commit
7f641d53bb
@ -0,0 +1,976 @@ |
||||
/*
|
||||
* This file is part of UBIFS. |
||||
* |
||||
* Copyright (C) 2006-2008 Nokia Corporation. |
||||
* |
||||
* SPDX-License-Identifier: GPL-2.0 |
||||
* |
||||
* Authors: Adrian Hunter |
||||
* Artem Bityutskiy (Битюцкий Артём) |
||||
*/ |
||||
|
||||
/*
|
||||
* This file implements garbage collection. The procedure for garbage collection |
||||
* is different depending on whether a LEB as an index LEB (contains index |
||||
* nodes) or not. For non-index LEBs, garbage collection finds a LEB which |
||||
* contains a lot of dirty space (obsolete nodes), and copies the non-obsolete |
||||
* nodes to the journal, at which point the garbage-collected LEB is free to be |
||||
* reused. For index LEBs, garbage collection marks the non-obsolete index nodes |
||||
* dirty in the TNC, and after the next commit, the garbage-collected LEB is |
||||
* to be reused. Garbage collection will cause the number of dirty index nodes |
||||
* to grow, however sufficient space is reserved for the index to ensure the |
||||
* commit will never run out of space. |
||||
* |
||||
* Notes about dead watermark. At current UBIFS implementation we assume that |
||||
* LEBs which have less than @c->dead_wm bytes of free + dirty space are full |
||||
* and not worth garbage-collecting. The dead watermark is one min. I/O unit |
||||
* size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS |
||||
* Garbage Collector has to synchronize the GC head's write buffer before |
||||
* returning, so this is about wasting one min. I/O unit. However, UBIFS GC can |
||||
* actually reclaim even very small pieces of dirty space by garbage collecting |
||||
* enough dirty LEBs, but we do not bother doing this at this implementation. |
||||
* |
||||
* Notes about dark watermark. The results of GC work depends on how big are |
||||
* the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, |
||||
* if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would |
||||
* have to waste large pieces of free space at the end of LEB B, because nodes |
||||
* from LEB A would not fit. And the worst situation is when all nodes are of |
||||
* maximum size. So dark watermark is the amount of free + dirty space in LEB |
||||
* which are guaranteed to be reclaimable. If LEB has less space, the GC might |
||||
* be unable to reclaim it. So, LEBs with free + dirty greater than dark |
||||
* watermark are "good" LEBs from GC's point of few. The other LEBs are not so |
||||
* good, and GC takes extra care when moving them. |
||||
*/ |
||||
#ifndef __UBOOT__ |
||||
#include <linux/slab.h> |
||||
#include <linux/pagemap.h> |
||||
#include <linux/list_sort.h> |
||||
#endif |
||||
#include "ubifs.h" |
||||
|
||||
#ifndef __UBOOT__ |
||||
/*
|
||||
* GC may need to move more than one LEB to make progress. The below constants |
||||
* define "soft" and "hard" limits on the number of LEBs the garbage collector |
||||
* may move. |
||||
*/ |
||||
#define SOFT_LEBS_LIMIT 4 |
||||
#define HARD_LEBS_LIMIT 32 |
||||
|
||||
/**
|
||||
* switch_gc_head - switch the garbage collection journal head. |
||||
* @c: UBIFS file-system description object |
||||
* @buf: buffer to write |
||||
* @len: length of the buffer to write |
||||
* @lnum: LEB number written is returned here |
||||
* @offs: offset written is returned here |
||||
* |
||||
* This function switch the GC head to the next LEB which is reserved in |
||||
* @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, |
||||
* and other negative error code in case of failures. |
||||
*/ |
||||
static int switch_gc_head(struct ubifs_info *c) |
||||
{ |
||||
int err, gc_lnum = c->gc_lnum; |
||||
struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
||||
|
||||
ubifs_assert(gc_lnum != -1); |
||||
dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", |
||||
wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, |
||||
c->leb_size - wbuf->offs - wbuf->used); |
||||
|
||||
err = ubifs_wbuf_sync_nolock(wbuf); |
||||
if (err) |
||||
return err; |
||||
|
||||
/*
|
||||
* The GC write-buffer was synchronized, we may safely unmap |
||||
* 'c->gc_lnum'. |
||||
*/ |
||||
err = ubifs_leb_unmap(c, gc_lnum); |
||||
if (err) |
||||
return err; |
||||
|
||||
err = ubifs_wbuf_sync_nolock(wbuf); |
||||
if (err) |
||||
return err; |
||||
|
||||
err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); |
||||
if (err) |
||||
return err; |
||||
|
||||
c->gc_lnum = -1; |
||||
err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); |
||||
return err; |
||||
} |
||||
|
||||
/**
|
||||
* data_nodes_cmp - compare 2 data nodes. |
||||
* @priv: UBIFS file-system description object |
||||
* @a: first data node |
||||
* @a: second data node |
||||
* |
||||
* This function compares data nodes @a and @b. Returns %1 if @a has greater |
||||
* inode or block number, and %-1 otherwise. |
||||
*/ |
||||
static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) |
||||
{ |
||||
ino_t inuma, inumb; |
||||
struct ubifs_info *c = priv; |
||||
struct ubifs_scan_node *sa, *sb; |
||||
|
||||
cond_resched(); |
||||
if (a == b) |
||||
return 0; |
||||
|
||||
sa = list_entry(a, struct ubifs_scan_node, list); |
||||
sb = list_entry(b, struct ubifs_scan_node, list); |
||||
|
||||
ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); |
||||
ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); |
||||
ubifs_assert(sa->type == UBIFS_DATA_NODE); |
||||
ubifs_assert(sb->type == UBIFS_DATA_NODE); |
||||
|
||||
inuma = key_inum(c, &sa->key); |
||||
inumb = key_inum(c, &sb->key); |
||||
|
||||
if (inuma == inumb) { |
||||
unsigned int blka = key_block(c, &sa->key); |
||||
unsigned int blkb = key_block(c, &sb->key); |
||||
|
||||
if (blka <= blkb) |
||||
return -1; |
||||
} else if (inuma <= inumb) |
||||
return -1; |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
/*
|
||||
* nondata_nodes_cmp - compare 2 non-data nodes. |
||||
* @priv: UBIFS file-system description object |
||||
* @a: first node |
||||
* @a: second node |
||||
* |
||||
* This function compares nodes @a and @b. It makes sure that inode nodes go |
||||
* first and sorted by length in descending order. Directory entry nodes go |
||||
* after inode nodes and are sorted in ascending hash valuer order. |
||||
*/ |
||||
static int nondata_nodes_cmp(void *priv, struct list_head *a, |
||||
struct list_head *b) |
||||
{ |
||||
ino_t inuma, inumb; |
||||
struct ubifs_info *c = priv; |
||||
struct ubifs_scan_node *sa, *sb; |
||||
|
||||
cond_resched(); |
||||
if (a == b) |
||||
return 0; |
||||
|
||||
sa = list_entry(a, struct ubifs_scan_node, list); |
||||
sb = list_entry(b, struct ubifs_scan_node, list); |
||||
|
||||
ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && |
||||
key_type(c, &sb->key) != UBIFS_DATA_KEY); |
||||
ubifs_assert(sa->type != UBIFS_DATA_NODE && |
||||
sb->type != UBIFS_DATA_NODE); |
||||
|
||||
/* Inodes go before directory entries */ |
||||
if (sa->type == UBIFS_INO_NODE) { |
||||
if (sb->type == UBIFS_INO_NODE) |
||||
return sb->len - sa->len; |
||||
return -1; |
||||
} |
||||
if (sb->type == UBIFS_INO_NODE) |
||||
return 1; |
||||
|
||||
ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || |
||||
key_type(c, &sa->key) == UBIFS_XENT_KEY); |
||||
ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || |
||||
key_type(c, &sb->key) == UBIFS_XENT_KEY); |
||||
ubifs_assert(sa->type == UBIFS_DENT_NODE || |
||||
sa->type == UBIFS_XENT_NODE); |
||||
ubifs_assert(sb->type == UBIFS_DENT_NODE || |
||||
sb->type == UBIFS_XENT_NODE); |
||||
|
||||
inuma = key_inum(c, &sa->key); |
||||
inumb = key_inum(c, &sb->key); |
||||
|
||||
if (inuma == inumb) { |
||||
uint32_t hasha = key_hash(c, &sa->key); |
||||
uint32_t hashb = key_hash(c, &sb->key); |
||||
|
||||
if (hasha <= hashb) |
||||
return -1; |
||||
} else if (inuma <= inumb) |
||||
return -1; |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
/**
|
||||
* sort_nodes - sort nodes for GC. |
||||
* @c: UBIFS file-system description object |
||||
* @sleb: describes nodes to sort and contains the result on exit |
||||
* @nondata: contains non-data nodes on exit |
||||
* @min: minimum node size is returned here |
||||
* |
||||
* This function sorts the list of inodes to garbage collect. First of all, it |
||||
* kills obsolete nodes and separates data and non-data nodes to the |
||||
* @sleb->nodes and @nondata lists correspondingly. |
||||
* |
||||
* Data nodes are then sorted in block number order - this is important for |
||||
* bulk-read; data nodes with lower inode number go before data nodes with |
||||
* higher inode number, and data nodes with lower block number go before data |
||||
* nodes with higher block number; |
||||
* |
||||
* Non-data nodes are sorted as follows. |
||||
* o First go inode nodes - they are sorted in descending length order. |
||||
* o Then go directory entry nodes - they are sorted in hash order, which |
||||
* should supposedly optimize 'readdir()'. Direntry nodes with lower parent |
||||
* inode number go before direntry nodes with higher parent inode number, |
||||
* and direntry nodes with lower name hash values go before direntry nodes |
||||
* with higher name hash values. |
||||
* |
||||
* This function returns zero in case of success and a negative error code in |
||||
* case of failure. |
||||
*/ |
||||
static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
||||
struct list_head *nondata, int *min) |
||||
{ |
||||
int err; |
||||
struct ubifs_scan_node *snod, *tmp; |
||||
|
||||
*min = INT_MAX; |
||||
|
||||
/* Separate data nodes and non-data nodes */ |
||||
list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { |
||||
ubifs_assert(snod->type == UBIFS_INO_NODE || |
||||
snod->type == UBIFS_DATA_NODE || |
||||
snod->type == UBIFS_DENT_NODE || |
||||
snod->type == UBIFS_XENT_NODE || |
||||
snod->type == UBIFS_TRUN_NODE); |
||||
|
||||
if (snod->type != UBIFS_INO_NODE && |
||||
snod->type != UBIFS_DATA_NODE && |
||||
snod->type != UBIFS_DENT_NODE && |
||||
snod->type != UBIFS_XENT_NODE) { |
||||
/* Probably truncation node, zap it */ |
||||
list_del(&snod->list); |
||||
kfree(snod); |
||||
continue; |
||||
} |
||||
|
||||
ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || |
||||
key_type(c, &snod->key) == UBIFS_INO_KEY || |
||||
key_type(c, &snod->key) == UBIFS_DENT_KEY || |
||||
key_type(c, &snod->key) == UBIFS_XENT_KEY); |
||||
|
||||
err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, |
||||
snod->offs, 0); |
||||
if (err < 0) |
||||
return err; |
||||
|
||||
if (!err) { |
||||
/* The node is obsolete, remove it from the list */ |
||||
list_del(&snod->list); |
||||
kfree(snod); |
||||
continue; |
||||
} |
||||
|
||||
if (snod->len < *min) |
||||
*min = snod->len; |
||||
|
||||
if (key_type(c, &snod->key) != UBIFS_DATA_KEY) |
||||
list_move_tail(&snod->list, nondata); |
||||
} |
||||
|
||||
/* Sort data and non-data nodes */ |
||||
list_sort(c, &sleb->nodes, &data_nodes_cmp); |
||||
list_sort(c, nondata, &nondata_nodes_cmp); |
||||
|
||||
err = dbg_check_data_nodes_order(c, &sleb->nodes); |
||||
if (err) |
||||
return err; |
||||
err = dbg_check_nondata_nodes_order(c, nondata); |
||||
if (err) |
||||
return err; |
||||
return 0; |
||||
} |
||||
|
||||
/**
|
||||
* move_node - move a node. |
||||
* @c: UBIFS file-system description object |
||||
* @sleb: describes the LEB to move nodes from |
||||
* @snod: the mode to move |
||||
* @wbuf: write-buffer to move node to |
||||
* |
||||
* This function moves node @snod to @wbuf, changes TNC correspondingly, and |
||||
* destroys @snod. Returns zero in case of success and a negative error code in |
||||
* case of failure. |
||||
*/ |
||||
static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
||||
struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) |
||||
{ |
||||
int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; |
||||
|
||||
cond_resched(); |
||||
err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); |
||||
if (err) |
||||
return err; |
||||
|
||||
err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, |
||||
snod->offs, new_lnum, new_offs, |
||||
snod->len); |
||||
list_del(&snod->list); |
||||
kfree(snod); |
||||
return err; |
||||
} |
||||
|
||||
/**
|
||||
* move_nodes - move nodes. |
||||
* @c: UBIFS file-system description object |
||||
* @sleb: describes the LEB to move nodes from |
||||
* |
||||
* This function moves valid nodes from data LEB described by @sleb to the GC |
||||
* journal head. This function returns zero in case of success, %-EAGAIN if |
||||
* commit is required, and other negative error codes in case of other |
||||
* failures. |
||||
*/ |
||||
static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) |
||||
{ |
||||
int err, min; |
||||
LIST_HEAD(nondata); |
||||
struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
||||
|
||||
if (wbuf->lnum == -1) { |
||||
/*
|
||||
* The GC journal head is not set, because it is the first GC |
||||
* invocation since mount. |
||||
*/ |
||||
err = switch_gc_head(c); |
||||
if (err) |
||||
return err; |
||||
} |
||||
|
||||
err = sort_nodes(c, sleb, &nondata, &min); |
||||
if (err) |
||||
goto out; |
||||
|
||||
/* Write nodes to their new location. Use the first-fit strategy */ |
||||
while (1) { |
||||
int avail; |
||||
struct ubifs_scan_node *snod, *tmp; |
||||
|
||||
/* Move data nodes */ |
||||
list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { |
||||
avail = c->leb_size - wbuf->offs - wbuf->used; |
||||
if (snod->len > avail) |
||||
/*
|
||||
* Do not skip data nodes in order to optimize |
||||
* bulk-read. |
||||
*/ |
||||
break; |
||||
|
||||
err = move_node(c, sleb, snod, wbuf); |
||||
if (err) |
||||
goto out; |
||||
} |
||||
|
||||
/* Move non-data nodes */ |
||||
list_for_each_entry_safe(snod, tmp, &nondata, list) { |
||||
avail = c->leb_size - wbuf->offs - wbuf->used; |
||||
if (avail < min) |
||||
break; |
||||
|
||||
if (snod->len > avail) { |
||||
/*
|
||||
* Keep going only if this is an inode with |
||||
* some data. Otherwise stop and switch the GC |
||||
* head. IOW, we assume that data-less inode |
||||
* nodes and direntry nodes are roughly of the |
||||
* same size. |
||||
*/ |
||||
if (key_type(c, &snod->key) == UBIFS_DENT_KEY || |
||||
snod->len == UBIFS_INO_NODE_SZ) |
||||
break; |
||||
continue; |
||||
} |
||||
|
||||
err = move_node(c, sleb, snod, wbuf); |
||||
if (err) |
||||
goto out; |
||||
} |
||||
|
||||
if (list_empty(&sleb->nodes) && list_empty(&nondata)) |
||||
break; |
||||
|
||||
/*
|
||||
* Waste the rest of the space in the LEB and switch to the |
||||
* next LEB. |
||||
*/ |
||||
err = switch_gc_head(c); |
||||
if (err) |
||||
goto out; |
||||
} |
||||
|
||||
return 0; |
||||
|
||||
out: |
||||
list_splice_tail(&nondata, &sleb->nodes); |
||||
return err; |
||||
} |
||||
|
||||
/**
|
||||
* gc_sync_wbufs - sync write-buffers for GC. |
||||
* @c: UBIFS file-system description object |
||||
* |
||||
* We must guarantee that obsoleting nodes are on flash. Unfortunately they may |
||||
* be in a write-buffer instead. That is, a node could be written to a |
||||
* write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is |
||||
* erased before the write-buffer is sync'd and then there is an unclean |
||||
* unmount, then an existing node is lost. To avoid this, we sync all |
||||
* write-buffers. |
||||
* |
||||
* This function returns %0 on success or a negative error code on failure. |
||||
*/ |
||||
static int gc_sync_wbufs(struct ubifs_info *c) |
||||
{ |
||||
int err, i; |
||||
|
||||
for (i = 0; i < c->jhead_cnt; i++) { |
||||
if (i == GCHD) |
||||
continue; |
||||
err = ubifs_wbuf_sync(&c->jheads[i].wbuf); |
||||
if (err) |
||||
return err; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
/**
|
||||
* ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. |
||||
* @c: UBIFS file-system description object |
||||
* @lp: describes the LEB to garbage collect |
||||
* |
||||
* This function garbage-collects an LEB and returns one of the @LEB_FREED, |
||||
* @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is |
||||
* required, and other negative error codes in case of failures. |
||||
*/ |
||||
int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) |
||||
{ |
||||
struct ubifs_scan_leb *sleb; |
||||
struct ubifs_scan_node *snod; |
||||
struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
||||
int err = 0, lnum = lp->lnum; |
||||
|
||||
ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || |
||||
c->need_recovery); |
||||
ubifs_assert(c->gc_lnum != lnum); |
||||
ubifs_assert(wbuf->lnum != lnum); |
||||
|
||||
if (lp->free + lp->dirty == c->leb_size) { |
||||
/* Special case - a free LEB */ |
||||
dbg_gc("LEB %d is free, return it", lp->lnum); |
||||
ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
||||
|
||||
if (lp->free != c->leb_size) { |
||||
/*
|
||||
* Write buffers must be sync'd before unmapping |
||||
* freeable LEBs, because one of them may contain data |
||||
* which obsoletes something in 'lp->pnum'. |
||||
*/ |
||||
err = gc_sync_wbufs(c); |
||||
if (err) |
||||
return err; |
||||
err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, |
||||
0, 0, 0, 0); |
||||
if (err) |
||||
return err; |
||||
} |
||||
err = ubifs_leb_unmap(c, lp->lnum); |
||||
if (err) |
||||
return err; |
||||
|
||||
if (c->gc_lnum == -1) { |
||||
c->gc_lnum = lnum; |
||||
return LEB_RETAINED; |
||||
} |
||||
|
||||
return LEB_FREED; |
||||
} |
||||
|
||||
/*
|
||||
* We scan the entire LEB even though we only really need to scan up to |
||||
* (c->leb_size - lp->free). |
||||
*/ |
||||
sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); |
||||
if (IS_ERR(sleb)) |
||||
return PTR_ERR(sleb); |
||||
|
||||
ubifs_assert(!list_empty(&sleb->nodes)); |
||||
snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); |
||||
|
||||
if (snod->type == UBIFS_IDX_NODE) { |
||||
struct ubifs_gced_idx_leb *idx_gc; |
||||
|
||||
dbg_gc("indexing LEB %d (free %d, dirty %d)", |
||||
lnum, lp->free, lp->dirty); |
||||
list_for_each_entry(snod, &sleb->nodes, list) { |
||||
struct ubifs_idx_node *idx = snod->node; |
||||
int level = le16_to_cpu(idx->level); |
||||
|
||||
ubifs_assert(snod->type == UBIFS_IDX_NODE); |
||||
key_read(c, ubifs_idx_key(c, idx), &snod->key); |
||||
err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, |
||||
snod->offs); |
||||
if (err) |
||||
goto out; |
||||
} |
||||
|
||||
idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); |
||||
if (!idx_gc) { |
||||
err = -ENOMEM; |
||||
goto out; |
||||
} |
||||
|
||||
idx_gc->lnum = lnum; |
||||
idx_gc->unmap = 0; |
||||
list_add(&idx_gc->list, &c->idx_gc); |
||||
|
||||
/*
|
||||
* Don't release the LEB until after the next commit, because |
||||
* it may contain data which is needed for recovery. So |
||||
* although we freed this LEB, it will become usable only after |
||||
* the commit. |
||||
*/ |
||||
err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, |
||||
LPROPS_INDEX, 1); |
||||
if (err) |
||||
goto out; |
||||
err = LEB_FREED_IDX; |
||||
} else { |
||||
dbg_gc("data LEB %d (free %d, dirty %d)", |
||||
lnum, lp->free, lp->dirty); |
||||
|
||||
err = move_nodes(c, sleb); |
||||
if (err) |
||||
goto out_inc_seq; |
||||
|
||||
err = gc_sync_wbufs(c); |
||||
if (err) |
||||
goto out_inc_seq; |
||||
|
||||
err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); |
||||
if (err) |
||||
goto out_inc_seq; |
||||
|
||||
/* Allow for races with TNC */ |
||||
c->gced_lnum = lnum; |
||||
smp_wmb(); |
||||
c->gc_seq += 1; |
||||
smp_wmb(); |
||||
|
||||
if (c->gc_lnum == -1) { |
||||
c->gc_lnum = lnum; |
||||
err = LEB_RETAINED; |
||||
} else { |
||||
err = ubifs_wbuf_sync_nolock(wbuf); |
||||
if (err) |
||||
goto out; |
||||
|
||||
err = ubifs_leb_unmap(c, lnum); |
||||
if (err) |
||||
goto out; |
||||
|
||||
err = LEB_FREED; |
||||
} |
||||
} |
||||
|
||||
out: |
||||
ubifs_scan_destroy(sleb); |
||||
return err; |
||||
|
||||
out_inc_seq: |
||||
/* We may have moved at least some nodes so allow for races with TNC */ |
||||
c->gced_lnum = lnum; |
||||
smp_wmb(); |
||||
c->gc_seq += 1; |
||||
smp_wmb(); |
||||
goto out; |
||||
} |
||||
|
||||
/**
|
||||
* ubifs_garbage_collect - UBIFS garbage collector. |
||||
* @c: UBIFS file-system description object |
||||
* @anyway: do GC even if there are free LEBs |
||||
* |
||||
* This function does out-of-place garbage collection. The return codes are: |
||||
* o positive LEB number if the LEB has been freed and may be used; |
||||
* o %-EAGAIN if the caller has to run commit; |
||||
* o %-ENOSPC if GC failed to make any progress; |
||||
* o other negative error codes in case of other errors. |
||||
* |
||||
* Garbage collector writes data to the journal when GC'ing data LEBs, and just |
||||
* marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point |
||||
* commit may be required. But commit cannot be run from inside GC, because the |
||||
* caller might be holding the commit lock, so %-EAGAIN is returned instead; |
||||
* And this error code means that the caller has to run commit, and re-run GC |
||||
* if there is still no free space. |
||||
* |
||||
* There are many reasons why this function may return %-EAGAIN: |
||||
* o the log is full and there is no space to write an LEB reference for |
||||
* @c->gc_lnum; |
||||
* o the journal is too large and exceeds size limitations; |
||||
* o GC moved indexing LEBs, but they can be used only after the commit; |
||||
* o the shrinker fails to find clean znodes to free and requests the commit; |
||||
* o etc. |
||||
* |
||||
* Note, if the file-system is close to be full, this function may return |
||||
* %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of |
||||
* the function. E.g., this happens if the limits on the journal size are too |
||||
* tough and GC writes too much to the journal before an LEB is freed. This |
||||
* might also mean that the journal is too large, and the TNC becomes to big, |
||||
* so that the shrinker is constantly called, finds not clean znodes to free, |
||||
* and requests commit. Well, this may also happen if the journal is all right, |
||||
* but another kernel process consumes too much memory. Anyway, infinite |
||||
* %-EAGAIN may happen, but in some extreme/misconfiguration cases. |
||||
*/ |
||||
int ubifs_garbage_collect(struct ubifs_info *c, int anyway) |
||||
{ |
||||
int i, err, ret, min_space = c->dead_wm; |
||||
struct ubifs_lprops lp; |
||||
struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
||||
|
||||
ubifs_assert_cmt_locked(c); |
||||
ubifs_assert(!c->ro_media && !c->ro_mount); |
||||
|
||||
if (ubifs_gc_should_commit(c)) |
||||
return -EAGAIN; |
||||
|
||||
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
||||
|
||||
if (c->ro_error) { |
||||
ret = -EROFS; |
||||
goto out_unlock; |
||||
} |
||||
|
||||
/* We expect the write-buffer to be empty on entry */ |
||||
ubifs_assert(!wbuf->used); |
||||
|
||||
for (i = 0; ; i++) { |
||||
int space_before, space_after; |
||||
|
||||
cond_resched(); |
||||
|
||||
/* Give the commit an opportunity to run */ |
||||
if (ubifs_gc_should_commit(c)) { |
||||
ret = -EAGAIN; |
||||
break; |
||||
} |
||||
|
||||
if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { |
||||
/*
|
||||
* We've done enough iterations. Indexing LEBs were |
||||
* moved and will be available after the commit. |
||||
*/ |
||||
dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); |
||||
ubifs_commit_required(c); |
||||
ret = -EAGAIN; |
||||
break; |
||||
} |
||||
|
||||
if (i > HARD_LEBS_LIMIT) { |
||||
/*
|
||||
* We've moved too many LEBs and have not made |
||||
* progress, give up. |
||||
*/ |
||||
dbg_gc("hard limit, -ENOSPC"); |
||||
ret = -ENOSPC; |
||||
break; |
||||
} |
||||
|
||||
/*
|
||||
* Empty and freeable LEBs can turn up while we waited for |
||||
* the wbuf lock, or while we have been running GC. In that |
||||
* case, we should just return one of those instead of |
||||
* continuing to GC dirty LEBs. Hence we request |
||||
* 'ubifs_find_dirty_leb()' to return an empty LEB if it can. |
||||
*/ |
||||
ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); |
||||
if (ret) { |
||||
if (ret == -ENOSPC) |
||||
dbg_gc("no more dirty LEBs"); |
||||
break; |
||||
} |
||||
|
||||
dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", |
||||
lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, |
||||
min_space); |
||||
|
||||
space_before = c->leb_size - wbuf->offs - wbuf->used; |
||||
if (wbuf->lnum == -1) |
||||
space_before = 0; |
||||
|
||||
ret = ubifs_garbage_collect_leb(c, &lp); |
||||
if (ret < 0) { |
||||
if (ret == -EAGAIN) { |
||||
/*
|
||||
* This is not error, so we have to return the |
||||
* LEB to lprops. But if 'ubifs_return_leb()' |
||||
* fails, its failure code is propagated to the |
||||
* caller instead of the original '-EAGAIN'. |
||||
*/ |
||||
err = ubifs_return_leb(c, lp.lnum); |
||||
if (err) |
||||
ret = err; |
||||
break; |
||||
} |
||||
goto out; |
||||
} |
||||
|
||||
if (ret == LEB_FREED) { |
||||
/* An LEB has been freed and is ready for use */ |
||||
dbg_gc("LEB %d freed, return", lp.lnum); |
||||
ret = lp.lnum; |
||||
break; |
||||
} |
||||
|
||||
if (ret == LEB_FREED_IDX) { |
||||
/*
|
||||
* This was an indexing LEB and it cannot be |
||||
* immediately used. And instead of requesting the |
||||
* commit straight away, we try to garbage collect some |
||||
* more. |
||||
*/ |
||||
dbg_gc("indexing LEB %d freed, continue", lp.lnum); |
||||
continue; |
||||
} |
||||
|
||||
ubifs_assert(ret == LEB_RETAINED); |
||||
space_after = c->leb_size - wbuf->offs - wbuf->used; |
||||
dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, |
||||
space_after - space_before); |
||||
|
||||
if (space_after > space_before) { |
||||
/* GC makes progress, keep working */ |
||||
min_space >>= 1; |
||||
if (min_space < c->dead_wm) |
||||
min_space = c->dead_wm; |
||||
continue; |
||||
} |
||||
|
||||
dbg_gc("did not make progress"); |
||||
|
||||
/*
|
||||
* GC moved an LEB bud have not done any progress. This means |
||||
* that the previous GC head LEB contained too few free space |
||||
* and the LEB which was GC'ed contained only large nodes which |
||||
* did not fit that space. |
||||
* |
||||
* We can do 2 things: |
||||
* 1. pick another LEB in a hope it'll contain a small node |
||||
* which will fit the space we have at the end of current GC |
||||
* head LEB, but there is no guarantee, so we try this out |
||||
* unless we have already been working for too long; |
||||
* 2. request an LEB with more dirty space, which will force |
||||
* 'ubifs_find_dirty_leb()' to start scanning the lprops |
||||
* table, instead of just picking one from the heap |
||||
* (previously it already picked the dirtiest LEB). |
||||
*/ |
||||
if (i < SOFT_LEBS_LIMIT) { |
||||
dbg_gc("try again"); |
||||
continue; |
||||
} |
||||
|
||||
min_space <<= 1; |
||||
if (min_space > c->dark_wm) |
||||
min_space = c->dark_wm; |
||||
dbg_gc("set min. space to %d", min_space); |
||||
} |
||||
|
||||
if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { |
||||
dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); |
||||
ubifs_commit_required(c); |
||||
ret = -EAGAIN; |
||||
} |
||||
|
||||
err = ubifs_wbuf_sync_nolock(wbuf); |
||||
if (!err) |
||||
err = ubifs_leb_unmap(c, c->gc_lnum); |
||||
if (err) { |
||||
ret = err; |
||||
goto out; |
||||
} |
||||
out_unlock: |
||||
mutex_unlock(&wbuf->io_mutex); |
||||
return ret; |
||||
|
||||
out: |
||||
ubifs_assert(ret < 0); |
||||
ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); |
||||
ubifs_wbuf_sync_nolock(wbuf); |
||||
ubifs_ro_mode(c, ret); |
||||
mutex_unlock(&wbuf->io_mutex); |
||||
ubifs_return_leb(c, lp.lnum); |
||||
return ret; |
||||
} |
||||
|
||||
/**
|
||||
* ubifs_gc_start_commit - garbage collection at start of commit. |
||||
* @c: UBIFS file-system description object |
||||
* |
||||
* If a LEB has only dirty and free space, then we may safely unmap it and make |
||||
* it free. Note, we cannot do this with indexing LEBs because dirty space may |
||||
* correspond index nodes that are required for recovery. In that case, the |
||||
* LEB cannot be unmapped until after the next commit. |
||||
* |
||||
* This function returns %0 upon success and a negative error code upon failure. |
||||
*/ |
||||
int ubifs_gc_start_commit(struct ubifs_info *c) |
||||
{ |
||||
struct ubifs_gced_idx_leb *idx_gc; |
||||
const struct ubifs_lprops *lp; |
||||
int err = 0, flags; |
||||
|
||||
ubifs_get_lprops(c); |
||||
|
||||
/*
|
||||
* Unmap (non-index) freeable LEBs. Note that recovery requires that all |
||||
* wbufs are sync'd before this, which is done in 'do_commit()'. |
||||
*/ |
||||
while (1) { |
||||
lp = ubifs_fast_find_freeable(c); |
||||
if (IS_ERR(lp)) { |
||||
err = PTR_ERR(lp); |
||||
goto out; |
||||
} |
||||
if (!lp) |
||||
break; |
||||
ubifs_assert(!(lp->flags & LPROPS_TAKEN)); |
||||
ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
||||
err = ubifs_leb_unmap(c, lp->lnum); |
||||
if (err) |
||||
goto out; |
||||
lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); |
||||
if (IS_ERR(lp)) { |
||||
err = PTR_ERR(lp); |
||||
goto out; |
||||
} |
||||
ubifs_assert(!(lp->flags & LPROPS_TAKEN)); |
||||
ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
||||
} |
||||
|
||||
/* Mark GC'd index LEBs OK to unmap after this commit finishes */ |
||||
list_for_each_entry(idx_gc, &c->idx_gc, list) |
||||
idx_gc->unmap = 1; |
||||
|
||||
/* Record index freeable LEBs for unmapping after commit */ |
||||
while (1) { |
||||
lp = ubifs_fast_find_frdi_idx(c); |
||||
if (IS_ERR(lp)) { |
||||
err = PTR_ERR(lp); |
||||
goto out; |
||||
} |
||||
if (!lp) |
||||
break; |
||||
idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); |
||||
if (!idx_gc) { |
||||
err = -ENOMEM; |
||||
goto out; |
||||
} |
||||
ubifs_assert(!(lp->flags & LPROPS_TAKEN)); |
||||
ubifs_assert(lp->flags & LPROPS_INDEX); |
||||
/* Don't release the LEB until after the next commit */ |
||||
flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; |
||||
lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); |
||||
if (IS_ERR(lp)) { |
||||
err = PTR_ERR(lp); |
||||
kfree(idx_gc); |
||||
goto out; |
||||
} |
||||
ubifs_assert(lp->flags & LPROPS_TAKEN); |
||||
ubifs_assert(!(lp->flags & LPROPS_INDEX)); |
||||
idx_gc->lnum = lp->lnum; |
||||
idx_gc->unmap = 1; |
||||
list_add(&idx_gc->list, &c->idx_gc); |
||||
} |
||||
out: |
||||
ubifs_release_lprops(c); |
||||
return err; |
||||
} |
||||
|
||||
/**
|
||||
* ubifs_gc_end_commit - garbage collection at end of commit. |
||||
* @c: UBIFS file-system description object |
||||
* |
||||
* This function completes out-of-place garbage collection of index LEBs. |
||||
*/ |
||||
int ubifs_gc_end_commit(struct ubifs_info *c) |
||||
{ |
||||
struct ubifs_gced_idx_leb *idx_gc, *tmp; |
||||
struct ubifs_wbuf *wbuf; |
||||
int err = 0; |
||||
|
||||
wbuf = &c->jheads[GCHD].wbuf; |
||||
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
||||
list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) |
||||
if (idx_gc->unmap) { |
||||
dbg_gc("LEB %d", idx_gc->lnum); |
||||
err = ubifs_leb_unmap(c, idx_gc->lnum); |
||||
if (err) |
||||
goto out; |
||||
err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, |
||||
LPROPS_NC, 0, LPROPS_TAKEN, -1); |
||||
if (err) |
||||
goto out; |
||||
list_del(&idx_gc->list); |
||||
kfree(idx_gc); |
||||
} |
||||
out: |
||||
mutex_unlock(&wbuf->io_mutex); |
||||
return err; |
||||
} |
||||
#endif |
||||
/**
|
||||
* ubifs_destroy_idx_gc - destroy idx_gc list. |
||||
* @c: UBIFS file-system description object |
||||
* |
||||
* This function destroys the @c->idx_gc list. It is called when unmounting |
||||
* so locks are not needed. Returns zero in case of success and a negative |
||||
* error code in case of failure. |
||||
*/ |
||||
void ubifs_destroy_idx_gc(struct ubifs_info *c) |
||||
{ |
||||
while (!list_empty(&c->idx_gc)) { |
||||
struct ubifs_gced_idx_leb *idx_gc; |
||||
|
||||
idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, |
||||
list); |
||||
c->idx_gc_cnt -= 1; |
||||
list_del(&idx_gc->list); |
||||
kfree(idx_gc); |
||||
} |
||||
} |
||||
#ifndef __UBOOT__ |
||||
/**
|
||||
* ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. |
||||
* @c: UBIFS file-system description object |
||||
* |
||||
* Called during start commit so locks are not needed. |
||||
*/ |
||||
int ubifs_get_idx_gc_leb(struct ubifs_info *c) |
||||
{ |
||||
struct ubifs_gced_idx_leb *idx_gc; |
||||
int lnum; |
||||
|
||||
if (list_empty(&c->idx_gc)) |
||||
return -ENOSPC; |
||||
idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); |
||||
lnum = idx_gc->lnum; |
||||
/* c->idx_gc_cnt is updated by the caller when lprops are updated */ |
||||
list_del(&idx_gc->list); |
||||
kfree(idx_gc); |
||||
return lnum; |
||||
} |
||||
#endif |
@ -0,0 +1,260 @@ |
||||
#ifndef _ASM_GENERIC_ATOMIC_LONG_H |
||||
#define _ASM_GENERIC_ATOMIC_LONG_H |
||||
/*
|
||||
* Copyright (C) 2005 Silicon Graphics, Inc. |
||||
* Christoph Lameter |
||||
* |
||||
* Allows to provide arch independent atomic definitions without the need to |
||||
* edit all arch specific atomic.h files. |
||||
*/ |
||||
|
||||
#include <asm/types.h> |
||||
|
||||
/*
|
||||
* Suppport for atomic_long_t |
||||
* |
||||
* Casts for parameters are avoided for existing atomic functions in order to |
||||
* avoid issues with cast-as-lval under gcc 4.x and other limitations that the |
||||
* macros of a platform may have. |
||||
*/ |
||||
|
||||
#if BITS_PER_LONG == 64 |
||||
|
||||
typedef atomic64_t atomic_long_t; |
||||
|
||||
#define ATOMIC_LONG_INIT(i) ATOMIC64_INIT(i) |
||||
|
||||
static inline long atomic_long_read(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return (long)atomic64_read(v); |
||||
} |
||||
|
||||
static inline void atomic_long_set(atomic_long_t *l, long i) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
atomic64_set(v, i); |
||||
} |
||||
|
||||
static inline void atomic_long_inc(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
atomic64_inc(v); |
||||
} |
||||
|
||||
static inline void atomic_long_dec(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
atomic64_dec(v); |
||||
} |
||||
|
||||
static inline void atomic_long_add(long i, atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
atomic64_add(i, v); |
||||
} |
||||
|
||||
static inline void atomic_long_sub(long i, atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
atomic64_sub(i, v); |
||||
} |
||||
|
||||
static inline int atomic_long_sub_and_test(long i, atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return atomic64_sub_and_test(i, v); |
||||
} |
||||
|
||||
static inline int atomic_long_dec_and_test(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return atomic64_dec_and_test(v); |
||||
} |
||||
|
||||
static inline int atomic_long_inc_and_test(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return atomic64_inc_and_test(v); |
||||
} |
||||
|
||||
static inline int atomic_long_add_negative(long i, atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return atomic64_add_negative(i, v); |
||||
} |
||||
|
||||
static inline long atomic_long_add_return(long i, atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return (long)atomic64_add_return(i, v); |
||||
} |
||||
|
||||
static inline long atomic_long_sub_return(long i, atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return (long)atomic64_sub_return(i, v); |
||||
} |
||||
|
||||
static inline long atomic_long_inc_return(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return (long)atomic64_inc_return(v); |
||||
} |
||||
|
||||
static inline long atomic_long_dec_return(atomic_long_t *l) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return (long)atomic64_dec_return(v); |
||||
} |
||||
|
||||
static inline long atomic_long_add_unless(atomic_long_t *l, long a, long u) |
||||
{ |
||||
atomic64_t *v = (atomic64_t *)l; |
||||
|
||||
return (long)atomic64_add_unless(v, a, u); |
||||
} |
||||
|
||||
#define atomic_long_inc_not_zero(l) atomic64_inc_not_zero((atomic64_t *)(l)) |
||||
|
||||
#define atomic_long_cmpxchg(l, old, new) \ |
||||
(atomic64_cmpxchg((atomic64_t *)(l), (old), (new))) |
||||
#define atomic_long_xchg(v, new) \ |
||||
(atomic64_xchg((atomic64_t *)(v), (new))) |
||||
|
||||
#else /* BITS_PER_LONG == 64 */ |
||||
|
||||
typedef atomic_t atomic_long_t; |
||||
|
||||
#define ATOMIC_LONG_INIT(i) ATOMIC_INIT(i) |
||||
static inline long atomic_long_read(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return (long)atomic_read(v); |
||||
} |
||||
|
||||
static inline void atomic_long_set(atomic_long_t *l, long i) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
atomic_set(v, i); |
||||
} |
||||
|
||||
static inline void atomic_long_inc(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
atomic_inc(v); |
||||
} |
||||
|
||||
static inline void atomic_long_dec(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
atomic_dec(v); |
||||
} |
||||
|
||||
static inline void atomic_long_add(long i, atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
atomic_add(i, v); |
||||
} |
||||
|
||||
static inline void atomic_long_sub(long i, atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
atomic_sub(i, v); |
||||
} |
||||
|
||||
#ifndef __UBOOT__ |
||||
static inline int atomic_long_sub_and_test(long i, atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return atomic_sub_and_test(i, v); |
||||
} |
||||
|
||||
static inline int atomic_long_dec_and_test(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return atomic_dec_and_test(v); |
||||
} |
||||
|
||||
static inline int atomic_long_inc_and_test(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return atomic_inc_and_test(v); |
||||
} |
||||
|
||||
static inline int atomic_long_add_negative(long i, atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return atomic_add_negative(i, v); |
||||
} |
||||
|
||||
static inline long atomic_long_add_return(long i, atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return (long)atomic_add_return(i, v); |
||||
} |
||||
|
||||
static inline long atomic_long_sub_return(long i, atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return (long)atomic_sub_return(i, v); |
||||
} |
||||
|
||||
static inline long atomic_long_inc_return(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return (long)atomic_inc_return(v); |
||||
} |
||||
|
||||
static inline long atomic_long_dec_return(atomic_long_t *l) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return (long)atomic_dec_return(v); |
||||
} |
||||
|
||||
static inline long atomic_long_add_unless(atomic_long_t *l, long a, long u) |
||||
{ |
||||
atomic_t *v = (atomic_t *)l; |
||||
|
||||
return (long)atomic_add_unless(v, a, u); |
||||
} |
||||
|
||||
#define atomic_long_inc_not_zero(l) atomic_inc_not_zero((atomic_t *)(l)) |
||||
|
||||
#define atomic_long_cmpxchg(l, old, new) \ |
||||
(atomic_cmpxchg((atomic_t *)(l), (old), (new))) |
||||
#define atomic_long_xchg(v, new) \ |
||||
(atomic_xchg((atomic_t *)(v), (new))) |
||||
#endif /* __UBOOT__ */ |
||||
|
||||
#endif /* BITS_PER_LONG == 64 */ |
||||
|
||||
#endif /* _ASM_GENERIC_ATOMIC_LONG_H */ |
Loading…
Reference in new issue