL_BUILD */
struct omap4_prcm_regs *const prcm = (struct omap4_prcm_regs *)0x4A004100;

@ -116,7 +116,7 @@ void do_io_settings(void)
if ((omap4_rev < OMAP4460_ES1_0) || !readl(&ctrl->control_efuse_2))
writel(CONTROL_EFUSE_2_OVERRIDE, &ctrl->control_efuse_2);
}
#endif
#endif /* CONFIG_SPL_BUILD */
/* dummy fuction for omap4 */
void config_data_eye_leveling_samples(u32 emif_base)
@ -182,4 +182,4 @@ void v7_outer_cache_disable(void)
{
set_pl310_ctrl_reg(0);
}
#endif
#endif /* !CONFIG_SYS_L2CACHE_OFF */

@ -60,6 +60,59 @@
#ifndef __KERNEL_STRICT_NAMES
#ifndef __ASSEMBLY__
struct gpmc_cs {
u32 config1; /* 0x00 */
u32 config2; /* 0x04 */
u32 config3; /* 0x08 */
u32 config4; /* 0x0C */
u32 config5; /* 0x10 */
u32 config6; /* 0x14 */
u32 config7; /* 0x18 */
u32 nand_cmd; /* 0x1C */
u32 nand_adr; /* 0x20 */
u32 nand_dat; /* 0x24 */
u8 res[8]; /* blow up to 0x30 byte */
};
struct bch_res_0_3 {
u32 bch_result_x[4];
};
struct gpmc {
u8 res1[0x10];
u32 sysconfig; /* 0x10 */
u8 res2[0x4];
u32 irqstatus; /* 0x18 */
u32 irqenable; /* 0x1C */
u8 res3[0x20];
u32 timeout_control; /* 0x40 */
u8 res4[0xC];
u32 config; /* 0x50 */
u32 status; /* 0x54 */
u8 res5[0x8]; /* 0x58 */
struct gpmc_cs cs[8]; /* 0x60, 0x90, .. */
u8 res6[0x14]; /* 0x1E0 */
u32 ecc_config; /* 0x1F4 */
u32 ecc_control; /* 0x1F8 */
u32 ecc_size_config; /* 0x1FC */
u32 ecc1_result; /* 0x200 */
u32 ecc2_result; /* 0x204 */
u32 ecc3_result; /* 0x208 */
u32 ecc4_result; /* 0x20C */
u32 ecc5_result; /* 0x210 */
u32 ecc6_result; /* 0x214 */
u32 ecc7_result; /* 0x218 */
u32 ecc8_result; /* 0x21C */
u32 ecc9_result; /* 0x220 */
u8 res7[12]; /* 0x224 */
u32 testmomde_ctrl; /* 0x230 */
u8 res8[12]; /* 0x234 */
struct bch_res_0_3 bch_result_0_3[2]; /* 0x240 */
};
/* Used for board specific gpmc initialization */
extern struct gpmc *gpmc_cfg;
/* Encapsulating core pll registers */
struct cm_wkuppll {
unsigned int wkclkstctrl; /* offset 0x00 */

@ -0,0 +1,93 @@
/*
* (C) Copyright 2010-2011 Texas Instruments, <www.ti.com>
* Mansoor Ahamed <mansoor.ahamed@ti.com>
*
* Derived from work done by Rohit Choraria <rohitkc@ti.com> for omap3
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef __ASM_ARCH_ELM_H
#define __ASM_ARCH_ELM_H
/*
* ELM Module Registers
*/
/* ELM registers bit fields */
#define ELM_SYSCONFIG_SOFTRESET_MASK (0x2)
#define ELM_SYSCONFIG_SOFTRESET (0x2)
#define ELM_SYSSTATUS_RESETDONE_MASK (0x1)
#define ELM_SYSSTATUS_RESETDONE (0x1)
#define ELM_LOCATION_CONFIG_ECC_BCH_LEVEL_MASK (0x3)
#define ELM_LOCATION_CONFIG_ECC_SIZE_MASK (0x7FF0000)
#define ELM_LOCATION_CONFIG_ECC_SIZE_POS (16)
#define ELM_SYNDROME_FRAGMENT_6_SYNDROME_VALID (0x00010000)
#define ELM_LOCATION_STATUS_ECC_CORRECTABLE_MASK (0x100)
#define ELM_LOCATION_STATUS_ECC_NB_ERRORS_MASK (0x1F)
#ifndef __ASSEMBLY__
enum bch_level {
BCH_4_BIT = 0,
BCH_8_BIT,
BCH_16_BIT
};
/* BCH syndrome registers */
struct syndrome {
u32 syndrome_fragment_x[7]; /* 0x400, 0x404.... 0x418 */
u8 res1[36]; /* 0x41c */
};
/* BCH error status & location register */
struct location {
u32 location_status; /* 0x800 */
u8 res1[124]; /* 0x804 */
u32 error_location_x[16]; /* 0x880.... */
u8 res2[64]; /* 0x8c0 */
};
/* BCH ELM register map - do not try to allocate memmory for this structure.
* We have used plenty of reserved variables to fill the slots in the ELM
* register memory map.
* Directly initialize the struct pointer to ELM base address.
*/
struct elm {
u32 rev; /* 0x000 */
u8 res1[12]; /* 0x004 */
u32 sysconfig; /* 0x010 */
u32 sysstatus; /* 0x014 */
u32 irqstatus; /* 0x018 */
u32 irqenable; /* 0x01c */
u32 location_config; /* 0x020 */
u8 res2[92]; /* 0x024 */
u32 page_ctrl; /* 0x080 */
u8 res3[892]; /* 0x084 */
struct syndrome syndrome_fragments[8]; /* 0x400 */
u8 res4[512]; /* 0x600 */
struct location error_location[8]; /* 0x800 */
};
int elm_check_error(u8 *syndrome, u32 nibbles, u32 *error_count,
u32 *error_locations);
int elm_config(enum bch_level level);
void elm_reset(void);
void elm_init(void);
#endif /* __ASSEMBLY__ */
#endif /* __ASM_ARCH_ELM_H */

@ -80,6 +80,9 @@
#define DDRPHY_0_CONFIG_BASE (CTRL_BASE + 0x1400)
#define DDRPHY_CONFIG_BASE DDRPHY_0_CONFIG_BASE
/* GPMC Base address */
#define GPMC_BASE 0x50000000
/* CPSW Config space */
#define AM335X_CPSW_BASE 0x4A100000
#define AM335X_CPSW_MDIO_BASE 0x4A101000

@ -0,0 +1,83 @@
/*
* (C) Copyright 2006-2008
* Texas Instruments, <www.ti.com>
*
* Author
* Mansoor Ahamed <mansoor.ahamed@ti.com>
*
* Initial Code from:
* Richard Woodruff <r-woodruff2@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef _MEM_H_
#define _MEM_H_
/*
* GPMC settings -
* Definitions is as per the following format
* #define <PART>_GPMC_CONFIG<x> <value>
* Where:
* PART is the part name e.g. STNOR - Intel Strata Flash
* x is GPMC config registers from 1 to 6 (there will be 6 macros)
* Value is corresponding value
*
* For every valid PRCM configuration there should be only one definition of
* the same. if values are independent of the board, this definition will be
* present in this file if values are dependent on the board, then this should
* go into corresponding mem-boardName.h file
*
* Currently valid part Names are (PART):
* M_NAND - Micron NAND
*/
#define GPMC_SIZE_256M 0x0
#define GPMC_SIZE_128M 0x8
#define GPMC_SIZE_64M 0xC
#define GPMC_SIZE_32M 0xE
#define GPMC_SIZE_16M 0xF
#define M_NAND_GPMC_CONFIG1 0x00000800
#define M_NAND_GPMC_CONFIG2 0x001e1e00
#define M_NAND_GPMC_CONFIG3 0x001e1e00
#define M_NAND_GPMC_CONFIG4 0x16051807
#define M_NAND_GPMC_CONFIG5 0x00151e1e
#define M_NAND_GPMC_CONFIG6 0x16000f80
#define M_NAND_GPMC_CONFIG7 0x00000008
/* max number of GPMC Chip Selects */
#define GPMC_MAX_CS 8
/* max number of GPMC regs */
#define GPMC_MAX_REG 7
#define PISMO1_NOR 1
#define PISMO1_NAND 2
#define PISMO2_CS0 3
#define PISMO2_CS1 4
#define PISMO1_ONENAND 5
#define DBG_MPDB 6
#define PISMO2_NAND_CS0 7
#define PISMO2_NAND_CS1 8
/* make it readable for the gpmc_init */
#define PISMO1_NOR_BASE FLASH_BASE
#define PISMO1_NAND_BASE CONFIG_SYS_NAND_BASE
#define PISMO1_NAND_SIZE GPMC_SIZE_256M
#endif /* endif _MEM_H_ */

@ -0,0 +1,120 @@
/*
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
* Rohit Choraria <rohitkc@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef __ASM_ARCH_OMAP_GPMC_H
#define __ASM_ARCH_OMAP_GPMC_H
#define GPMC_BUF_EMPTY 0
#define GPMC_BUF_FULL 1
#define ECCCLEAR (0x1 << 8)
#define ECCRESULTREG1 (0x1 << 0)
#define ECCSIZE512BYTE 0xFF
#define ECCSIZE1 (ECCSIZE512BYTE << 22)
#define ECCSIZE0 (ECCSIZE512BYTE << 12)
#define ECCSIZE0SEL (0x000 << 0)
/* Generic ECC Layouts */
/* Large Page x8 NAND device Layout */
#ifdef GPMC_NAND_ECC_LP_x8_LAYOUT
#define GPMC_NAND_HW_ECC_LAYOUT {\
.eccbytes = 12,\
.eccpos = {1, 2, 3, 4, 5, 6, 7, 8,\
9, 10, 11, 12},\
.oobfree = {\
{.offset = 13,\
.length = 51 } } \
}
#endif
/* Large Page x16 NAND device Layout */
#ifdef GPMC_NAND_ECC_LP_x16_LAYOUT
#define GPMC_NAND_HW_ECC_LAYOUT {\
.eccbytes = 12,\
.eccpos = {2, 3, 4, 5, 6, 7, 8, 9,\
10, 11, 12, 13},\
.oobfree = {\
{.offset = 14,\
.length = 50 } } \
}
#endif
/* Small Page x8 NAND device Layout */
#ifdef GPMC_NAND_ECC_SP_x8_LAYOUT
#define GPMC_NAND_HW_ECC_LAYOUT {\
.eccbytes = 3,\
.eccpos = {1, 2, 3},\
.oobfree = {\
{.offset = 4,\
.length = 12 } } \
}
#endif
/* Small Page x16 NAND device Layout */
#ifdef GPMC_NAND_ECC_SP_x16_LAYOUT
#define GPMC_NAND_HW_ECC_LAYOUT {\
.eccbytes = 3,\
.eccpos = {2, 3, 4},\
.oobfree = {\
{.offset = 5,\
.length = 11 } } \
}
#endif
#define GPMC_NAND_HW_BCH4_ECC_LAYOUT {\
.eccbytes = 32,\
.eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,\
28, 29, 30, 31, 32, 33},\
.oobfree = {\
{.offset = 34,\
.length = 30 } } \
}
#define GPMC_NAND_HW_BCH8_ECC_LAYOUT {\
.eccbytes = 56,\
.eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,\
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,\
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\
52, 53, 54, 55, 56, 57},\
.oobfree = {\
{.offset = 58,\
.length = 6 } } \
}
#define GPMC_NAND_HW_BCH16_ECC_LAYOUT {\
.eccbytes = 104,\
.eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,\
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,\
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,\
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,\
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,\
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,\
100, 101, 102, 103, 104, 105},\
.oobfree = {\
{.offset = 106,\
.length = 8 } } \
}
#endif /* __ASM_ARCH_OMAP_GPMC_H */

@ -33,4 +33,7 @@ u32 get_device_type(void);
void setup_clocks_for_console(void);
void ddr_pll_config(unsigned int ddrpll_M);
void sdelay(unsigned long);
void gpmc_init(void);
void omap_nand_switch_ecc(int);
#endif

@ -32,6 +32,15 @@ struct emu_hal_params {
u32 param1;
};
/* Board SDRC timing values */
struct board_sdrc_timings {
u32 mcfg;
u32 ctrla;
u32 ctrlb;
u32 rfr_ctrl;
u32 mr;
};
void prcm_init(void);
void per_clocks_enable(void);
void ehci_clocks_enable(void);
@ -39,8 +48,8 @@ void ehci_clocks_enable(void);
void memif_init(void);
void sdrc_init(void);
void do_sdrc_init(u32, u32);
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr);
void get_board_mem_timings(struct board_sdrc_timings *timings);
void identify_nand_chip(int *mfr, int *id);
void emif4_init(void);
void gpmc_init(void);

@ -49,4 +49,11 @@ extern const struct gpio_bank *const omap_gpio_bank;
#define METHOD_GPIO_24XX 4
/**
* Check if gpio is valid.
*
* @param gpio GPIO number
* @return 1 if ok, 0 on error
*/
int gpio_is_valid(int gpio);
#endif /* _GPIO_H_ */

@ -91,15 +91,14 @@ int board_mmc_init(bd_t *bis)
* provides the timing values back to the function that configures
* the memory. We have either one or two banks of 128MB DDR.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
/* General SDRC config */
*mcfg = MICRON_V_MCFG_165(128 << 20);
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
/* AC timings */
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
*mr = MICRON_V_MR_165;
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
timings->mr = MICRON_V_MR_165;
}

@ -72,27 +72,26 @@ void omap_rev_string(void)
* Description: If we use SPL then there is no x-loader nor config header
* so we have to setup the DDR timings ourself on both banks.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
*mr = MICRON_V_MR_165;
timings->mr = MICRON_V_MR_165;
#ifdef CONFIG_BOOT_NAND
*mcfg = MICRON_V_MCFG_200(256 << 20);
*ctrla = MICRON_V_ACTIMA_200;
*ctrlb = MICRON_V_ACTIMB_200;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
timings->mcfg = MICRON_V_MCFG_200(256 << 20);
timings->ctrla = MICRON_V_ACTIMA_200;
timings->ctrlb = MICRON_V_ACTIMB_200;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
#else
if (get_cpu_family() == CPU_OMAP34XX) {
*mcfg = NUMONYX_V_MCFG_165(256 << 20);
*ctrla = NUMONYX_V_ACTIMA_165;
*ctrlb = NUMONYX_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = NUMONYX_V_MCFG_165(256 << 20);
timings->ctrla = NUMONYX_V_ACTIMA_165;
timings->ctrlb = NUMONYX_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
} else {
*mcfg = NUMONYX_V_MCFG_200(256 << 20);
*ctrla = NUMONYX_V_ACTIMA_200;
*ctrlb = NUMONYX_V_ACTIMB_200;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
timings->mcfg = NUMONYX_V_MCFG_200(256 << 20);
timings->ctrla = NUMONYX_V_ACTIMA_200;
timings->ctrlb = NUMONYX_V_ACTIMB_200;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
}
#endif
}

@ -59,27 +59,26 @@ void omap_rev_string(void)
* Description: If we use SPL then there is no x-loader nor config header
* so we have to setup the DDR timings ourself on both banks.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
*mr = MICRON_V_MR_165;
timings->mr = MICRON_V_MR_165;
#ifdef CONFIG_BOOT_NAND
*mcfg = MICRON_V_MCFG_200(256 << 20);
*ctrla = MICRON_V_ACTIMA_200;
*ctrlb = MICRON_V_ACTIMB_200;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
timings->mcfg = MICRON_V_MCFG_200(256 << 20);
timings->ctrla = MICRON_V_ACTIMA_200;
timings->ctrlb = MICRON_V_ACTIMB_200;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
#else
if (get_cpu_family() == CPU_OMAP34XX) {
*mcfg = NUMONYX_V_MCFG_165(256 << 20);
*ctrla = NUMONYX_V_ACTIMA_165;
*ctrlb = NUMONYX_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = NUMONYX_V_MCFG_165(256 << 20);
timings->ctrla = NUMONYX_V_ACTIMA_165;
timings->ctrlb = NUMONYX_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
} else {
*mcfg = NUMONYX_V_MCFG_200(256 << 20);
*ctrla = NUMONYX_V_ACTIMA_200;
*ctrlb = NUMONYX_V_ACTIMB_200;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
timings->mcfg = NUMONYX_V_MCFG_200(256 << 20);
timings->ctrla = NUMONYX_V_ACTIMA_200;
timings->ctrlb = NUMONYX_V_ACTIMB_200;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
}
#endif
}

@ -147,34 +147,33 @@ int get_board_revision(void)
* Description: If we use SPL then there is no x-loader nor config header
* so we have to setup the DDR timings ourself on both banks.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
*mr = MICRON_V_MR_165;
timings->mr = MICRON_V_MR_165;
switch (get_board_revision()) {
case REVISION_0: /* Micron 1286MB/256MB, 1/2 banks of 128MB */
*mcfg = MICRON_V_MCFG_165(128 << 20);
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
break;
case REVISION_1: /* Micron 256MB/512MB, 1/2 banks of 256MB */
*mcfg = MICRON_V_MCFG_165(256 << 20);
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(256 << 20);
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
break;
case REVISION_2: /* Hynix 256MB/512MB, 1/2 banks of 256MB */
*mcfg = HYNIX_V_MCFG_165(256 << 20);
*ctrla = HYNIX_V_ACTIMA_165;
*ctrlb = HYNIX_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = HYNIX_V_MCFG_165(256 << 20);
timings->ctrla = HYNIX_V_ACTIMA_165;
timings->ctrlb = HYNIX_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
break;
default:
*mcfg = MICRON_V_MCFG_165(128 << 20);
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
}
}
#endif

@ -98,9 +98,12 @@ int board_init(void)
return 0;
}
#ifndef CONFIG_SPL_BUILD
int misc_init_r(void)
{
char *eth_addr;
struct tam3517_module_info info;
int ret;
dieid_num_r();
@ -108,12 +111,13 @@ int misc_init_r(void)
if (eth_addr)
return 0;
#ifndef CONFIG_SPL_BUILD
TAM3517_READ_MAC_FROM_EEPROM;
#endif
TAM3517_READ_EEPROM(&info, ret);
if (!ret)
TAM3517_READ_MAC_FROM_EEPROM(&info);
return 0;
}
#endif
/*
* Routine: set_muxconf_regs

@ -73,10 +73,10 @@ static struct {
static struct panel_config lcd_cfg[] = {
{
.timing_h = PANEL_TIMING_H(4, 8, 41),
.timing_v = PANEL_TIMING_V(2, 4, 10),
.pol_freq = 0x00000000, /* Pol Freq */
.divisor = 0x0001000d, /* 33Mhz Pixel Clock */
.timing_h = PANEL_TIMING_H(40, 5, 2),
.timing_v = PANEL_TIMING_V(8, 8, 2),
.pol_freq = 0x00003000, /* Pol Freq */
.divisor = 0x00010033, /* 9 Mhz Pixel Clock */
.panel_type = 0x01, /* TFT */
.data_lines = 0x03, /* 24 Bit RGB */
.load_mode = 0x02, /* Frame Mode */
@ -258,21 +258,26 @@ int board_init(void)
return 0;
}
#ifndef CONFIG_SPL_BUILD
int misc_init_r(void)
{
char *eth_addr;
struct tam3517_module_info info;
int ret;
TAM3517_READ_EEPROM(&info, ret);
dieid_num_r();
eth_addr = getenv("ethaddr");
if (eth_addr)
if (ret)
return 0;
eth_addr = getenv("ethaddr");
if (!eth_addr)
TAM3517_READ_MAC_FROM_EEPROM(&info);
#ifndef CONFIG_SPL_BUILD
TAM3517_READ_MAC_FROM_EEPROM;
#endif
TAM3517_PRINT_SOM_INFO(&info);
return 0;
}
#endif
/*
* Routine: set_muxconf_regs

@ -44,7 +44,7 @@ static struct uart_sys *uart_base = (struct uart_sys *)DEFAULT_UART_BASE;
/* MII mode defines */
#define MII_MODE_ENABLE 0x0
#define RGMII_MODE_ENABLE 0xA
#define RGMII_MODE_ENABLE 0x3A
/* GPIO that controls power to DDR on EVM-SK */
#define GPIO_DDR_VTT_EN 7
@ -318,6 +318,8 @@ int board_init(void)
gd->bd->bi_boot_params = PHYS_DRAM_1 + 0x100;
gpmc_init();
return 0;
}

@ -171,6 +171,25 @@ static struct module_pin_mux mii1_pin_mux[] = {
{-1},
};
static struct module_pin_mux nand_pin_mux[] = {
{OFFSET(gpmc_ad0), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD0 */
{OFFSET(gpmc_ad1), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD1 */
{OFFSET(gpmc_ad2), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD2 */
{OFFSET(gpmc_ad3), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD3 */
{OFFSET(gpmc_ad4), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD4 */
{OFFSET(gpmc_ad5), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD5 */
{OFFSET(gpmc_ad6), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD6 */
{OFFSET(gpmc_ad7), (MODE(0) | PULLUP_EN | RXACTIVE)}, /* NAND AD7 */
{OFFSET(gpmc_wait0), (MODE(0) | RXACTIVE | PULLUP_EN)}, /* NAND WAIT */
{OFFSET(gpmc_wpn), (MODE(7) | PULLUP_EN | RXACTIVE)}, /* NAND_WPN */
{OFFSET(gpmc_csn0), (MODE(0) | PULLUDEN)}, /* NAND_CS0 */
{OFFSET(gpmc_advn_ale), (MODE(0) | PULLUDEN)}, /* NAND_ADV_ALE */
{OFFSET(gpmc_oen_ren), (MODE(0) | PULLUDEN)}, /* NAND_OE */
{OFFSET(gpmc_wen), (MODE(0) | PULLUDEN)}, /* NAND_WEN */
{OFFSET(gpmc_be0n_cle), (MODE(0) | PULLUDEN)}, /* NAND_BE_CLE */
{-1},
};
void enable_uart0_pin_mux(void)
{
configure_module_pin_mux(uart0_pin_mux);
@ -257,6 +276,9 @@ void enable_board_pin_mux(struct am335x_baseboard_id *header)
/* In profile #2 i2c1 and spi0 conflict. */
if (profile & ~PROFILE_2)
configure_module_pin_mux(i2c1_pin_mux);
/* Profiles 2 & 3 don't have NAND */
if (profile & ~(PROFILE_2 | PROFILE_3))
configure_module_pin_mux(nand_pin_mux);
else if (profile == PROFILE_2) {
configure_module_pin_mux(mmc1_pin_mux);
configure_module_pin_mux(spi0_pin_mux);

@ -144,8 +144,7 @@ static int get_board_revision(void)
* Description: If we use SPL then there is no x-loader nor config header
* so we have to setup the DDR timings ourself on both banks.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
int pop_mfr, pop_id;
@ -156,29 +155,29 @@ void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
*/
identify_nand_chip(&pop_mfr, &pop_id);
*mr = MICRON_V_MR_165;
timings->mr = MICRON_V_MR_165;
switch (get_board_revision()) {
case REVISION_C4:
if (pop_mfr == NAND_MFR_STMICRO && pop_id == 0xba) {
/* 512MB DDR */
*mcfg = NUMONYX_V_MCFG_165(512 << 20);
*ctrla = NUMONYX_V_ACTIMA_165;
*ctrlb = NUMONYX_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = NUMONYX_V_MCFG_165(512 << 20);
timings->ctrla = NUMONYX_V_ACTIMA_165;
timings->ctrlb = NUMONYX_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
break;
} else if (pop_mfr == NAND_MFR_MICRON && pop_id == 0xba) {
/* Beagleboard Rev C4, 512MB Nand/256MB DDR*/
*mcfg = MICRON_V_MCFG_165(128 << 20);
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
break;
} else if (pop_mfr == NAND_MFR_MICRON && pop_id == 0xbc) {
/* Beagleboard Rev C5, 256MB DDR */
*mcfg = MICRON_V_MCFG_200(256 << 20);
*ctrla = MICRON_V_ACTIMA_200;
*ctrlb = MICRON_V_ACTIMB_200;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
timings->mcfg = MICRON_V_MCFG_200(256 << 20);
timings->ctrla = MICRON_V_ACTIMA_200;
timings->ctrlb = MICRON_V_ACTIMB_200;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
break;
}
case REVISION_XM_A:
@ -186,24 +185,24 @@ void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
case REVISION_XM_C:
if (pop_mfr == 0) {
/* 256MB DDR */
*mcfg = MICRON_V_MCFG_200(256 << 20);
*ctrla = MICRON_V_ACTIMA_200;
*ctrlb = MICRON_V_ACTIMB_200;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
timings->mcfg = MICRON_V_MCFG_200(256 << 20);
timings->ctrla = MICRON_V_ACTIMA_200;
timings->ctrlb = MICRON_V_ACTIMB_200;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_200MHz;
} else {
/* 512MB DDR */
*mcfg = NUMONYX_V_MCFG_165(512 << 20);
*ctrla = NUMONYX_V_ACTIMA_165;
*ctrlb = NUMONYX_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = NUMONYX_V_MCFG_165(512 << 20);
timings->ctrla = NUMONYX_V_ACTIMA_165;
timings->ctrlb = NUMONYX_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
}
break;
default:
/* Assume 128MB and Micron/165MHz timings to be safe */
*mcfg = MICRON_V_MCFG_165(128 << 20);
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
}
}
#endif

@ -128,8 +128,7 @@ int board_init(void)
* provides the timing values back to the function that configures
* the memory.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
int pop_mfr, pop_id;
@ -142,17 +141,17 @@ void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
if (pop_mfr == NAND_MFR_HYNIX && pop_id == 0xbc) {
/* 256MB DDR */
*mcfg = HYNIX_V_MCFG_200(256 << 20);
*ctrla = HYNIX_V_ACTIMA_200;
*ctrlb = HYNIX_V_ACTIMB_200;
timings->mcfg = HYNIX_V_MCFG_200(256 << 20);
timings->ctrla = HYNIX_V_ACTIMA_200;
timings->ctrlb = HYNIX_V_ACTIMB_200;
} else {
/* 128MB DDR */
*mcfg = MICRON_V_MCFG_165(128 << 20);
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
}
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
*mr = MICRON_V_MR_165;
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mr = MICRON_V_MR_165;
}
#endif

@ -188,16 +188,15 @@ int spl_start_uboot(void)
* provides the timing values back to the function that configures
* the memory. We have either one or two banks of 128MB DDR.
*/
void get_board_mem_timings(u32 *mcfg, u32 *ctrla, u32 *ctrlb, u32 *rfr_ctrl,
u32 *mr)
void get_board_mem_timings(struct board_sdrc_timings *timings)
{
/* General SDRC config */
*mcfg = MICRON_V_MCFG_165(128 << 20);
*rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
timings->mcfg = MICRON_V_MCFG_165(128 << 20);
timings->rfr_ctrl = SDP_3430_SDRC_RFR_CTRL_165MHz;
/* AC timings */
*ctrla = MICRON_V_ACTIMA_165;
*ctrlb = MICRON_V_ACTIMB_165;
timings->ctrla = MICRON_V_ACTIMA_165;
timings->ctrlb = MICRON_V_ACTIMB_165;
*mr = MICRON_V_MR_165;
timings->mr = MICRON_V_MR_165;
}

@ -53,18 +53,14 @@ static inline int get_gpio_index(int gpio)
return gpio & 0x1f;
}
static inline int gpio_valid(int gpio)
int gpio_is_valid(int gpio)
{
if (gpio < 0)
return -1;
if (gpio < 192)
return 0;
return -1;
return (gpio >= 0) && (gpio < 192);
}
static int check_gpio(int gpio)
{
if (gpio_valid(gpio) < 0) {
if (!gpio_is_valid(gpio)) {
printf("ERROR : check_gpio: invalid GPIO %d\n", gpio);
return -1;
}

@ -31,7 +31,7 @@ DECLARE_GLOBAL_DATA_PTR;
#define I2C_TIMEOUT 1000
static void wait_for_bb(void);
static int wait_for_bb(void);
static u16 wait_for_pin(void);
static void flush_fifo(void);
@ -159,7 +159,8 @@ static int i2c_read_byte(u8 devaddr, u16 regoffset, u8 alen, u8 *value)
u16 w;
/* wait until bus not busy */
wait_for_bb();
if (wait_for_bb())
return 1;
/* one byte only */
writew(alen, &i2c_base->cnt);
@ -263,7 +264,8 @@ int i2c_probe(uchar chip)
return res;
/* wait until bus not busy */
wait_for_bb();
if (wait_for_bb())
return res;
/* try to read one byte */
writew(1, &i2c_base->cnt);
@ -282,7 +284,10 @@ int i2c_probe(uchar chip)
res = 1;
writew(0xff, &i2c_base->stat);
writew (readw (&i2c_base->con) | I2C_CON_STP, &i2c_base->con);
wait_for_bb ();
if (wait_for_bb())
res = 1;
break;
}
if (status & I2C_STAT_ARDY) {
@ -355,7 +360,8 @@ int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
}
/* wait until bus not busy */
wait_for_bb();
if (wait_for_bb())
return 1;
/* start address phase - will write regoffset + len bytes data */
/* TODO consider case when !CONFIG_OMAP243X/34XX/44XX */
@ -399,7 +405,7 @@ write_exit:
return i2c_error;
}
static void wait_for_bb(void)
static int wait_for_bb(void)
{
int timeout = I2C_TIMEOUT;
u16 stat;
@ -413,8 +419,10 @@ static void wait_for_bb(void)
if (timeout <= 0) {
printf("timed out in wait_for_bb: I2C_STAT=%x\n",
readw(&i2c_base->stat));
return 1;
}
writew(0xFFFF, &i2c_base->stat); /* clear delayed stuff*/
return 0;
}
static u16 wait_for_pin(void)

@ -33,6 +33,7 @@ ifdef CONFIG_SPL_NAND_DRIVERS
NORMAL_DRIVERS=y
endif
COBJS-$(CONFIG_SPL_NAND_AM33XX_BCH) += am335x_spl_bch.o
COBJS-$(CONFIG_SPL_NAND_SIMPLE) += nand_spl_simple.o
COBJS-$(CONFIG_SPL_NAND_LOAD) += nand_spl_load.o
COBJS-$(CONFIG_SPL_NAND_ECC) += nand_ecc.o
@ -78,10 +79,6 @@ COBJS-$(CONFIG_TEGRA_NAND) += tegra_nand.o
COBJS-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o
COBJS-$(CONFIG_NAND_PLAT) += nand_plat.o
else # minimal SPL drivers
COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_spl.o
endif # drivers
endif # nand

@ -0,0 +1,238 @@
/*
* (C) Copyright 2012
* Konstantin Kozhevnikov, Cogent Embedded
*
* based on nand_spl_simple code
*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <linux/mtd/nand_ecc.h>
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
static nand_info_t mtd;
static struct nand_chip nand_chip;
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
CONFIG_SYS_NAND_ECCSIZE)
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
/*
* NAND command for large page NAND devices (2k)
*/
static int nand_command(int block, int page, uint32_t offs,
u8 cmd)
{
struct nand_chip *this = mtd.priv;
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
void (*hwctrl)(struct mtd_info *mtd, int cmd,
unsigned int ctrl) = this->cmd_ctrl;
while (!this->dev_ready(&mtd))
;
/* Emulate NAND_CMD_READOOB */
if (cmd == NAND_CMD_READOOB) {
offs += CONFIG_SYS_NAND_PAGE_SIZE;
cmd = NAND_CMD_READ0;
}
/* Begin command latch cycle */
hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
if (cmd == NAND_CMD_RESET) {
hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
while (!this->dev_ready(&mtd))
;
return 0;
}
/* Shift the offset from byte addressing to word addressing. */
if (this->options & NAND_BUSWIDTH_16)
offs >>= 1;
/* Set ALE and clear CLE to start address cycle */
/* Column address */
hwctrl(&mtd, offs & 0xff,
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
/* Row address */
hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
hwctrl(&mtd, ((page_addr >> 8) & 0xff),
NAND_CTRL_ALE); /* A[27:20] */
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
/* One more address cycle for devices > 128MiB */
hwctrl(&mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[31:28] */
#endif
hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
if (cmd == NAND_CMD_READ0) {
/* Latch in address */
hwctrl(&mtd, NAND_CMD_READSTART,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
while (!this->dev_ready(&mtd))
;
} else if (cmd == NAND_CMD_RNDOUT) {
hwctrl(&mtd, NAND_CMD_RNDOUTSTART, NAND_CTRL_CLE |
NAND_CTRL_CHANGE);
hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
}
return 0;
}
static int nand_is_bad_block(int block)
{
struct nand_chip *this = mtd.priv;
nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
NAND_CMD_READOOB);
/*
* Read one byte (or two if it's a 16 bit chip).
*/
if (this->options & NAND_BUSWIDTH_16) {
if (readw(this->IO_ADDR_R) != 0xffff)
return 1;
} else {
if (readb(this->IO_ADDR_R) != 0xff)
return 1;
}
return 0;
}
static int nand_read_page(int block, int page, void *dst)
{
struct nand_chip *this = mtd.priv;
u_char ecc_calc[ECCTOTAL];
u_char ecc_code[ECCTOTAL];
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = ECCSTEPS;
uint8_t *p = dst;
uint32_t data_pos = 0;
uint8_t *oob = &oob_data[0] + nand_ecc_pos[0];
uint32_t oob_pos = eccsize * eccsteps + nand_ecc_pos[0];
nand_command(block, page, 0, NAND_CMD_READ0);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
this->ecc.hwctl(&mtd, NAND_ECC_READ);
nand_command(block, page, data_pos, NAND_CMD_RNDOUT);
this->read_buf(&mtd, p, eccsize);
nand_command(block, page, oob_pos, NAND_CMD_RNDOUT);
this->read_buf(&mtd, oob, eccbytes);
this->ecc.calculate(&mtd, p, &ecc_calc[i]);
data_pos += eccsize;
oob_pos += eccbytes;
oob += eccbytes;
}
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
eccsteps = ECCSTEPS;
p = dst;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
/* No chance to do something with the possible error message
* from correct_data(). We just hope that all possible errors
* are corrected by this routine.
*/
this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
{
unsigned int block, lastblock;
unsigned int page;
/*
* offs has to be aligned to a page address!
*/
block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
while (block <= lastblock) {
if (!nand_is_bad_block(block)) {
/*
* Skip bad blocks
*/
while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
nand_read_page(block, page, dst);
dst += CONFIG_SYS_NAND_PAGE_SIZE;
page++;
}
page = 0;
} else {
lastblock++;
}
block++;
}
return 0;
}
/* nand_init() - initialize data to make nand usable by SPL */
void nand_init(void)
{
/*
* Init board specific nand support
*/
mtd.priv = &nand_chip;
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
(void __iomem *)CONFIG_SYS_NAND_BASE;
board_nand_init(&nand_chip);
if (nand_chip.select_chip)
nand_chip.select_chip(&mtd, 0);
/* NAND chip may require reset after power-on */
nand_command(0, 0, 0, NAND_CMD_RESET);
}
/* Unselect after operation */
void nand_deselect(void)
{
if (nand_chip.select_chip)
nand_chip.select_chip(&mtd, -1);
}

@ -29,6 +29,9 @@
#include <linux/mtd/nand_ecc.h>
#include <linux/compiler.h>
#include <nand.h>
#ifdef CONFIG_AM33XX
#include <asm/arch/elm.h>
#endif
static uint8_t cs;
static __maybe_unused struct nand_ecclayout hw_nand_oob =
@ -234,6 +237,370 @@ static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
}
}
/*
* BCH8 support (needs ELM and thus AM33xx-only)
*/
#ifdef CONFIG_AM33XX
struct nand_bch_priv {
uint8_t mode;
uint8_t type;
uint8_t nibbles;
};
/* bch types */
#define ECC_BCH4 0
#define ECC_BCH8 1
#define ECC_BCH16 2
/* BCH nibbles for diff bch levels */
#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
#define ECC_BCH4_NIBBLES 13
#define ECC_BCH8_NIBBLES 26
#define ECC_BCH16_NIBBLES 52
static struct nand_ecclayout hw_bch8_nand_oob = GPMC_NAND_HW_BCH8_ECC_LAYOUT;
static struct nand_bch_priv bch_priv = {
.mode = NAND_ECC_HW_BCH,
.type = ECC_BCH8,
.nibbles = ECC_BCH8_NIBBLES
};
/*
* omap_read_bch8_result - Read BCH result for BCH8 level
*
* @mtd: MTD device structure
* @big_endian: When set read register 3 first
* @ecc_code: Read syndrome from BCH result registers
*/
static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
uint8_t *ecc_code)
{
uint32_t *ptr;
int8_t i = 0, j;
if (big_endian) {
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
ecc_code[i++] = readl(ptr) & 0xFF;
ptr--;
for (j = 0; j < 3; j++) {
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
ecc_code[i++] = readl(ptr) & 0xFF;
ptr--;
}
} else {
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
for (j = 0; j < 3; j++) {
ecc_code[i++] = readl(ptr) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
ptr++;
}
ecc_code[i++] = readl(ptr) & 0xFF;
ecc_code[i++] = 0; /* 14th byte is always zero */
}
}
/*
* omap_ecc_disable - Disable H/W ECC calculation
*
* @mtd: MTD device structure
*
*/
static void omap_ecc_disable(struct mtd_info *mtd)
{
writel((readl(&gpmc_cfg->ecc_config) & ~0x1),
&gpmc_cfg->ecc_config);
}
/*
* omap_rotate_ecc_bch - Rotate the syndrome bytes
*
* @mtd: MTD device structure
* @calc_ecc: ECC read from ECC registers
* @syndrome: Rotated syndrome will be retuned in this array
*
*/
static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
uint8_t *syndrome)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t n_bytes = 0;
int8_t i, j;
switch (bch->type) {
case ECC_BCH4:
n_bytes = 8;
break;
case ECC_BCH16:
n_bytes = 28;
break;
case ECC_BCH8:
default:
n_bytes = 13;
break;
}
for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
syndrome[i] = calc_ecc[j];
}
/*
* omap_calculate_ecc_bch - Read BCH ECC result
*
* @mtd: MTD structure
* @dat: unused
* @ecc_code: ecc_code buffer
*/
static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t big_endian = 1;
int8_t ret = 0;
if (bch->type == ECC_BCH8)
omap_read_bch8_result(mtd, big_endian, ecc_code);
else /* BCH4 and BCH16 currently not supported */
ret = -1;
/*
* Stop reading anymore ECC vals and clear old results
* enable will be called if more reads are required
*/
omap_ecc_disable(mtd);
return ret;
}
/*
* omap_fix_errors_bch - Correct bch error in the data
*
* @mtd: MTD device structure
* @data: Data read from flash
* @error_count:Number of errors in data
* @error_loc: Locations of errors in the data
*
*/
static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
uint32_t error_count, uint32_t *error_loc)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t count = 0;
uint32_t error_byte_pos;
uint32_t error_bit_mask;
uint32_t last_bit = (bch->nibbles * 4) - 1;
/* Flip all bits as specified by the error location array. */
/* FOR( each found error location flip the bit ) */
for (count = 0; count < error_count; count++) {
if (error_loc[count] > last_bit) {
/* Remove the ECC spare bits from correction. */
error_loc[count] -= (last_bit + 1);
/* Offset bit in data region */
error_byte_pos = ((512 * 8) -
(error_loc[count]) - 1) / 8;
/* Error Bit mask */
error_bit_mask = 0x1 << (error_loc[count] % 8);
/* Toggle the error bit to make the correction. */
data[error_byte_pos] ^= error_bit_mask;
}
}
}
/*
* omap_correct_data_bch - Compares the ecc read from nand spare area
* with ECC registers values and corrects one bit error if it has occured
*
* @mtd: MTD device structure
* @dat: page data
* @read_ecc: ecc read from nand flash (ignored)
* @calc_ecc: ecc read from ECC registers
*
* @return 0 if data is OK or corrected, else returns -1
*/
static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t syndrome[28];
uint32_t error_count = 0;
uint32_t error_loc[8];
uint32_t i, ecc_flag;
ecc_flag = 0;
for (i = 0; i < chip->ecc.bytes; i++)
if (read_ecc[i] != 0xff)
ecc_flag = 1;
if (!ecc_flag)
return 0;
elm_reset();
elm_config((enum bch_level)(bch->type));
/*
* while reading ECC result we read it in big endian.
* Hence while loading to ELM we have rotate to get the right endian.
*/
omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
/* use elm module to check for errors */
if (elm_check_error(syndrome, bch->nibbles, &error_count,
error_loc) != 0) {
printf("ECC: uncorrectable.\n");
return -1;
}
/* correct bch error */
if (error_count > 0)
omap_fix_errors_bch(mtd, dat, error_count, error_loc);
return 0;
}
/*
* omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
* GPMC controller
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
{
uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
uint32_t unused_length = 0;
struct nand_bch_priv *bch = chip->priv;
switch (bch->nibbles) {
case ECC_BCH4_NIBBLES:
unused_length = 3;
break;
case ECC_BCH8_NIBBLES:
unused_length = 2;
break;
case ECC_BCH16_NIBBLES:
unused_length = 0;
break;
}
/* Clear the ecc result registers, select ecc reg as 1 */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
switch (mode) {
case NAND_ECC_WRITE:
/* eccsize1 config */
val = ((unused_length + bch->nibbles) << 22);
break;
case NAND_ECC_READ:
default:
/* by default eccsize0 selected for ecc1resultsize */
/* eccsize0 config */
val = (bch->nibbles << 12);
/* eccsize1 config */
val |= (unused_length << 22);
break;
}
/* ecc size configuration */
writel(val, &gpmc_cfg->ecc_size_config);
/* by default 512bytes sector page is selected */
/* set bch mode */
val = (1 << 16);
/* bch4 / bch8 / bch16 */
val |= (bch->type << 12);
/* set wrap mode to 1 */
val |= (1 << 8);
val |= (dev_width << 7);
val |= (cs << 1);
writel(val, &gpmc_cfg->ecc_config);
}
/*
* omap_enable_ecc_bch- This function enables the bch h/w ecc functionality
* @mtd: MTD device structure
* @mode: Read/Write mode
*
*/
static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
{
struct nand_chip *chip = mtd->priv;
omap_hwecc_init_bch(chip, mode);
/* enable ecc */
writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
}
/**
* omap_read_page_bch - hardware ecc based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @page: page number to read
*
*/
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *oob = chip->oob_poi;
uint32_t data_pos;
uint32_t oob_pos;
data_pos = 0;
/* oob area start */
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
oob += chip->ecc.layout->eccpos[0];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
oob += eccbytes) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
/* read data */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
chip->read_buf(mtd, p, eccsize);
/* read respective ecc from oob area */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
chip->read_buf(mtd, oob, eccbytes);
/* read syndrome */
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
data_pos += eccsize;
oob_pos += eccbytes;
}
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
#endif /* CONFIG_AM33XX */
#ifndef CONFIG_SPL_BUILD
/*
* omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
@ -269,7 +636,7 @@ void omap_nand_switch_ecc(int32_t hardware)
nand->ecc.calculate = NULL;
/* Setup the ecc configurations again */
if (hardware) {
if (hardware == 1) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_nand_oob;
nand->ecc.size = 512;
@ -279,6 +646,19 @@ void omap_nand_switch_ecc(int32_t hardware)
nand->ecc.calculate = omap_calculate_ecc;
omap_hwecc_init(nand);
printf("HW ECC selected\n");
#ifdef CONFIG_AM33XX
} else if (hardware == 2) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_bch8_nand_oob;
nand->ecc.size = 512;
nand->ecc.bytes = 14;
nand->ecc.read_page = omap_read_page_bch;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc_bch;
omap_hwecc_init_bch(nand, NAND_ECC_READ);
printf("HW BCH8 selected\n");
#endif
} else {
nand->ecc.mode = NAND_ECC_SOFT;
/* Use mtd default settings */
@ -350,7 +730,27 @@ int board_nand_init(struct nand_chip *nand)
nand->options |= NAND_BUSWIDTH_16;
nand->chip_delay = 100;
#ifdef CONFIG_AM33XX
/* required in case of BCH */
elm_init();
/* BCH info that will be correct for SPL or overridden otherwise. */
nand->priv = &bch_priv;
#endif
/* Default ECC mode */
#ifdef CONFIG_AM33XX
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_bch8_nand_oob;
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc_bch;
nand->ecc.read_page = omap_read_page_bch;
omap_hwecc_init_bch(nand, NAND_ECC_READ);
#else
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
nand->ecc.mode = NAND_ECC_SOFT;
#else
@ -363,6 +763,7 @@ int board_nand_init(struct nand_chip *nand)
nand->ecc.calculate = omap_calculate_ecc;
omap_hwecc_init(nand);
#endif
#endif
#ifdef CONFIG_SPL_BUILD
if (nand->options & NAND_BUSWIDTH_16)

@ -920,7 +920,10 @@ static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full);
phydev = phy_connect(priv->bus, 0, dev, slave->data->phy_if);
phydev = phy_connect(priv->bus,
CONFIG_PHY_ADDR,
dev,
slave->data->phy_if);
phydev->supported &= supported;
phydev->advertising = phydev->supported;

@ -50,16 +50,25 @@ void twl6035_init_settings(void)
return;
}
void twl6035_mmc1_poweron_ldo(void)
int twl6035_mmc1_poweron_ldo(void)
{
u8 val = 0;
/* set LDO9 TWL6035 to 3V */
val = 0x2b; /* (3 -.9)*28 +1 */
palmas_write_u8(0x48, LDO9_VOLTAGE, val);
if (palmas_write_u8(0x48, LDO9_VOLTAGE, val)) {
printf("twl6035: could not set LDO9 voltage.\n");
return 1;
}
/* TURN ON LDO9 */
val = LDO_ON | LDO_MODE_SLEEP | LDO_MODE_ACTIVE;
palmas_write_u8(0x48, LDO9_CTRL, val);
return;
if (palmas_write_u8(0x48, LDO9_CTRL, val)) {
printf("twl6035: could not turn on LDO9.\n");
return 1;
}
return 0;
}

@ -57,6 +57,20 @@ static void spi_reset(struct omap3_spi_slave *ds)
writel(OMAP3_MCSPI_WAKEUPENABLE_WKEN, &ds->regs->wakeupenable);
}
static void omap3_spi_write_chconf(struct omap3_spi_slave *ds, int val)
{
writel(val, &ds->regs->channel[ds->slave.cs].chconf);
/* Flash post writes to make immediate effect */
readl(&ds->regs->channel[ds->slave.cs].chconf);
}
static void omap3_spi_set_enable(struct omap3_spi_slave *ds, int enable)
{
writel(enable, &ds->regs->channel[ds->slave.cs].chctrl);
/* Flash post writes to make immediate effect */
readl(&ds->regs->channel[ds->slave.cs].chctrl);
}
void spi_init()
{
/* do nothing */
@ -212,7 +226,7 @@ int spi_claim_bus(struct spi_slave *slave)
/* Transmit & receive mode */
conf &= ~OMAP3_MCSPI_CHCONF_TRM_MASK;
writel(conf, &ds->regs->channel[ds->slave.cs].chconf);
omap3_spi_write_chconf(ds,conf);
return 0;
}
@ -233,14 +247,13 @@ int omap3_spi_write(struct spi_slave *slave, unsigned int len, const u8 *txp,
int timeout = SPI_WAIT_TIMEOUT;
int chconf = readl(&ds->regs->channel[ds->slave.cs].chconf);
if (flags & SPI_XFER_BEGIN)
writel(OMAP3_MCSPI_CHCTRL_EN,
&ds->regs->channel[ds->slave.cs].chctrl);
/* Enable the channel */
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_EN);
chconf &= ~OMAP3_MCSPI_CHCONF_TRM_MASK;
chconf |= OMAP3_MCSPI_CHCONF_TRM_TX_ONLY;
chconf |= OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf, &ds->regs->channel[ds->slave.cs].chconf);
omap3_spi_write_chconf(ds,chconf);
for (i = 0; i < len; i++) {
/* wait till TX register is empty (TXS == 1) */
@ -256,15 +269,17 @@ int omap3_spi_write(struct spi_slave *slave, unsigned int len, const u8 *txp,
writel(txp[i], &ds->regs->channel[ds->slave.cs].tx);
}
/* wait to finish of transfer */
while (!(readl(&ds->regs->channel[ds->slave.cs].chstat) &
OMAP3_MCSPI_CHSTAT_EOT));
/* Disable the channel otherwise the next immediate RX will get affected */
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_DIS);
if (flags & SPI_XFER_END) {
/* wait to finish of transfer */
while (!(readl(&ds->regs->channel[ds->slave.cs].chstat) &
OMAP3_MCSPI_CHSTAT_EOT));
chconf &= ~OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf, &ds->regs->channel[ds->slave.cs].chconf);
writel(0, &ds->regs->channel[ds->slave.cs].chctrl);
omap3_spi_write_chconf(ds,chconf);
}
return 0;
}
@ -277,14 +292,13 @@ int omap3_spi_read(struct spi_slave *slave, unsigned int len, u8 *rxp,
int timeout = SPI_WAIT_TIMEOUT;
int chconf = readl(&ds->regs->channel[ds->slave.cs].chconf);
if (flags & SPI_XFER_BEGIN)
writel(OMAP3_MCSPI_CHCTRL_EN,
&ds->regs->channel[ds->slave.cs].chctrl);
/* Enable the channel */
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_EN);
chconf &= ~OMAP3_MCSPI_CHCONF_TRM_MASK;
chconf |= OMAP3_MCSPI_CHCONF_TRM_RX_ONLY;
chconf |= OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf, &ds->regs->channel[ds->slave.cs].chconf);
omap3_spi_write_chconf(ds,chconf);
writel(0, &ds->regs->channel[ds->slave.cs].tx);
@ -298,15 +312,18 @@ int omap3_spi_read(struct spi_slave *slave, unsigned int len, u8 *rxp,
return -1;
}
}
/* Disable the channel to prevent furher receiving */
if(i == (len - 1))
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_DIS);
/* Read the data */
rxp[i] = readl(&ds->regs->channel[ds->slave.cs].rx);
}
if (flags & SPI_XFER_END) {
chconf &= ~OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf, &ds->regs->channel[ds->slave.cs].chconf);
writel(0, &ds->regs->channel[ds->slave.cs].chctrl);
omap3_spi_write_chconf(ds,chconf);
}
return 0;
@ -323,14 +340,12 @@ int omap3_spi_txrx(struct spi_slave *slave,
int i=0;
/*Enable SPI channel*/
if (flags & SPI_XFER_BEGIN)
writel(OMAP3_MCSPI_CHCTRL_EN,
&ds->regs->channel[ds->slave.cs].chctrl);
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_EN);
/*set TRANSMIT-RECEIVE Mode*/
chconf &= ~OMAP3_MCSPI_CHCONF_TRM_MASK;
chconf |= OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf, &ds->regs->channel[ds->slave.cs].chconf);
omap3_spi_write_chconf(ds,chconf);
/*Shift in and out 1 byte at time*/
for (i=0; i < len; i++){
@ -359,13 +374,13 @@ int omap3_spi_txrx(struct spi_slave *slave,
/* Read the data */
rxp[i] = readl(&ds->regs->channel[ds->slave.cs].rx);
}
/* Disable the channel */
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_DIS);
/*if transfer must be terminated disable the channel*/
if (flags & SPI_XFER_END) {
chconf &= ~OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf, &ds->regs->channel[ds->slave.cs].chconf);
writel(0, &ds->regs->channel[ds->slave.cs].chctrl);
omap3_spi_write_chconf(ds,chconf);
}
return 0;
@ -389,17 +404,14 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
int chconf = readl(&ds->regs->channel[ds->slave.cs].chconf);
if (flags & SPI_XFER_BEGIN) {
writel(OMAP3_MCSPI_CHCTRL_EN,
&ds->regs->channel[ds->slave.cs].chctrl);
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_EN);
chconf |= OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf,
&ds->regs->channel[ds->slave.cs].chconf);
omap3_spi_write_chconf(ds,chconf);
}
if (flags & SPI_XFER_END) {
chconf &= ~OMAP3_MCSPI_CHCONF_FORCE;
writel(chconf,
&ds->regs->channel[ds->slave.cs].chconf);
writel(0, &ds->regs->channel[ds->slave.cs].chctrl);
omap3_spi_write_chconf(ds,chconf);
omap3_spi_set_enable(ds,OMAP3_MCSPI_CHCTRL_DIS);
}
ret = 0;
} else {

@ -99,6 +99,7 @@ struct mcspi {
#define OMAP3_MCSPI_CHSTAT_EOT (1 << 2)
#define OMAP3_MCSPI_CHCTRL_EN (1 << 0)
#define OMAP3_MCSPI_CHCTRL_DIS (0 << 0)
#define OMAP3_MCSPI_WAKEUPENABLE_WKEN (1 << 0)

@ -240,6 +240,38 @@
#define CONFIG_SYS_SPI_U_BOOT_SIZE 0x40000
#define CONFIG_SPL_LDSCRIPT "$(CPUDIR)/omap-common/u-boot-spl.lds"
#define CONFIG_SPL_BOARD_INIT
#define CONFIG_SPL_NAND_AM33XX_BCH
#define CONFIG_SPL_NAND_SUPPORT
#define CONFIG_SPL_NAND_BASE
#define CONFIG_SPL_NAND_DRIVERS
#define CONFIG_SPL_NAND_ECC
#define CONFIG_SYS_NAND_5_ADDR_CYCLE
#define CONFIG_SYS_NAND_PAGE_COUNT (CONFIG_SYS_NAND_BLOCK_SIZE / \
CONFIG_SYS_NAND_PAGE_SIZE)
#define CONFIG_SYS_NAND_PAGE_SIZE 2048
#define CONFIG_SYS_NAND_OOBSIZE 64
#define CONFIG_SYS_NAND_BLOCK_SIZE (128*1024)
#define CONFIG_SYS_NAND_BAD_BLOCK_POS NAND_LARGE_BADBLOCK_POS
#define CONFIG_SYS_NAND_ECCPOS { 2, 3, 4, 5, 6, 7, 8, 9, \
10, 11, 12, 13, 14, 15, 16, 17, \
18, 19, 20, 21, 22, 23, 24, 25, \
26, 27, 28, 29, 30, 31, 32, 33, \
34, 35, 36, 37, 38, 39, 40, 41, \
42, 43, 44, 45, 46, 47, 48, 49, \
50, 51, 52, 53, 54, 55, 56, 57, }
#define CONFIG_SYS_NAND_ECCSIZE 512
#define CONFIG_SYS_NAND_ECCBYTES 14
#define CONFIG_SYS_NAND_ECCSTEPS 4
#define CONFIG_SYS_NAND_ECCTOTAL (CONFIG_SYS_NAND_ECCBYTES * \
CONFIG_SYS_NAND_ECCSTEPS)
#define CONFIG_SYS_NAND_U_BOOT_START CONFIG_SYS_TEXT_BASE
#define CONFIG_SYS_NAND_U_BOOT_OFFS 0x80000
/*
* 1MB into the SDRAM to allow for SPL's bss at the beginning of SDRAM
* 64 bytes before this address should be set aside for u-boot.img's
@ -299,6 +331,24 @@
#define CONFIG_NET_MULTI
#define CONFIG_PHY_GIGE
#define CONFIG_PHYLIB
#define CONFIG_PHY_ADDR 0
#define CONFIG_PHY_SMSC
#define CONFIG_NAND
/* NAND support */
#ifdef CONFIG_NAND
#define CONFIG_CMD_NAND
#define CONFIG_NAND_OMAP_GPMC
#define GPMC_NAND_ECC_LP_x16_LAYOUT 1
#define CONFIG_SYS_NAND_BASE (0x08000000) /* physical address */
/* to access nand at */
/* CS0 */
#define CONFIG_SYS_MAX_NAND_DEVICE 1 /* Max number of NAND
devices */
#undef CONFIG_ENV_IS_NOWHERE
#define CONFIG_ENV_IS_IN_NAND
#define CONFIG_ENV_OFFSET 0x260000 /* environment starts here */
#define CONFIG_SYS_ENV_SECT_SIZE (128 << 10) /* 128 KiB */
#endif
#endif /* ! __CONFIG_AM335X_EVM_H */

@ -188,6 +188,7 @@
/* Environment information */
#define CONFIG_BOOTDELAY 10
#define CONFIG_ZERO_BOOTDELAY_CHECK
#define CONFIG_EXTRA_ENV_SETTINGS \
"loadaddr=0x82000000\0" \
@ -282,7 +283,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 1 /* CS1 is never populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
/*-----------------------------------------------------------------------
* FLASH and environment organization

@ -263,7 +263,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*-----------------------------------------------------------------------

@ -236,7 +236,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 meg */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*

@ -322,7 +322,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*

@ -285,7 +285,7 @@
"else run userbutton_nonxm; fi;\0" \
"userbutton_xm=gpio input 4;\0" \
"userbutton_nonxm=gpio input 7;\0"
/* "run userbutton" will return 1 (false) if is pressed and 0 (false) if not */
/* "run userbutton" will return 1 (false) if pressed and 0 (true) if not */
#define CONFIG_BOOTCOMMAND \
"mmc dev ${mmcdev}; if mmc rescan; then " \
"if run userbutton; then " \

@ -251,7 +251,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 1
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
#define CONFIG_ENV_IS_NOWHERE 1

@ -221,7 +221,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
#define CONFIG_SYS_TEXT_BASE 0x80008000

@ -303,7 +303,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 meg */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*--------------------------------------------------------------------------*/

@ -252,7 +252,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*-----------------------------------------------------------------------

@ -221,7 +221,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*-----------------------------------------------------------------------

@ -189,7 +189,6 @@
*/
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (32 << 20) /* at least 32 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/*
@ -358,7 +357,6 @@
* I2C EEPROM
*/
#if !(defined(__KERNEL_STRICT_NAMES) || defined(__ASSEMBLY__))
/*
* The I2C EEPROM on the TAM3517 contains
* mac address and production data
@ -384,24 +382,29 @@ struct tam3517_module_info {
unsigned char _rev[100];
};
#define TAM3517_READ_MAC_FROM_EEPROM \
do { \
struct tam3517_module_info info;\
char buf[80], ethname[20]; \
int i; \
#define TAM3517_READ_EEPROM(info, ret) \
do { \
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); \
if (eeprom_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, \
(void *)&info, sizeof(info))) \
break; \
(void *)info, sizeof(*info))) \
ret = 1; \
else \
ret = 0; \
} while (0)
#define TAM3517_READ_MAC_FROM_EEPROM(info) \
do { \
char buf[80], ethname[20]; \
int i; \
memset(buf, 0, sizeof(buf)); \
for (i = 0 ; i < ARRAY_SIZE(info.eth_addr); i++) { \
for (i = 0 ; i < ARRAY_SIZE((info)->eth_addr); i++) { \
sprintf(buf, "%02X:%02X:%02X:%02X:%02X:%02X", \
info.eth_addr[i][5], \
info.eth_addr[i][4], \
info.eth_addr[i][3], \
info.eth_addr[i][2], \
info.eth_addr[i][1], \
info.eth_addr[i][0]); \
(info)->eth_addr[i][5], \
(info)->eth_addr[i][4], \
(info)->eth_addr[i][3], \
(info)->eth_addr[i][2], \
(info)->eth_addr[i][1], \
(info)->eth_addr[i][0]); \
\
if (i) \
sprintf(ethname, "eth%daddr", i); \
@ -411,6 +414,30 @@ do { \
setenv(ethname, buf); \
} \
} while (0)
/* The following macros are taken from Technexion's documentation */
#define TAM3517_sequence_number(info) \
((info)->sequence_number % 0x1000000000000LL)
#define TAM3517_week_of_year(info) (((info)->sequence_number >> 48) % 0x100)
#define TAM3517_year(info) ((info)->sequence_number >> 56)
#define TAM3517_revision_fixed(info) ((info)->revision % 0x100)
#define TAM3517_revision_major(info) (((info)->revision >> 8) % 0x100)
#define TAM3517_revision_tn(info) ((info)->revision >> 16)
#define TAM3517_PRINT_SOM_INFO(info) \
do { \
printf("Vendor:%s\n", (info)->customer); \
printf("SOM: %s\n", (info)->product); \
printf("SeqNr: %02llu%02llu%012llu\n", \
TAM3517_year(info), \
TAM3517_week_of_year(info), \
TAM3517_sequence_number(info)); \
printf("Rev: TN%u %u.%u\n", \
TAM3517_revision_tn(info), \
TAM3517_revision_major(info), \
TAM3517_revision_fixed(info)); \
} while (0)
#endif
#endif /* __TAM3517_H */

@ -247,7 +247,6 @@
/* Physical Memory Map */
#define CONFIG_NR_DRAM_BANKS 2 /* CS1 may or may not be populated */
#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0
#define PHYS_SDRAM_1_SIZE (128 << 20) /* at least 128 MiB */
#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1
/* NAND and environment organization */

@ -39,4 +39,4 @@
int twl6035_i2c_write_u8(u8 chip_no, u8 val, u8 reg);
int twl6035_i2c_read_u8(u8 chip_no, u8 *val, u8 reg);
void twl6035_init_settings(void);
void twl6035_mmc1_poweron_ldo(void);
int twl6035_mmc1_poweron_ldo(void);

Loading…
Cancel
Save