x86: Add quick TSC calibration via PIT

Use the same way that Linux does for quick TSC calibration via PIT
when calibration via MSR fails.

Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
master
Bin Meng 10 years ago committed by Simon Glass
parent 076bb44b0e
commit 80de049561
  1. 3
      arch/x86/include/asm/i8254.h
  2. 156
      arch/x86/lib/tsc_timer.c

@ -36,4 +36,7 @@
#define PIT_CMD_MODE4 0x08 /* Select mode 4 */
#define PIT_CMD_MODE5 0x0A /* Select mode 5 */
/* The clock frequency of the i8253/i8254 PIT */
#define PIT_TICK_RATE 1193182ul
#endif

@ -116,6 +116,158 @@ fail:
return 0;
}
/*
* This reads the current MSB of the PIT counter, and
* checks if we are running on sufficiently fast and
* non-virtualized hardware.
*
* Our expectations are:
*
* - the PIT is running at roughly 1.19MHz
*
* - each IO is going to take about 1us on real hardware,
* but we allow it to be much faster (by a factor of 10) or
* _slightly_ slower (ie we allow up to a 2us read+counter
* update - anything else implies a unacceptably slow CPU
* or PIT for the fast calibration to work.
*
* - with 256 PIT ticks to read the value, we have 214us to
* see the same MSB (and overhead like doing a single TSC
* read per MSB value etc).
*
* - We're doing 2 reads per loop (LSB, MSB), and we expect
* them each to take about a microsecond on real hardware.
* So we expect a count value of around 100. But we'll be
* generous, and accept anything over 50.
*
* - if the PIT is stuck, and we see *many* more reads, we
* return early (and the next caller of pit_expect_msb()
* then consider it a failure when they don't see the
* next expected value).
*
* These expectations mean that we know that we have seen the
* transition from one expected value to another with a fairly
* high accuracy, and we didn't miss any events. We can thus
* use the TSC value at the transitions to calculate a pretty
* good value for the TSC frequencty.
*/
static inline int pit_verify_msb(unsigned char val)
{
/* Ignore LSB */
inb(0x42);
return inb(0x42) == val;
}
static inline int pit_expect_msb(unsigned char val, u64 *tscp,
unsigned long *deltap)
{
int count;
u64 tsc = 0, prev_tsc = 0;
for (count = 0; count < 50000; count++) {
if (!pit_verify_msb(val))
break;
prev_tsc = tsc;
tsc = rdtsc();
}
*deltap = rdtsc() - prev_tsc;
*tscp = tsc;
/*
* We require _some_ success, but the quality control
* will be based on the error terms on the TSC values.
*/
return count > 5;
}
/*
* How many MSB values do we want to see? We aim for
* a maximum error rate of 500ppm (in practice the
* real error is much smaller), but refuse to spend
* more than 50ms on it.
*/
#define MAX_QUICK_PIT_MS 50
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
static unsigned long quick_pit_calibrate(void)
{
int i;
u64 tsc, delta;
unsigned long d1, d2;
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Counter 2, mode 0 (one-shot), binary count
*
* NOTE! Mode 2 decrements by two (and then the
* output is flipped each time, giving the same
* final output frequency as a decrement-by-one),
* so mode 0 is much better when looking at the
* individual counts.
*/
outb(0xb0, 0x43);
/* Start at 0xffff */
outb(0xff, 0x42);
outb(0xff, 0x42);
/*
* The PIT starts counting at the next edge, so we
* need to delay for a microsecond. The easiest way
* to do that is to just read back the 16-bit counter
* once from the PIT.
*/
pit_verify_msb(0);
if (pit_expect_msb(0xff, &tsc, &d1)) {
for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
if (!pit_expect_msb(0xff-i, &delta, &d2))
break;
/*
* Iterate until the error is less than 500 ppm
*/
delta -= tsc;
if (d1+d2 >= delta >> 11)
continue;
/*
* Check the PIT one more time to verify that
* all TSC reads were stable wrt the PIT.
*
* This also guarantees serialization of the
* last cycle read ('d2') in pit_expect_msb.
*/
if (!pit_verify_msb(0xfe - i))
break;
goto success;
}
}
debug("Fast TSC calibration failed\n");
return 0;
success:
/*
* Ok, if we get here, then we've seen the
* MSB of the PIT decrement 'i' times, and the
* error has shrunk to less than 500 ppm.
*
* As a result, we can depend on there not being
* any odd delays anywhere, and the TSC reads are
* reliable (within the error).
*
* kHz = ticks / time-in-seconds / 1000;
* kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
* kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
*/
delta *= PIT_TICK_RATE;
delta /= (i*256*1000);
debug("Fast TSC calibration using PIT\n");
return delta / 1000;
}
void timer_set_base(u64 base)
{
gd->arch.tsc_base = base;
@ -142,6 +294,10 @@ unsigned __attribute__((no_instrument_function)) long get_tbclk_mhz(void)
unsigned long fast_calibrate;
fast_calibrate = try_msr_calibrate_tsc();
if (fast_calibrate)
return fast_calibrate;
fast_calibrate = quick_pit_calibrate();
if (!fast_calibrate)
panic("TSC frequency is ZERO");

Loading…
Cancel
Save