mxc nand: Merge mtd and spl register definitions

This patches fixes the TODO to use same register definitions in mtd mxc_nand and
nand_spl fsl nfc drivers.

Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Stefano Babic <sbabic@denx.de>
Signed-off-by: Scott Wood <scottwood@freescale.com>
master
Benoît Thébaudeau 12 years ago committed by Scott Wood
parent 9c790a748f
commit 80c8ab7b25
  1. 247
      drivers/mtd/nand/mxc_nand.c
  2. 97
      include/fsl_nfc.h
  3. 58
      nand_spl/nand_boot_fsl_nfc.c

@ -25,168 +25,23 @@
#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35)
#include <asm/arch/imx-regs.h>
#endif
#include <fsl_nfc.h>
#define DRIVER_NAME "mxc_nand"
/*
* TODO: Use same register defs here as nand_spl mxc nand driver.
*/
/*
* Register map and bit definitions for the Freescale NAND Flash Controller
* present in various i.MX devices.
*
* MX31 and MX27 have version 1 which has
* 4 512 byte main buffers and
* 4 16 byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX25 has version 1.1 which has
* 8 512 byte main buffers and
* 8 64 byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
*/
#if defined(CONFIG_MX31) || defined(CONFIG_MX27)
#define MXC_NFC_V1
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
#define MXC_NFC_V1_1
#else
#warning "MXC NFC version not defined"
#endif
#if defined(MXC_NFC_V1)
#define NAND_MXC_NR_BUFS 4
#define NAND_MXC_SPARE_BUF_SIZE 16
#define NAND_MXC_REG_OFFSET 0xe00
#define is_mxc_nfc_11() 0
#elif defined(MXC_NFC_V1_1)
#define NAND_MXC_NR_BUFS 8
#define NAND_MXC_SPARE_BUF_SIZE 64
#define NAND_MXC_REG_OFFSET 0x1e00
#define is_mxc_nfc_11() 1
#else
#error "define CONFIG_NAND_MXC_VXXX to use mtd mxc nand driver"
#endif
struct nfc_regs {
uint8_t main_area[NAND_MXC_NR_BUFS][0x200];
uint8_t spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
/*
* reserved size is offset of nfc registers
* minus total main and spare sizes
*/
uint8_t reserved1[NAND_MXC_REG_OFFSET
- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
#if defined(MXC_NFC_V1)
uint16_t nfc_buf_size;
uint16_t reserved2;
uint16_t nfc_buf_addr;
uint16_t nfc_flash_addr;
uint16_t nfc_flash_cmd;
uint16_t nfc_config;
uint16_t nfc_ecc_status_result;
uint16_t nfc_rsltmain_area;
uint16_t nfc_rsltspare_area;
uint16_t nfc_wrprot;
uint16_t nfc_unlockstart_blkaddr;
uint16_t nfc_unlockend_blkaddr;
uint16_t nfc_nf_wrprst;
uint16_t nfc_config1;
uint16_t nfc_config2;
#elif defined(MXC_NFC_V1_1)
uint16_t reserved2[2];
uint16_t nfc_buf_addr;
uint16_t nfc_flash_addr;
uint16_t nfc_flash_cmd;
uint16_t nfc_config;
uint16_t nfc_ecc_status_result;
uint16_t nfc_ecc_status_result2;
uint16_t nfc_spare_area_size;
uint16_t nfc_wrprot;
uint16_t reserved3[2];
uint16_t nfc_nf_wrprst;
uint16_t nfc_config1;
uint16_t nfc_config2;
uint16_t reserved4;
uint16_t nfc_unlockstart_blkaddr;
uint16_t nfc_unlockend_blkaddr;
uint16_t nfc_unlockstart_blkaddr1;
uint16_t nfc_unlockend_blkaddr1;
uint16_t nfc_unlockstart_blkaddr2;
uint16_t nfc_unlockend_blkaddr2;
uint16_t nfc_unlockstart_blkaddr3;
uint16_t nfc_unlockend_blkaddr3;
#endif
};
/*
* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
* for Command operation
*/
#define NFC_CMD 0x1
/*
* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
* for Address operation
*/
#define NFC_ADDR 0x2
/*
* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
* for Input operation
*/
#define NFC_INPUT 0x4
/*
* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
* for Data Output operation
*/
#define NFC_OUTPUT 0x8
/*
* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
* for Read ID operation
*/
#define NFC_ID 0x10
/*
* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
* for Read Status operation
*/
#define NFC_STATUS 0x20
/*
* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
* Status operation
*/
#define NFC_INT 0x8000
#ifdef MXC_NFC_V1_1
#define NFC_4_8N_ECC (1 << 0)
#else
#define NFC_4_8N_ECC 0
#endif
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
typedef enum {false, true} bool;
struct mxc_nand_host {
struct mtd_info mtd;
struct nand_chip *nand;
struct nfc_regs __iomem *regs;
int spare_only;
int status_request;
int pagesize_2k;
int clk_act;
uint16_t col_addr;
unsigned int page_addr;
struct mtd_info mtd;
struct nand_chip *nand;
struct fsl_nfc_regs __iomem *regs;
int spare_only;
int status_request;
int pagesize_2k;
int clk_act;
uint16_t col_addr;
unsigned int page_addr;
};
static struct mxc_nand_host mxc_host;
@ -304,10 +159,10 @@ static void wait_op_done(struct mxc_nand_host *host, int max_retries,
uint32_t tmp;
while (max_retries-- > 0) {
if (readw(&host->regs->nfc_config2) & NFC_INT) {
tmp = readw(&host->regs->nfc_config2);
if (readw(&host->regs->config2) & NFC_INT) {
tmp = readw(&host->regs->config2);
tmp &= ~NFC_INT;
writew(tmp, &host->regs->nfc_config2);
writew(tmp, &host->regs->config2);
break;
}
udelay(1);
@ -326,8 +181,8 @@ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
writew(cmd, &host->regs->nfc_flash_cmd);
writew(NFC_CMD, &host->regs->nfc_config2);
writew(cmd, &host->regs->flash_cmd);
writew(NFC_CMD, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, cmd);
@ -342,8 +197,8 @@ static void send_addr(struct mxc_nand_host *host, uint16_t addr)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
writew(addr, &host->regs->nfc_flash_addr);
writew(NFC_ADDR, &host->regs->nfc_config2);
writew(addr, &host->regs->flash_addr);
writew(NFC_ADDR, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, addr);
@ -375,19 +230,19 @@ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
}
}
writew(buf_id, &host->regs->nfc_buf_addr);
writew(buf_id, &host->regs->buf_addr);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint16_t config1 = readw(&host->regs->nfc_config1);
uint16_t config1 = readw(&host->regs->config1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~(NFC_SP_EN);
writew(config1, &host->regs->nfc_config1);
writew(config1, &host->regs->config1);
}
writew(NFC_INPUT, &host->regs->nfc_config2);
writew(NFC_INPUT, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
@ -402,19 +257,19 @@ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
writew(buf_id, &host->regs->nfc_buf_addr);
writew(buf_id, &host->regs->buf_addr);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint32_t config1 = readw(&host->regs->nfc_config1);
uint32_t config1 = readw(&host->regs->config1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, &host->regs->nfc_config1);
writew(config1, &host->regs->config1);
}
writew(NFC_OUTPUT, &host->regs->nfc_config2);
writew(NFC_OUTPUT, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
@ -442,14 +297,14 @@ static void send_read_id(struct mxc_nand_host *host)
uint16_t tmp;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, &host->regs->nfc_buf_addr);
writew(0x0, &host->regs->buf_addr);
/* Read ID into main buffer */
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp &= ~NFC_SP_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
writew(NFC_ID, &host->regs->nfc_config2);
writew(NFC_ID, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
@ -469,14 +324,14 @@ static uint16_t get_dev_status(struct mxc_nand_host *host)
/* store the main area1 first word, later do recovery */
store = readl(main_buf);
/* NANDFC buffer 1 is used for device status */
writew(1, &host->regs->nfc_buf_addr);
writew(1, &host->regs->buf_addr);
/* Read status into main buffer */
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp &= ~NFC_SP_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
writew(NFC_STATUS, &host->regs->nfc_config2);
writew(NFC_STATUS, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
@ -515,13 +370,13 @@ static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t tmp = readw(&host->regs->nfc_config1);
uint16_t tmp = readw(&host->regs->config1);
if (on)
tmp |= NFC_ECC_EN;
else
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
}
static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
@ -799,7 +654,7 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
uint16_t ecc_status = readw(&host->regs->ecc_status_result);
int subpages = mtd->writesize / nand_chip->subpagesize;
int pg2blk_shift = nand_chip->phys_erase_shift -
nand_chip->page_shift;
@ -845,7 +700,7 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
uint16_t ecc_status = readw(&host->regs->ecc_status_result);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
MTDDEBUG(MTD_DEBUG_LEVEL0,
@ -1289,14 +1144,14 @@ static void mxc_setup_config1(void)
{
uint16_t tmp;
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp |= NFC_ONE_CYCLE;
tmp |= NFC_4_8N_ECC;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
if (host->pagesize_2k)
writew(64/2, &host->regs->nfc_spare_area_size);
writew(64/2, &host->regs->spare_area_size);
else
writew(16/2, &host->regs->nfc_spare_area_size);
writew(16/2, &host->regs->spare_area_size);
}
#else
#define mxc_setup_config1()
@ -1359,7 +1214,7 @@ int board_nand_init(struct nand_chip *this)
this->read_buf = mxc_nand_read_buf;
this->verify_buf = mxc_nand_verify_buf;
host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
host->regs = (struct fsl_nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
host->clk_act = 1;
#ifdef CONFIG_MXC_NAND_HWECC
@ -1383,15 +1238,15 @@ int board_nand_init(struct nand_chip *this)
host->pagesize_2k = 0;
this->ecc.size = 512;
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp |= NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
#else
this->ecc.layout = &nand_soft_eccoob;
this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
#endif
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
@ -1400,10 +1255,10 @@ int board_nand_init(struct nand_chip *this)
* preset operation
* Unlock the internal RAM Buffer
*/
writew(0x2, &host->regs->nfc_config);
writew(0x2, &host->regs->config);
/* Blocks to be unlocked */
writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
writew(0x0, &host->regs->unlockstart_blkaddr);
/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
* unlockend_blkaddr, but the magic 0x4000 does not always work
* when writing more than some 32 megabytes (on 2k page nands)
@ -1415,10 +1270,10 @@ int board_nand_init(struct nand_chip *this)
* This might be NAND chip specific and the i.MX31 datasheet is
* extremely vague about the semantics of this register.
*/
writew(0xFFFF, &host->regs->nfc_unlockend_blkaddr);
writew(0xFFFF, &host->regs->unlockend_blkaddr);
/* Unlock Block Command for given address range */
writew(0x4, &host->regs->nfc_wrprot);
writew(0x4, &host->regs->wrprot);
/* NAND bus width determines access functions used by upper layer */
if (is_16bit_nand())

@ -24,28 +24,25 @@
#define __FSL_NFC_H
/*
* TODO: Use same register defs for nand_spl mxc nand driver
* and mtd mxc nand driver.
* Register map and bit definitions for the Freescale NAND Flash Controller
* present in various i.MX devices.
*
* Register map and bit definitions for the Freescale NAND Flash
* Controller present in various i.MX devices.
* MX31 and MX27 have version 1, which has:
* 4 512-byte main buffers and
* 4 16-byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX31 and MX27 have version 1 which has
* 4 512 byte main buffers and
* 4 16 byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX25 has version 1.1 which has
* 8 512 byte main buffers and
* 8 64 byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
* MX25 and MX35 have version 1.1, which has:
* 8 512-byte main buffers and
* 8 64-byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
*/
#if defined(CONFIG_MX31) || defined(CONFIG_MX27)
#if defined(CONFIG_MX27) || defined(CONFIG_MX31)
#define MXC_NFC_V1
#elif defined(CONFIG_MX25)
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
#define MXC_NFC_V1_1
#else
#warning "MXC NFC version not defined"
@ -55,18 +52,20 @@
#define NAND_MXC_NR_BUFS 4
#define NAND_MXC_SPARE_BUF_SIZE 16
#define NAND_MXC_REG_OFFSET 0xe00
#define NAND_MXC_2K_MULTI_CYCLE 1
#define NAND_MXC_2K_MULTI_CYCLE
#define is_mxc_nfc_11() 0
#elif defined(MXC_NFC_V1_1)
#define NAND_MXC_NR_BUFS 8
#define NAND_MXC_SPARE_BUF_SIZE 64
#define NAND_MXC_REG_OFFSET 0x1e00
#define is_mxc_nfc_11() 1
#else
#error "define CONFIG_NAND_MXC_VXXX to use the mxc spl_nand driver"
#error "define CONFIG_NAND_MXC_VXXX to use the mxc nand driver"
#endif
struct fsl_nfc_regs {
u32 main_area[NAND_MXC_NR_BUFS][512/4];
u32 spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE/4];
u8 main_area[NAND_MXC_NR_BUFS][0x200];
u8 spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
/*
* reserved size is offset of nfc registers
* minus total main and spare sizes
@ -74,44 +73,44 @@ struct fsl_nfc_regs {
u8 reserved1[NAND_MXC_REG_OFFSET
- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
#if defined(MXC_NFC_V1)
u16 bufsiz;
u16 buf_size;
u16 reserved2;
u16 buffer_address;
u16 flash_add;
u16 buf_addr;
u16 flash_addr;
u16 flash_cmd;
u16 configuration;
u16 config;
u16 ecc_status_result;
u16 ecc_rslt_main_area;
u16 ecc_rslt_spare_area;
u16 nf_wr_prot;
u16 unlock_start_blk_add;
u16 unlock_end_blk_add;
u16 nand_flash_wr_pr_st;
u16 nand_flash_config1;
u16 nand_flash_config2;
u16 rsltmain_area;
u16 rsltspare_area;
u16 wrprot;
u16 unlockstart_blkaddr;
u16 unlockend_blkaddr;
u16 nf_wrprst;
u16 config1;
u16 config2;
#elif defined(MXC_NFC_V1_1)
u16 reserved2[2];
u16 buffer_address;
u16 flash_add;
u16 buf_addr;
u16 flash_addr;
u16 flash_cmd;
u16 configuration;
u16 config;
u16 ecc_status_result;
u16 ecc_status_result2;
u16 spare_area_size;
u16 nf_wr_prot;
u16 wrprot;
u16 reserved3[2];
u16 nand_flash_wr_pr_st;
u16 nand_flash_config1;
u16 nand_flash_config2;
u16 nf_wrprst;
u16 config1;
u16 config2;
u16 reserved4;
u16 unlock_start_blk_add0;
u16 unlock_end_blk_add0;
u16 unlock_start_blk_add1;
u16 unlock_end_blk_add1;
u16 unlock_start_blk_add2;
u16 unlock_end_blk_add2;
u16 unlock_start_blk_add3;
u16 unlock_end_blk_add3;
u16 unlockstart_blkaddr;
u16 unlockend_blkaddr;
u16 unlockstart_blkaddr1;
u16 unlockend_blkaddr1;
u16 unlockstart_blkaddr2;
u16 unlockend_blkaddr2;
u16 unlockstart_blkaddr3;
u16 unlockend_blkaddr3;
#endif
};

@ -36,13 +36,13 @@ static void nfc_wait_ready(void)
{
uint32_t tmp;
while (!(readw(&nfc->nand_flash_config2) & NFC_INT))
while (!(readw(&nfc->config2) & NFC_INT))
;
/* Reset interrupt flag */
tmp = readw(&nfc->nand_flash_config2);
tmp = readw(&nfc->config2);
tmp &= ~NFC_INT;
writew(tmp, &nfc->nand_flash_config2);
writew(tmp, &nfc->config2);
}
void nfc_nand_init(void)
@ -54,10 +54,10 @@ void nfc_nand_init(void)
writew(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size);
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
writew(0x2, &nfc->config);
/* hardware ECC checking and correct */
config1 = readw(&nfc->nand_flash_config1) | NFC_ECC_EN | 0x800;
config1 = readw(&nfc->config1) | NFC_ECC_EN | 0x800;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
@ -66,20 +66,20 @@ void nfc_nand_init(void)
config1 &= ~NFC_4_8N_ECC;
else
config1 |= NFC_4_8N_ECC;
writew(config1, &nfc->nand_flash_config1);
writew(config1, &nfc->config1);
#elif defined(MXC_NFC_V1)
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
writew(0x2, &nfc->config);
/* hardware ECC checking and correct */
writew(NFC_ECC_EN, &nfc->nand_flash_config1);
writew(NFC_ECC_EN, &nfc->config1);
#endif
}
static void nfc_nand_command(unsigned short command)
{
writew(command, &nfc->flash_cmd);
writew(NFC_CMD, &nfc->nand_flash_config2);
writew(NFC_CMD, &nfc->config2);
nfc_wait_ready();
}
@ -87,14 +87,14 @@ static void nfc_nand_page_address(unsigned int page_address)
{
unsigned int page_count;
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
writew(0x00, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
nfc_wait_ready();
/* code only for large page flash */
if (CONFIG_SYS_NAND_PAGE_SIZE > 512) {
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
writew(0x00, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
nfc_wait_ready();
}
@ -103,30 +103,30 @@ static void nfc_nand_page_address(unsigned int page_address)
if (page_address <= page_count) {
page_count--; /* transform 0x01000000 to 0x00ffffff */
do {
writew(page_address & 0xff, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
writew(page_address & 0xff, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
nfc_wait_ready();
page_address = page_address >> 8;
page_count = page_count >> 8;
} while (page_count);
}
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
writew(0x00, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
nfc_wait_ready();
}
static void nfc_nand_data_output(void)
{
int config1 = readw(&nfc->nand_flash_config1);
int config1 = readw(&nfc->config1);
#ifdef NAND_MXC_2K_MULTI_CYCLE
int i;
#endif
config1 |= NFC_ECC_EN | NFC_INT_MSK;
writew(config1, &nfc->nand_flash_config1);
writew(0, &nfc->buffer_address);
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
writew(config1, &nfc->config1);
writew(0, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
/*
@ -134,11 +134,11 @@ static void nfc_nand_data_output(void)
* for pages larger than 512 bytes.
*/
for (i = 1; i < (CONFIG_SYS_NAND_PAGE_SIZE / 512); i++) {
config1 = readw(&nfc->nand_flash_config1);
config1 = readw(&nfc->config1);
config1 |= NFC_ECC_EN | NFC_INT_MSK;
writew(config1, &nfc->nand_flash_config1);
writew(i, &nfc->buffer_address);
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
writew(config1, &nfc->config1);
writew(i, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
nfc_wait_ready();
}
#endif
@ -155,7 +155,7 @@ static int nfc_read_page(unsigned int page_address, unsigned char *buf)
u32 *src;
u32 *dst;
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
writew(0, &nfc->buf_addr); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
@ -167,7 +167,7 @@ static int nfc_read_page(unsigned int page_address, unsigned char *buf)
if (nfc_nand_check_ecc())
return -1;
src = &nfc->main_area[0][0];
src = (u32 *)&nfc->main_area[0][0];
dst = (u32 *)buf;
/* main copy loop from NAND-buffer to SDRAM memory */
@ -188,7 +188,7 @@ static int is_badblock(int pagenumber)
/* Check the first two pages for bad block markers */
for (page = pagenumber; page < pagenumber + 2; page++) {
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
writew(0, &nfc->buf_addr); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page);
@ -197,7 +197,7 @@ static int is_badblock(int pagenumber)
nfc_nand_data_output(); /* fill the main buffer 0 */
src = &nfc->spare_area[0][0];
src = (u32 *)&nfc->spare_area[0][0];
/*
* IMPORTANT NOTE: The nand flash controller uses a non-

Loading…
Cancel
Save