Patch queue for efi - 2018-01-23

This time around we have a lot of EFI patches from Heinrich.
 Highlights are:
 
   - Allow EFI applications to register as drivers
   - Allow exposure of U-Boot block devices from an EFI payload
   - Compatibility improvements
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABAgAGBQJaZwoHAAoJECszeR4D/txgKU0QAMRg5zm95ClGRBjxVbAW7M73
 T7pHQBbsoaddfK0zOAltLo5wOLhLNJPb93L0gxjChx6o5PDV6iFISAYRnJiQsVyj
 XI5Ve2XV8DRBMdaKVxeq1Z7syjYllhdkzBeQbitw6TfIDy+qeA/x/Z1Jz6gYnTDh
 ZmbP0HrTk59Vg80ZLa4XcBumqesfBnUAEDFx9sYX9T8/7bx3QWQfwAJ3XHYKkDmM
 aaXFq/02/z0ZgDPinkG00AIkKme+QRAFCd+leACkDGPR9pAC4mf6df/006a0Sl/s
 qw5j5J06yOZ0ykTxwmREsGg62IqCTPA51mSiBvWS37vZeUUO0WhyysuUvQ5YVv+U
 UII5YN/0PGVGVZ4hM1s3yEijEf48n1YncASRyYVfCtJjC/WJ2IUlthH85MEBrrn4
 IqVHeoLJg5/a3T2Tdo83q/AD9saFshaVsT42C04JB07/29SKjNjZ9sUMMBatOlAP
 HleCy3jgodwB4kF1Tld6oeakvuc0xOhCOckD3rWUhsi9eN9liZiv7AlXFiXxPUgz
 tWcJtluaZ/vhXXJWdCqwf2KIq0fmawgBUsSwLByPrZKTp9OojGsA52Ro6jAuu2Mq
 vKqZhRpSF7DtAhALcex5V2uwCc5npehTTXIHYG/bmzBQWrEWfBlYA7dSjMiuQbuD
 0+1EicqsGp8Chr1H37bC
 =XZ4q
 -----END PGP SIGNATURE-----

Merge tag 'signed-efi-next' of git://github.com/agraf/u-boot

Patch queue for efi - 2018-01-23

This time around we have a lot of EFI patches from Heinrich.
Highlights are:

  - Allow EFI applications to register as drivers
  - Allow exposure of U-Boot block devices from an EFI payload
  - Compatibility improvements
master
Tom Rini 7 years ago
commit a516416d75
  1. 3
      MAINTAINERS
  2. 1
      arch/arm/lib/Makefile
  3. 17
      cmd/bootefi.c
  4. 4
      drivers/block/blk-uclass.c
  5. 3
      examples/api/Makefile
  6. 1
      include/blk.h
  7. 1
      include/config_fallbacks.h
  8. 1
      include/dm/uclass-id.h
  9. 81
      include/efi_api.h
  10. 30
      include/efi_driver.h
  11. 59
      include/efi_loader.h
  12. 27
      include/efi_selftest.h
  13. 1
      lib/Makefile
  14. 13
      lib/efi_driver/Makefile
  15. 210
      lib/efi_driver/efi_block_device.c
  16. 330
      lib/efi_driver/efi_uclass.c
  17. 854
      lib/efi_loader/efi_boottime.c
  18. 20
      lib/efi_loader/efi_console.c
  19. 284
      lib/efi_loader/efi_device_path.c
  20. 16
      lib/efi_loader/efi_device_path_to_text.c
  21. 137
      lib/efi_loader/efi_disk.c
  22. 72
      lib/efi_loader/efi_image_loader.c
  23. 44
      lib/efi_loader/efi_memory.c
  24. 26
      lib/efi_loader/helloworld.c
  25. 2
      lib/efi_selftest/.gitignore
  26. 40
      lib/efi_selftest/Makefile
  27. 25
      lib/efi_selftest/efi_selftest.c
  28. 395
      lib/efi_selftest/efi_selftest_block_device.c
  29. 25
      lib/efi_selftest/efi_selftest_console.c
  30. 385
      lib/efi_selftest/efi_selftest_controllers.c
  31. 71
      lib/efi_selftest/efi_selftest_devicepath.c
  32. 69
      lib/efi_selftest/efi_selftest_disk_image.h
  33. 8
      lib/efi_selftest/efi_selftest_events.c
  34. 22
      lib/efi_selftest/efi_selftest_manageprotocols.c
  35. 37
      lib/efi_selftest/efi_selftest_miniapp_exit.c
  36. 32
      lib/efi_selftest/efi_selftest_miniapp_return.c
  37. 149
      lib/efi_selftest/efi_selftest_startimage_exit.c
  38. 149
      lib/efi_selftest/efi_selftest_startimage_return.c
  39. 15
      lib/efi_selftest/efi_selftest_tpl.c
  40. 47
      lib/vsprintf.c
  41. 37
      test/print_ut.c
  42. 1
      tools/.gitignore
  43. 3
      tools/Makefile
  44. 106
      tools/file2include.c

@ -287,9 +287,10 @@ M: Alexander Graf <agraf@suse.de>
S: Maintained
T: git git://github.com/agraf/u-boot.git
F: include/efi*
F: lib/efi*
F: lib/efi*/
F: test/py/tests/test_efi*
F: cmd/bootefi.c
F: tools/file2include.c
FLATTENED DEVICE TREE
M: Simon Glass <sjg@chromium.org>

@ -112,4 +112,5 @@ CFLAGS_$(EFI_RELOC) := $(CFLAGS_EFI)
CFLAGS_REMOVE_$(EFI_RELOC) := $(CFLAGS_NON_EFI)
extra-$(CONFIG_CMD_BOOTEFI_HELLO_COMPILE) += $(EFI_CRT0) $(EFI_RELOC)
extra-$(CONFIG_CMD_BOOTEFI_SELFTEST) += $(EFI_CRT0) $(EFI_RELOC)
extra-$(CONFIG_EFI) += $(EFI_CRT0) $(EFI_RELOC)

@ -32,6 +32,9 @@ static void efi_init_obj_list(void)
{
efi_obj_list_initalized = 1;
/* Initialize EFI driver uclass */
efi_driver_init();
efi_console_register();
#ifdef CONFIG_PARTITIONS
efi_disk_register();
@ -103,11 +106,11 @@ static void *copy_fdt(void *fdt)
/* Safe fdt location is at 128MB */
new_fdt_addr = fdt_ram_start + (128 * 1024 * 1024) + fdt_size;
if (efi_allocate_pages(1, EFI_BOOT_SERVICES_DATA, fdt_pages,
if (efi_allocate_pages(1, EFI_RUNTIME_SERVICES_DATA, fdt_pages,
&new_fdt_addr) != EFI_SUCCESS) {
/* If we can't put it there, put it somewhere */
new_fdt_addr = (ulong)memalign(EFI_PAGE_SIZE, fdt_size);
if (efi_allocate_pages(1, EFI_BOOT_SERVICES_DATA, fdt_pages,
if (efi_allocate_pages(1, EFI_RUNTIME_SERVICES_DATA, fdt_pages,
&new_fdt_addr) != EFI_SUCCESS) {
printf("ERROR: Failed to reserve space for FDT\n");
return NULL;
@ -122,8 +125,8 @@ static void *copy_fdt(void *fdt)
}
static efi_status_t efi_do_enter(
void *image_handle, struct efi_system_table *st,
asmlinkage ulong (*entry)(void *image_handle,
efi_handle_t image_handle, struct efi_system_table *st,
asmlinkage ulong (*entry)(efi_handle_t image_handle,
struct efi_system_table *st))
{
efi_status_t ret = EFI_LOAD_ERROR;
@ -136,8 +139,8 @@ static efi_status_t efi_do_enter(
#ifdef CONFIG_ARM64
static efi_status_t efi_run_in_el2(asmlinkage ulong (*entry)(
void *image_handle, struct efi_system_table *st),
void *image_handle, struct efi_system_table *st)
efi_handle_t image_handle, struct efi_system_table *st),
efi_handle_t image_handle, struct efi_system_table *st)
{
/* Enable caches again */
dcache_enable();
@ -159,7 +162,7 @@ static efi_status_t do_bootefi_exec(void *efi, void *fdt,
struct efi_device_path *memdp = NULL;
ulong ret;
ulong (*entry)(void *image_handle, struct efi_system_table *st)
ulong (*entry)(efi_handle_t image_handle, struct efi_system_table *st)
asmlinkage;
ulong fdt_pages, fdt_size, fdt_start, fdt_end;
const efi_guid_t fdt_guid = EFI_FDT_GUID;

@ -24,6 +24,7 @@ static const char *if_typename_str[IF_TYPE_COUNT] = {
[IF_TYPE_HOST] = "host",
[IF_TYPE_SYSTEMACE] = "ace",
[IF_TYPE_NVME] = "nvme",
[IF_TYPE_EFI] = "efi",
};
static enum uclass_id if_type_uclass_id[IF_TYPE_COUNT] = {
@ -36,8 +37,9 @@ static enum uclass_id if_type_uclass_id[IF_TYPE_COUNT] = {
[IF_TYPE_SD] = UCLASS_INVALID,
[IF_TYPE_SATA] = UCLASS_AHCI,
[IF_TYPE_HOST] = UCLASS_ROOT,
[IF_TYPE_NVME] = UCLASS_NVME,
[IF_TYPE_SYSTEMACE] = UCLASS_INVALID,
[IF_TYPE_NVME] = UCLASS_NVME,
[IF_TYPE_EFI] = UCLASS_EFI,
};
static enum if_type if_typename_to_iftype(const char *if_typename)

@ -4,6 +4,9 @@
# SPDX-License-Identifier: GPL-2.0+
#
# Provide symbol API_BUILD to signal that the API example is being built.
KBUILD_CPPFLAGS += -DAPI_BUILD
ifeq ($(ARCH),powerpc)
LOAD_ADDR = 0x40000
endif

@ -34,6 +34,7 @@ enum if_type {
IF_TYPE_HOST,
IF_TYPE_SYSTEMACE,
IF_TYPE_NVME,
IF_TYPE_EFI,
IF_TYPE_COUNT, /* Number of interface types */
};

@ -39,6 +39,7 @@
defined(CONFIG_MMC) || \
defined(CONFIG_NVME) || \
defined(CONFIG_SYSTEMACE) || \
(defined(CONFIG_EFI_LOADER) && !defined(CONFIG_SPL_BUILD)) || \
defined(CONFIG_SANDBOX)
#define HAVE_BLOCK_DEVICE
#endif

@ -34,6 +34,7 @@ enum uclass_id {
UCLASS_CROS_EC, /* Chrome OS EC */
UCLASS_DISPLAY, /* Display (e.g. DisplayPort, HDMI) */
UCLASS_DMA, /* Direct Memory Access */
UCLASS_EFI, /* EFI managed devices */
UCLASS_ETH, /* Ethernet device */
UCLASS_GPIO, /* Bank of general-purpose I/O pins */
UCLASS_FIRMWARE, /* Firmware */

@ -84,11 +84,12 @@ struct efi_boot_services {
efi_status_t (EFIAPI *reinstall_protocol_interface)(
void *handle, const efi_guid_t *protocol,
void *old_interface, void *new_interface);
efi_status_t (EFIAPI *uninstall_protocol_interface)(void *handle,
const efi_guid_t *protocol, void *protocol_interface);
efi_status_t (EFIAPI *handle_protocol)(efi_handle_t,
const efi_guid_t *protocol,
void **protocol_interface);
efi_status_t (EFIAPI *uninstall_protocol_interface)(
efi_handle_t handle, const efi_guid_t *protocol,
void *protocol_interface);
efi_status_t (EFIAPI *handle_protocol)(
efi_handle_t handle, const efi_guid_t *protocol,
void **protocol_interface);
void *reserved;
efi_status_t (EFIAPI *register_protocol_notify)(
const efi_guid_t *protocol, struct efi_event *event,
@ -113,7 +114,7 @@ struct efi_boot_services {
efi_status_t (EFIAPI *exit)(efi_handle_t handle,
efi_status_t exit_status,
unsigned long exitdata_size, s16 *exitdata);
efi_status_t (EFIAPI *unload_image)(void *image_handle);
efi_status_t (EFIAPI *unload_image)(efi_handle_t image_handle);
efi_status_t (EFIAPI *exit_boot_services)(efi_handle_t, unsigned long);
efi_status_t (EFIAPI *get_next_monotonic_count)(u64 *count);
@ -125,8 +126,10 @@ struct efi_boot_services {
efi_handle_t *driver_image_handle,
struct efi_device_path *remaining_device_path,
bool recursive);
efi_status_t (EFIAPI *disconnect_controller)(void *controller_handle,
void *driver_image_handle, void *child_handle);
efi_status_t (EFIAPI *disconnect_controller)(
efi_handle_t controller_handle,
efi_handle_t driver_image_handle,
efi_handle_t child_handle);
#define EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001
#define EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002
#define EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004
@ -137,9 +140,10 @@ struct efi_boot_services {
const efi_guid_t *protocol, void **interface,
efi_handle_t agent_handle,
efi_handle_t controller_handle, u32 attributes);
efi_status_t (EFIAPI *close_protocol)(void *handle,
const efi_guid_t *protocol, void *agent_handle,
void *controller_handle);
efi_status_t (EFIAPI *close_protocol)(
efi_handle_t handle, const efi_guid_t *protocol,
efi_handle_t agent_handle,
efi_handle_t controller_handle);
efi_status_t(EFIAPI *open_protocol_information)(efi_handle_t handle,
const efi_guid_t *protocol,
struct efi_open_protocol_info_entry **entry_buffer,
@ -243,11 +247,11 @@ struct efi_system_table {
struct efi_table_hdr hdr;
unsigned long fw_vendor; /* physical addr of wchar_t vendor string */
u32 fw_revision;
unsigned long con_in_handle;
efi_handle_t con_in_handle;
struct efi_simple_input_interface *con_in;
unsigned long con_out_handle;
efi_handle_t con_out_handle;
struct efi_simple_text_output_protocol *con_out;
unsigned long stderr_handle;
efi_handle_t stderr_handle;
struct efi_simple_text_output_protocol *std_err;
struct efi_runtime_services *runtime;
struct efi_boot_services *boottime;
@ -329,12 +333,27 @@ struct efi_device_path_acpi_path {
} __packed;
#define DEVICE_PATH_TYPE_MESSAGING_DEVICE 0x03
# define DEVICE_PATH_SUB_TYPE_MSG_ATAPI 0x01
# define DEVICE_PATH_SUB_TYPE_MSG_SCSI 0x02
# define DEVICE_PATH_SUB_TYPE_MSG_USB 0x05
# define DEVICE_PATH_SUB_TYPE_MSG_MAC_ADDR 0x0b
# define DEVICE_PATH_SUB_TYPE_MSG_USB_CLASS 0x0f
# define DEVICE_PATH_SUB_TYPE_MSG_SD 0x1a
# define DEVICE_PATH_SUB_TYPE_MSG_MMC 0x1d
struct efi_device_path_atapi {
struct efi_device_path dp;
u8 primary_secondary;
u8 slave_master;
u16 logical_unit_number;
} __packed;
struct efi_device_path_scsi {
struct efi_device_path dp;
u16 target_id;
u16 logical_unit_number;
} __packed;
struct efi_device_path_usb {
struct efi_device_path dp;
u8 parent_port_number;
@ -405,18 +424,26 @@ struct efi_block_io_media
u32 io_align;
u8 pad2[4];
u64 last_block;
/* Added in revision 2 of the protocol */
u64 lowest_aligned_lba;
u32 logical_blocks_per_physical_block;
/* Added in revision 3 of the protocol */
u32 optimal_transfer_length_granualarity;
};
#define EFI_BLOCK_IO_PROTOCOL_REVISION2 0x00020001
#define EFI_BLOCK_IO_PROTOCOL_REVISION3 0x0002001f
struct efi_block_io {
u64 revision;
struct efi_block_io_media *media;
efi_status_t (EFIAPI *reset)(struct efi_block_io *this,
char extended_verification);
efi_status_t (EFIAPI *read_blocks)(struct efi_block_io *this,
u32 media_id, u64 lba, unsigned long buffer_size,
u32 media_id, u64 lba, efi_uintn_t buffer_size,
void *buffer);
efi_status_t (EFIAPI *write_blocks)(struct efi_block_io *this,
u32 media_id, u64 lba, unsigned long buffer_size,
u32 media_id, u64 lba, efi_uintn_t buffer_size,
void *buffer);
efi_status_t (EFIAPI *flush_blocks)(struct efi_block_io *this);
};
@ -790,4 +817,26 @@ struct efi_file_info {
s16 file_name[0];
};
#define EFI_DRIVER_BINDING_PROTOCOL_GUID \
EFI_GUID(0x18a031ab, 0xb443, 0x4d1a,\
0xa5, 0xc0, 0x0c, 0x09, 0x26, 0x1e, 0x9f, 0x71)
struct efi_driver_binding_protocol {
efi_status_t (EFIAPI * supported)(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
struct efi_device_path *remaining_device_path);
efi_status_t (EFIAPI * start)(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
struct efi_device_path *remaining_device_path);
efi_status_t (EFIAPI * stop)(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
efi_uintn_t number_of_children,
efi_handle_t *child_handle_buffer);
u32 version;
efi_handle_t image_handle;
efi_handle_t driver_binding_handle;
};
#endif

@ -0,0 +1,30 @@
/*
* EFI application loader
*
* Copyright (c) 2017 Heinrich Schuchardt
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _EFI_DRIVER_H
#define _EFI_DRIVER_H 1
#include <common.h>
#include <dm.h>
#include <efi_loader.h>
struct efi_driver_ops {
const efi_guid_t *protocol;
const efi_guid_t *child_protocol;
int (*bind)(efi_handle_t handle, void *interface);
};
/*
* This structure adds internal fields to the driver binding protocol.
*/
struct efi_driver_binding_extended_protocol {
struct efi_driver_binding_protocol bp;
const struct efi_driver_ops *ops;
};
#endif /* _EFI_DRIVER_H */

@ -69,10 +69,11 @@ const char *__efi_nesting_dec(void);
} while(0)
/*
* Write GUID
* Write an indented message with EFI prefix
*/
#define EFI_PRINT_GUID(txt, guid) ({ \
debug("%sEFI: %s %pUl\n", __efi_nesting(), txt, guid); \
#define EFI_PRINT(format, ...) ({ \
debug("%sEFI: " format, __efi_nesting(), \
##__VA_ARGS__); \
})
extern struct efi_runtime_services efi_runtime_services;
@ -85,9 +86,13 @@ extern const struct efi_device_path_to_text_protocol efi_device_path_to_text;
uint16_t *efi_dp_str(struct efi_device_path *dp);
/* GUID of the EFI_BLOCK_IO_PROTOCOL */
extern const efi_guid_t efi_block_io_guid;
extern const efi_guid_t efi_global_variable_guid;
extern const efi_guid_t efi_guid_console_control;
extern const efi_guid_t efi_guid_device_path;
/* GUID of the EFI_DRIVER_BINDING_PROTOCOL */
extern const efi_guid_t efi_guid_driver_binding_protocol;
extern const efi_guid_t efi_guid_loaded_image;
extern const efi_guid_t efi_guid_device_path_to_text_protocol;
extern const efi_guid_t efi_simple_file_system_protocol_guid;
@ -97,14 +102,27 @@ extern unsigned int __efi_runtime_start, __efi_runtime_stop;
extern unsigned int __efi_runtime_rel_start, __efi_runtime_rel_stop;
/*
* When a protocol is opened a open protocol info entry is created.
* These are maintained in a list.
*/
struct efi_open_protocol_info_item {
/* Link to the list of open protocol info entries of a protocol */
struct list_head link;
struct efi_open_protocol_info_entry info;
};
/*
* When the UEFI payload wants to open a protocol on an object to get its
* interface (usually a struct with callback functions), this struct maps the
* protocol GUID to the respective protocol interface */
* protocol GUID to the respective protocol interface
*/
struct efi_handler {
/* Link to the list of protocols of a handle */
struct list_head link;
const efi_guid_t *guid;
void *protocol_interface;
/* Link to the list of open protocol info items */
struct list_head open_infos;
};
/*
@ -156,6 +174,10 @@ extern struct list_head efi_obj_list;
int efi_console_register(void);
/* Called by bootefi to make all disk storage accessible as EFI objects */
int efi_disk_register(void);
/* Create handles and protocols for the partitions of a block device */
int efi_disk_create_partitions(efi_handle_t parent, struct blk_desc *desc,
const char *if_typename, int diskid,
const char *pdevname);
/* Called by bootefi to make GOP (graphical) interface available */
int efi_gop_register(void);
/* Called by bootefi to make the network interface available */
@ -189,23 +211,25 @@ void efi_set_bootdev(const char *dev, const char *devnr, const char *path);
/* Add a new object to the object list. */
void efi_add_handle(struct efi_object *obj);
/* Create handle */
efi_status_t efi_create_handle(void **handle);
efi_status_t efi_create_handle(efi_handle_t *handle);
/* Delete handle */
void efi_delete_handle(struct efi_object *obj);
/* Call this to validate a handle and find the EFI object for it */
struct efi_object *efi_search_obj(const void *handle);
struct efi_object *efi_search_obj(const efi_handle_t handle);
/* Find a protocol on a handle */
efi_status_t efi_search_protocol(const void *handle,
efi_status_t efi_search_protocol(const efi_handle_t handle,
const efi_guid_t *protocol_guid,
struct efi_handler **handler);
/* Install new protocol on a handle */
efi_status_t efi_add_protocol(const void *handle, const efi_guid_t *protocol,
efi_status_t efi_add_protocol(const efi_handle_t handle,
const efi_guid_t *protocol,
void *protocol_interface);
/* Delete protocol from a handle */
efi_status_t efi_remove_protocol(const void *handle, const efi_guid_t *protocol,
efi_status_t efi_remove_protocol(const efi_handle_t handle,
const efi_guid_t *protocol,
void *protocol_interface);
/* Delete all protocols from a handle */
efi_status_t efi_remove_all_protocols(const void *handle);
efi_status_t efi_remove_all_protocols(const efi_handle_t handle);
/* Call this to create an event */
efi_status_t efi_create_event(uint32_t type, efi_uintn_t notify_tpl,
void (EFIAPI *notify_function) (
@ -216,7 +240,7 @@ efi_status_t efi_create_event(uint32_t type, efi_uintn_t notify_tpl,
efi_status_t efi_set_timer(struct efi_event *event, enum efi_timer_delay type,
uint64_t trigger_time);
/* Call this to signal an event */
void efi_signal_event(struct efi_event *event);
void efi_signal_event(struct efi_event *event, bool check_tpl);
/* open file system: */
struct efi_simple_file_system_protocol *efi_simple_file_system(
@ -247,6 +271,8 @@ efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
/* Adds a range into the EFI memory map */
uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
bool overlap_only_ram);
/* Called by board init to initialize the EFI drivers */
int efi_driver_init(void);
/* Called by board init to initialize the EFI memory map */
int efi_memory_init(void);
/* Adds new or overrides configuration table entry to the system table */
@ -280,15 +306,20 @@ struct efi_device_path *efi_dp_append_node(const struct efi_device_path *dp,
struct efi_device_path *efi_dp_from_dev(struct udevice *dev);
struct efi_device_path *efi_dp_from_part(struct blk_desc *desc, int part);
/* Create a device node for a block device partition. */
struct efi_device_path *efi_dp_part_node(struct blk_desc *desc, int part);
struct efi_device_path *efi_dp_from_file(struct blk_desc *desc, int part,
const char *path);
struct efi_device_path *efi_dp_from_eth(void);
struct efi_device_path *efi_dp_from_mem(uint32_t mem_type,
uint64_t start_address,
uint64_t end_address);
void efi_dp_split_file_path(struct efi_device_path *full_path,
struct efi_device_path **device_path,
struct efi_device_path **file_path);
/* Determine the last device path node that is not the end node. */
const struct efi_device_path *efi_dp_last_node(
const struct efi_device_path *dp);
efi_status_t efi_dp_split_file_path(struct efi_device_path *full_path,
struct efi_device_path **device_path,
struct efi_device_path **file_path);
#define EFI_DP_TYPE(_dp, _type, _subtype) \
(((_dp)->type == DEVICE_PATH_TYPE_##_type) && \

@ -19,13 +19,19 @@
#define EFI_ST_FAILURE 1
/*
* Prints a message.
*/
#define efi_st_printf(...) \
(efi_st_printc(-1, __VA_ARGS__))
/*
* Prints an error message.
*
* @... format string followed by fields to print
*/
#define efi_st_error(...) \
(efi_st_printf("%s(%u):\nERROR: ", __FILE__, __LINE__), \
efi_st_printf(__VA_ARGS__)) \
(efi_st_printc(EFI_LIGHTRED, "%s(%u):\nERROR: ", __FILE__, __LINE__), \
efi_st_printc(EFI_LIGHTRED, __VA_ARGS__))
/*
* Prints a TODO message.
@ -33,8 +39,8 @@
* @... format string followed by fields to print
*/
#define efi_st_todo(...) \
(efi_st_printf("%s(%u):\nTODO: ", __FILE__, __LINE__), \
efi_st_printf(__VA_ARGS__)) \
(efi_st_printc(EFI_YELLOW, "%s(%u):\nTODO: ", __FILE__, __LINE__), \
efi_st_printc(EFI_YELLOW, __VA_ARGS__)) \
/*
* A test may be setup and executed at boottime,
@ -61,14 +67,15 @@ extern struct efi_simple_input_interface *con_in;
void efi_st_exit_boot_services(void);
/*
* Print a pointer to an u16 string
* Print a colored message
*
* @pointer: pointer
* @buf: pointer to buffer address
* on return position of terminating zero word
* @color color, see constants in efi_api.h, use -1 for no color
* @fmt printf format
* @... arguments to be printed
* on return position of terminating zero word
*/
void efi_st_printf(const char *fmt, ...)
__attribute__ ((format (__printf__, 1, 2)));
void efi_st_printc(int color, const char *fmt, ...)
__attribute__ ((format (__printf__, 2, 3)));
/*
* Compare memory.

@ -8,6 +8,7 @@
ifndef CONFIG_SPL_BUILD
obj-$(CONFIG_EFI) += efi/
obj-$(CONFIG_EFI_LOADER) += efi_driver/
obj-$(CONFIG_EFI_LOADER) += efi_loader/
obj-$(CONFIG_EFI_LOADER) += efi_selftest/
obj-$(CONFIG_LZMA) += lzma/

@ -0,0 +1,13 @@
#
# (C) Copyright 2017 Heinrich Schuchardt
#
# SPDX-License-Identifier: GPL-2.0+
#
# This file only gets included with CONFIG_EFI_LOADER set, so all
# object inclusion implicitly depends on it
obj-y += efi_uclass.o
ifeq ($(CONFIG_BLK)$(CONFIG_PARTITIONS),yy)
obj-y += efi_block_device.o
endif

@ -0,0 +1,210 @@
/*
* EFI block driver
*
* Copyright (c) 2017 Heinrich Schuchardt
*
* SPDX-License-Identifier: GPL-2.0+
*
* The EFI uclass creates a handle for this driver and installs the
* driver binding protocol on it.
*
* The EFI block driver binds to controllers implementing the block io
* protocol.
*
* When the bind function of the EFI block driver is called it creates a
* new U-Boot block device. It installs child handles for all partitions and
* installs the simple file protocol on these.
*
* The read and write functions of the EFI block driver delegate calls to the
* controller that it is bound to.
*
* A usage example is as following:
*
* U-Boot loads the iPXE snp.efi executable. iPXE connects an iSCSI drive and
* exposes a handle with the block IO protocol. It calls ConnectController.
*
* Now the EFI block driver installs the partitions with the simple file
* protocol.
*
* iPXE uses the simple file protocol to load Grub or the Linux Kernel.
*/
#include <efi_driver.h>
#include <dm/device-internal.h>
#include <dm/root.h>
/*
* EFI attributes of the udevice handled by this driver.
*
* handle handle of the controller on which this driver is installed
* io block io protocol proxied by this driver
*/
struct efi_blk_priv {
efi_handle_t handle;
struct efi_block_io *io;
};
/*
* Read from block device
*
* @dev device
* @blknr first block to be read
* @blkcnt number of blocks to read
* @buffer output buffer
* @return number of blocks transferred
*/
static ulong efi_bl_read(struct udevice *dev, lbaint_t blknr, lbaint_t blkcnt,
void *buffer)
{
struct efi_blk_priv *priv = dev->priv;
struct efi_block_io *io = priv->io;
efi_status_t ret;
EFI_PRINT("%s: read '%s', from block " LBAFU ", " LBAFU " blocks\n",
__func__, dev->name, blknr, blkcnt);
ret = EFI_CALL(io->read_blocks(
io, io->media->media_id, (u64)blknr,
(efi_uintn_t)blkcnt *
(efi_uintn_t)io->media->block_size, buffer));
EFI_PRINT("%s: r = %u\n", __func__,
(unsigned int)(ret & ~EFI_ERROR_MASK));
if (ret != EFI_SUCCESS)
return 0;
return blkcnt;
}
/*
* Write to block device
*
* @dev device
* @blknr first block to be write
* @blkcnt number of blocks to write
* @buffer input buffer
* @return number of blocks transferred
*/
static ulong efi_bl_write(struct udevice *dev, lbaint_t blknr, lbaint_t blkcnt,
const void *buffer)
{
struct efi_blk_priv *priv = dev->priv;
struct efi_block_io *io = priv->io;
efi_status_t ret;
EFI_PRINT("%s: write '%s', from block " LBAFU ", " LBAFU " blocks\n",
__func__, dev->name, blknr, blkcnt);
ret = EFI_CALL(io->write_blocks(
io, io->media->media_id, (u64)blknr,
(efi_uintn_t)blkcnt *
(efi_uintn_t)io->media->block_size,
(void *)buffer));
EFI_PRINT("%s: r = %u\n", __func__,
(unsigned int)(ret & ~EFI_ERROR_MASK));
if (ret != EFI_SUCCESS)
return 0;
return blkcnt;
}
/*
* Create partions for the block device.
*
* @handle EFI handle of the block device
* @dev udevice of the block device
*/
static int efi_bl_bind_partitions(efi_handle_t handle, struct udevice *dev)
{
struct blk_desc *desc;
const char *if_typename;
desc = dev_get_uclass_platdata(dev);
if_typename = blk_get_if_type_name(desc->if_type);
return efi_disk_create_partitions(handle, desc, if_typename,
desc->devnum, dev->name);
}
/*
* Create a block device for a handle
*
* @handle handle
* @interface block io protocol
* @return 0 = success
*/
static int efi_bl_bind(efi_handle_t handle, void *interface)
{
struct udevice *bdev, *parent = dm_root();
int ret, devnum;
char *name;
struct efi_object *obj = efi_search_obj(handle);
struct efi_block_io *io = interface;
int disks;
struct efi_blk_priv *priv;
EFI_PRINT("%s: handle %p, interface %p\n", __func__, handle, io);
if (!obj)
return -ENOENT;
devnum = blk_find_max_devnum(IF_TYPE_EFI);
if (devnum == -ENODEV)
devnum = 0;
else if (devnum < 0)
return devnum;
name = calloc(1, 18); /* strlen("efiblk#2147483648") + 1 */
if (!name)
return -ENOMEM;
sprintf(name, "efiblk#%d", devnum);
/* Create driver model udevice for the EFI block io device */
ret = blk_create_device(parent, "efi_blk", name, IF_TYPE_EFI, devnum,
io->media->block_size,
(lbaint_t)io->media->last_block, &bdev);
if (ret)
return ret;
if (!bdev)
return -ENOENT;
/* Allocate priv */
ret = device_probe(bdev);
if (ret)
return ret;
EFI_PRINT("%s: block device '%s' created\n", __func__, bdev->name);
priv = bdev->priv;
priv->handle = handle;
priv->io = interface;
ret = blk_prepare_device(bdev);
/* Create handles for the partions of the block device */
disks = efi_bl_bind_partitions(handle, bdev);
EFI_PRINT("Found %d partitions\n", disks);
return 0;
}
/* Block device driver operators */
static const struct blk_ops efi_blk_ops = {
.read = efi_bl_read,
.write = efi_bl_write,
};
/* Identify as block device driver */
U_BOOT_DRIVER(efi_blk) = {
.name = "efi_blk",
.id = UCLASS_BLK,
.ops = &efi_blk_ops,
.priv_auto_alloc_size = sizeof(struct efi_blk_priv),
};
/* EFI driver operators */
static const struct efi_driver_ops driver_ops = {
.protocol = &efi_block_io_guid,
.child_protocol = &efi_block_io_guid,
.bind = efi_bl_bind,
};
/* Identify as EFI driver */
U_BOOT_DRIVER(efi_block) = {
.name = "EFI block driver",
.id = UCLASS_EFI,
.ops = &driver_ops,
};

@ -0,0 +1,330 @@
/*
* Uclass for EFI drivers
*
* Copyright (c) 2017 Heinrich Schuchardt
*
* SPDX-License-Identifier: GPL-2.0+
*
* For each EFI driver the uclass
* - creates a handle
* - installs the driver binding protocol
*
* The uclass provides the bind, start, and stop entry points for the driver
* binding protocol.
*
* In bind() and stop() it checks if the controller implements the protocol
* supported by the EFI driver. In the start() function it calls the bind()
* function of the EFI driver. In the stop() function it destroys the child
* controllers.
*/
#include <efi_driver.h>
/*
* Check node type. We do not support partitions as controller handles.
*
* @handle handle to be checked
* @return status code
*/
static efi_status_t check_node_type(efi_handle_t handle)
{
efi_status_t r, ret = EFI_SUCCESS;
const struct efi_device_path *dp;
/* Open the device path protocol */
r = EFI_CALL(systab.boottime->open_protocol(
handle, &efi_guid_device_path, (void **)&dp,
NULL, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL));
if (r == EFI_SUCCESS && dp) {
/* Get the last node */
const struct efi_device_path *node = efi_dp_last_node(dp);
/* We do not support partitions as controller */
if (!node || node->type == DEVICE_PATH_TYPE_MEDIA_DEVICE)
ret = EFI_UNSUPPORTED;
}
return ret;
}
/*
* Check if the driver supports the controller.
*
* @this driver binding protocol
* @controller_handle handle of the controller
* @remaining_device_path path specifying the child controller
* @return status code
*/
static efi_status_t EFIAPI efi_uc_supported(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
struct efi_device_path *remaining_device_path)
{
efi_status_t r, ret;
void *interface;
struct efi_driver_binding_extended_protocol *bp =
(struct efi_driver_binding_extended_protocol *)this;
EFI_ENTRY("%p, %p, %ls", this, controller_handle,
efi_dp_str(remaining_device_path));
ret = EFI_CALL(systab.boottime->open_protocol(
controller_handle, bp->ops->protocol,
&interface, this->driver_binding_handle,
controller_handle, EFI_OPEN_PROTOCOL_BY_DRIVER));
switch (ret) {
case EFI_ACCESS_DENIED:
case EFI_ALREADY_STARTED:
goto out;
case EFI_SUCCESS:
break;
default:
ret = EFI_UNSUPPORTED;
goto out;
}
ret = check_node_type(controller_handle);
r = EFI_CALL(systab.boottime->close_protocol(
controller_handle, bp->ops->protocol,
this->driver_binding_handle,
controller_handle));
if (r != EFI_SUCCESS)
ret = EFI_UNSUPPORTED;
out:
return EFI_EXIT(ret);
}
/*
* Create child controllers and attach driver.
*
* @this driver binding protocol
* @controller_handle handle of the controller
* @remaining_device_path path specifying the child controller
* @return status code
*/
static efi_status_t EFIAPI efi_uc_start(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
struct efi_device_path *remaining_device_path)
{
efi_status_t r, ret;
void *interface = NULL;
struct efi_driver_binding_extended_protocol *bp =
(struct efi_driver_binding_extended_protocol *)this;
EFI_ENTRY("%p, %pUl, %ls", this, controller_handle,
efi_dp_str(remaining_device_path));
/* Attach driver to controller */
ret = EFI_CALL(systab.boottime->open_protocol(
controller_handle, bp->ops->protocol,
&interface, this->driver_binding_handle,
controller_handle, EFI_OPEN_PROTOCOL_BY_DRIVER));
switch (ret) {
case EFI_ACCESS_DENIED:
case EFI_ALREADY_STARTED:
goto out;
case EFI_SUCCESS:
break;
default:
ret = EFI_UNSUPPORTED;
goto out;
}
ret = check_node_type(controller_handle);
if (ret != EFI_SUCCESS) {
r = EFI_CALL(systab.boottime->close_protocol(
controller_handle, bp->ops->protocol,
this->driver_binding_handle,
controller_handle));
if (r != EFI_SUCCESS)
EFI_PRINT("Failure to close handle\n");
goto out;
}
/* TODO: driver specific stuff */
bp->ops->bind(controller_handle, interface);
out:
return EFI_EXIT(ret);
}
/*
* Remove a single child controller from the parent controller.
*
* @controller_handle parent controller
* @child_handle child controller
* @return status code
*/
static efi_status_t disconnect_child(efi_handle_t controller_handle,
efi_handle_t child_handle)
{
efi_status_t ret;
efi_guid_t *guid_controller = NULL;
efi_guid_t *guid_child_controller = NULL;
ret = EFI_CALL(systab.boottime->close_protocol(
controller_handle, guid_controller,
child_handle, child_handle));
if (ret != EFI_SUCCESS) {
EFI_PRINT("Cannot close protocol\n");
return ret;
}
ret = EFI_CALL(systab.boottime->uninstall_protocol_interface(
child_handle, guid_child_controller, NULL));
if (ret != EFI_SUCCESS) {
EFI_PRINT("Cannot uninstall protocol interface\n");
return ret;
}
return ret;
}
/*
* Remove child controllers and disconnect the controller.
*
* @this driver binding protocol
* @controller_handle handle of the controller
* @number_of_children number of child controllers to remove
* @child_handle_buffer handles of the child controllers to remove
* @return status code
*/
static efi_status_t EFIAPI efi_uc_stop(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
size_t number_of_children,
efi_handle_t *child_handle_buffer)
{
efi_status_t ret;
efi_uintn_t count;
struct efi_open_protocol_info_entry *entry_buffer;
efi_guid_t *guid_controller = NULL;
EFI_ENTRY("%p, %pUl, %zu, %p", this, controller_handle,
number_of_children, child_handle_buffer);
/* Destroy provided child controllers */
if (number_of_children) {
efi_uintn_t i;
for (i = 0; i < number_of_children; ++i) {
ret = disconnect_child(controller_handle,
child_handle_buffer[i]);
if (ret != EFI_SUCCESS)
return ret;
}
return EFI_SUCCESS;
}
/* Destroy all children */
ret = EFI_CALL(systab.boottime->open_protocol_information(
controller_handle, guid_controller,
&entry_buffer, &count));
if (ret != EFI_SUCCESS)
goto out;
while (count) {
if (entry_buffer[--count].attributes &
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) {
ret = disconnect_child(
controller_handle,
entry_buffer[count].agent_handle);
if (ret != EFI_SUCCESS)
goto out;
}
}
ret = EFI_CALL(systab.boottime->free_pool(entry_buffer));
if (ret != EFI_SUCCESS)
printf("%s(%u) %s: ERROR: Cannot free pool\n",
__FILE__, __LINE__, __func__);
/* Detach driver from controller */
ret = EFI_CALL(systab.boottime->close_protocol(
controller_handle, guid_controller,
this->driver_binding_handle, controller_handle));
out:
return EFI_EXIT(ret);
}
static efi_status_t efi_add_driver(struct driver *drv)
{
efi_status_t ret;
const struct efi_driver_ops *ops = drv->ops;
struct efi_driver_binding_extended_protocol *bp;
debug("EFI: Adding driver '%s'\n", drv->name);
if (!ops->protocol) {
printf("EFI: ERROR: protocol GUID missing for driver '%s'\n",
drv->name);
return EFI_INVALID_PARAMETER;
}
bp = calloc(1, sizeof(struct efi_driver_binding_extended_protocol));
if (!bp)
return EFI_OUT_OF_RESOURCES;
bp->bp.supported = efi_uc_supported;
bp->bp.start = efi_uc_start;
bp->bp.stop = efi_uc_stop;
bp->bp.version = 0xffffffff;
bp->ops = drv->ops;
ret = efi_create_handle(&bp->bp.driver_binding_handle);
if (ret != EFI_SUCCESS) {
free(bp);
goto out;
}
bp->bp.image_handle = bp->bp.driver_binding_handle;
ret = efi_add_protocol(bp->bp.driver_binding_handle,
&efi_guid_driver_binding_protocol, bp);
if (ret != EFI_SUCCESS) {
efi_delete_handle(bp->bp.driver_binding_handle);
free(bp);
goto out;
}
out:
return ret;
}
/*
* Initialize the EFI drivers.
* Called by board_init_r().
*
* @return 0 = success, any other value will stop further execution
*/
int efi_driver_init(void)
{
struct driver *drv;
int ret = 0;
/* Save 'gd' pointer */
efi_save_gd();
debug("EFI: Initializing EFI driver framework\n");
for (drv = ll_entry_start(struct driver, driver);
drv < ll_entry_end(struct driver, driver); ++drv) {
if (drv->id == UCLASS_EFI) {
ret = efi_add_driver(drv);
if (ret) {
printf("EFI: ERROR: failed to add driver %s\n",
drv->name);
break;
}
}
}
return ret;
}
static int efi_uc_init(struct uclass *class)
{
printf("EFI: Initializing UCLASS_EFI\n");
return 0;
}
static int efi_uc_destroy(struct uclass *class)
{
printf("Destroying UCLASS_EFI\n");
return 0;
}
UCLASS_DRIVER(efi) = {
.name = "efi",
.id = UCLASS_EFI,
.init = efi_uc_init,
.destroy = efi_uc_destroy,
};

File diff suppressed because it is too large Load Diff

@ -482,18 +482,26 @@ static void EFIAPI efi_key_notify(struct efi_event *event, void *context)
{
}
/*
* Notification function of the console timer event.
*
* event: console timer event
* context: not used
*/
static void EFIAPI efi_console_timer_notify(struct efi_event *event,
void *context)
{
EFI_ENTRY("%p, %p", event, context);
/* Check if input is available */
if (tstc()) {
/* Queue the wait for key event */
efi_con_in.wait_for_key->is_signaled = true;
efi_signal_event(efi_con_in.wait_for_key);
}
efi_signal_event(efi_con_in.wait_for_key, true);
}
EFI_EXIT(EFI_SUCCESS);
}
/* This gets called from do_bootefi_exec(). */
int efi_console_register(void)
{
@ -503,21 +511,21 @@ int efi_console_register(void)
struct efi_object *efi_console_input_obj;
/* Create handles */
r = efi_create_handle((void **)&efi_console_control_obj);
r = efi_create_handle((efi_handle_t *)&efi_console_control_obj);
if (r != EFI_SUCCESS)
goto out_of_memory;
r = efi_add_protocol(efi_console_control_obj->handle,
&efi_guid_console_control, &efi_console_control);
if (r != EFI_SUCCESS)
goto out_of_memory;
r = efi_create_handle((void **)&efi_console_output_obj);
r = efi_create_handle((efi_handle_t *)&efi_console_output_obj);
if (r != EFI_SUCCESS)
goto out_of_memory;
r = efi_add_protocol(efi_console_output_obj->handle,
&efi_guid_text_output_protocol, &efi_con_out);
if (r != EFI_SUCCESS)
goto out_of_memory;
r = efi_create_handle((void **)&efi_console_input_obj);
r = efi_create_handle((efi_handle_t *)&efi_console_input_obj);
if (r != EFI_SUCCESS)
goto out_of_memory;
r = efi_add_protocol(efi_console_input_obj->handle,

@ -6,6 +6,8 @@
* SPDX-License-Identifier: GPL-2.0+
*/
#define LOG_CATEGORY LOGL_ERR
#include <common.h>
#include <blk.h>
#include <dm.h>
@ -58,8 +60,11 @@ static void *dp_alloc(size_t sz)
{
void *buf;
if (efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES, sz, &buf) != EFI_SUCCESS)
if (efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES, sz, &buf) !=
EFI_SUCCESS) {
debug("EFI: ERROR: out of memory in %s\n", __func__);
return NULL;
}
return buf;
}
@ -108,7 +113,6 @@ int efi_dp_match(const struct efi_device_path *a,
}
}
/*
* See UEFI spec (section 3.1.2, about short-form device-paths..
* tl;dr: we can have a device-path that starts with a USB WWID
@ -181,7 +185,6 @@ static struct efi_object *find_obj(struct efi_device_path *dp, bool short_path,
return NULL;
}
/*
* Find an efiobj from device-path, if 'rem' is not NULL, returns the
* remaining part of the device path after the matched object.
@ -205,6 +208,26 @@ struct efi_object *efi_dp_find_obj(struct efi_device_path *dp,
return efiobj;
}
/*
* Determine the last device path node that is not the end node.
*
* @dp device path
* @return last node before the end node if it exists
* otherwise NULL
*/
const struct efi_device_path *efi_dp_last_node(const struct efi_device_path *dp)
{
struct efi_device_path *ret;
if (!dp || dp->type == DEVICE_PATH_TYPE_END)
return NULL;
while (dp) {
ret = (struct efi_device_path *)dp;
dp = efi_dp_next(dp);
}
return ret;
}
/* return size not including End node: */
unsigned efi_dp_size(const struct efi_device_path *dp)
{
@ -227,6 +250,8 @@ struct efi_device_path *efi_dp_dup(const struct efi_device_path *dp)
return NULL;
ndp = dp_alloc(sz);
if (!ndp)
return NULL;
memcpy(ndp, dp, sz);
return ndp;
@ -246,6 +271,8 @@ struct efi_device_path *efi_dp_append(const struct efi_device_path *dp1,
unsigned sz1 = efi_dp_size(dp1);
unsigned sz2 = efi_dp_size(dp2);
void *p = dp_alloc(sz1 + sz2 + sizeof(END));
if (!p)
return NULL;
memcpy(p, dp1, sz1);
memcpy(p + sz1, dp2, sz2);
memcpy(p + sz1 + sz2, &END, sizeof(END));
@ -267,6 +294,8 @@ struct efi_device_path *efi_dp_append_node(const struct efi_device_path *dp,
} else if (!dp) {
unsigned sz = node->length;
void *p = dp_alloc(sz + sizeof(END));
if (!p)
return NULL;
memcpy(p, node, sz);
memcpy(p + sz, &END, sizeof(END));
ret = p;
@ -274,6 +303,8 @@ struct efi_device_path *efi_dp_append_node(const struct efi_device_path *dp,
/* both dp and node are non-null */
unsigned sz = efi_dp_size(dp);
void *p = dp_alloc(sz + node->length + sizeof(END));
if (!p)
return NULL;
memcpy(p, dp, sz);
memcpy(p + sz, node, node->length);
memcpy(p + sz + node->length, &END, sizeof(END));
@ -297,9 +328,36 @@ static unsigned dp_size(struct udevice *dev)
case UCLASS_SIMPLE_BUS:
/* stop traversing parents at this point: */
return sizeof(ROOT);
case UCLASS_ETH:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_mac_addr);
#ifdef CONFIG_BLK
case UCLASS_BLK:
switch (dev->parent->uclass->uc_drv->id) {
#ifdef CONFIG_IDE
case UCLASS_IDE:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_atapi);
#endif
#if defined(CONFIG_SCSI) && defined(CONFIG_DM_SCSI)
case UCLASS_SCSI:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_scsi);
#endif
#if defined(CONFIG_DM_MMC) && defined(CONFIG_MMC)
case UCLASS_MMC:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_sd_mmc_path);
#endif
default:
return dp_size(dev->parent);
}
#endif
#if defined(CONFIG_DM_MMC) && defined(CONFIG_MMC)
case UCLASS_MMC:
return dp_size(dev->parent) +
sizeof(struct efi_device_path_sd_mmc_path);
#endif
case UCLASS_MASS_STORAGE:
case UCLASS_USB_HUB:
return dp_size(dev->parent) +
@ -310,6 +368,13 @@ static unsigned dp_size(struct udevice *dev)
}
}
/*
* Recursively build a device path.
*
* @buf pointer to the end of the device path
* @dev device
* @return pointer to the end of the device path
*/
static void *dp_fill(void *buf, struct udevice *dev)
{
if (!dev || !dev->driver)
@ -323,6 +388,79 @@ static void *dp_fill(void *buf, struct udevice *dev)
*vdp = ROOT;
return &vdp[1];
}
#ifdef CONFIG_DM_ETH
case UCLASS_ETH: {
struct efi_device_path_mac_addr *dp =
dp_fill(buf, dev->parent);
struct eth_pdata *pdata = dev->platdata;
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_MAC_ADDR;
dp->dp.length = sizeof(*dp);
memset(&dp->mac, 0, sizeof(dp->mac));
/* We only support IPv4 */
memcpy(&dp->mac, &pdata->enetaddr, ARP_HLEN);
/* Ethernet */
dp->if_type = 1;
return &dp[1];
}
#endif
#ifdef CONFIG_BLK
case UCLASS_BLK:
switch (dev->parent->uclass->uc_drv->id) {
#ifdef CONFIG_IDE
case UCLASS_IDE: {
struct efi_device_path_atapi *dp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_platdata(dev);
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_ATAPI;
dp->dp.length = sizeof(*dp);
dp->logical_unit_number = desc->devnum;
dp->primary_secondary = IDE_BUS(desc->devnum);
dp->slave_master = desc->devnum %
(CONFIG_SYS_IDE_MAXDEVICE /
CONFIG_SYS_IDE_MAXBUS);
return &dp[1];
}
#endif
#if defined(CONFIG_SCSI) && defined(CONFIG_DM_SCSI)
case UCLASS_SCSI: {
struct efi_device_path_scsi *dp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_platdata(dev);
dp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_SCSI;
dp->dp.length = sizeof(*dp);
dp->logical_unit_number = desc->lun;
dp->target_id = desc->target;
return &dp[1];
}
#endif
#if defined(CONFIG_DM_MMC) && defined(CONFIG_MMC)
case UCLASS_MMC: {
struct efi_device_path_sd_mmc_path *sddp =
dp_fill(buf, dev->parent);
struct blk_desc *desc = dev_get_uclass_platdata(dev);
sddp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
sddp->dp.sub_type = is_sd(desc) ?
DEVICE_PATH_SUB_TYPE_MSG_SD :
DEVICE_PATH_SUB_TYPE_MSG_MMC;
sddp->dp.length = sizeof(*sddp);
sddp->slot_number = dev->seq;
return &sddp[1];
}
#endif
default:
debug("%s(%u) %s: unhandled parent class: %s (%u)\n",
__FILE__, __LINE__, __func__,
dev->name, dev->parent->uclass->uc_drv->id);
return dp_fill(buf, dev->parent);
}
#endif
#if defined(CONFIG_DM_MMC) && defined(CONFIG_MMC)
case UCLASS_MMC: {
struct efi_device_path_sd_mmc_path *sddp =
@ -359,7 +497,8 @@ static void *dp_fill(void *buf, struct udevice *dev)
return &udp[1];
}
default:
debug("unhandled device class: %s (%u)\n",
debug("%s(%u) %s: unhandled device class: %s (%u)\n",
__FILE__, __LINE__, __func__,
dev->name, dev->driver->id);
return dp_fill(buf, dev->parent);
}
@ -371,6 +510,8 @@ struct efi_device_path *efi_dp_from_dev(struct udevice *dev)
void *buf, *start;
start = buf = dp_alloc(dp_size(dev) + sizeof(END));
if (!buf)
return NULL;
buf = dp_fill(buf, dev);
*((struct efi_device_path *)buf) = END;
@ -383,7 +524,14 @@ static unsigned dp_part_size(struct blk_desc *desc, int part)
unsigned dpsize;
#ifdef CONFIG_BLK
dpsize = dp_size(desc->bdev->parent);
{
struct udevice *dev;
int ret = blk_find_device(desc->if_type, desc->devnum, &dev);
if (ret)
dev = desc->bdev->parent;
dpsize = dp_size(dev);
}
#else
dpsize = sizeof(ROOT) + sizeof(struct efi_device_path_usb);
#endif
@ -400,43 +548,16 @@ static unsigned dp_part_size(struct blk_desc *desc, int part)
}
/*
* Create a device path for a block device or one of its partitions.
* Create a device node for a block device partition.
*
* @buf buffer to which the device path is wirtten
* @desc block device descriptor
* @part partition number, 0 identifies a block device
*/
static void *dp_part_fill(void *buf, struct blk_desc *desc, int part)
static void *dp_part_node(void *buf, struct blk_desc *desc, int part)
{
disk_partition_t info;
#ifdef CONFIG_BLK
buf = dp_fill(buf, desc->bdev->parent);
#else
/*
* We *could* make a more accurate path, by looking at if_type
* and handling all the different cases like we do for non-
* legacy (ie CONFIG_BLK=y) case. But most important thing
* is just to have a unique device-path for if_type+devnum.
* So map things to a fictitious USB device.
*/
struct efi_device_path_usb *udp;
memcpy(buf, &ROOT, sizeof(ROOT));
buf += sizeof(ROOT);
udp = buf;
udp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
udp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_USB;
udp->dp.length = sizeof(*udp);
udp->parent_port_number = desc->if_type;
udp->usb_interface = desc->devnum;
buf = &udp[1];
#endif
if (part == 0) /* the actual disk, not a partition */
return buf;
part_get_info(desc, part, &info);
if (desc->part_type == PART_TYPE_ISO) {
@ -491,6 +612,51 @@ static void *dp_part_fill(void *buf, struct blk_desc *desc, int part)
return buf;
}
/*
* Create a device path for a block device or one of its partitions.
*
* @buf buffer to which the device path is wirtten
* @desc block device descriptor
* @part partition number, 0 identifies a block device
*/
static void *dp_part_fill(void *buf, struct blk_desc *desc, int part)
{
#ifdef CONFIG_BLK
{
struct udevice *dev;
int ret = blk_find_device(desc->if_type, desc->devnum, &dev);
if (ret)
dev = desc->bdev->parent;
buf = dp_fill(buf, dev);
}
#else
/*
* We *could* make a more accurate path, by looking at if_type
* and handling all the different cases like we do for non-
* legacy (ie CONFIG_BLK=y) case. But most important thing
* is just to have a unique device-path for if_type+devnum.
* So map things to a fictitious USB device.
*/
struct efi_device_path_usb *udp;
memcpy(buf, &ROOT, sizeof(ROOT));
buf += sizeof(ROOT);
udp = buf;
udp->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
udp->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_USB;
udp->dp.length = sizeof(*udp);
udp->parent_port_number = desc->if_type;
udp->usb_interface = desc->devnum;
buf = &udp[1];
#endif
if (part == 0) /* the actual disk, not a partition */
return buf;
return dp_part_node(buf, desc, part);
}
/* Construct a device-path from a partition on a blk device: */
struct efi_device_path *efi_dp_from_part(struct blk_desc *desc, int part)
@ -498,6 +664,8 @@ struct efi_device_path *efi_dp_from_part(struct blk_desc *desc, int part)
void *buf, *start;
start = buf = dp_alloc(dp_part_size(desc, part) + sizeof(END));
if (!buf)
return NULL;
buf = dp_part_fill(buf, desc, part);
@ -506,6 +674,29 @@ struct efi_device_path *efi_dp_from_part(struct blk_desc *desc, int part)
return start;
}
/*
* Create a device node for a block device partition.
*
* @buf buffer to which the device path is wirtten
* @desc block device descriptor
* @part partition number, 0 identifies a block device
*/
struct efi_device_path *efi_dp_part_node(struct blk_desc *desc, int part)
{
efi_uintn_t dpsize;
void *buf;
if (desc->part_type == PART_TYPE_ISO)
dpsize = sizeof(struct efi_device_path_cdrom_path);
else
dpsize = sizeof(struct efi_device_path_hard_drive_path);
buf = dp_alloc(dpsize);
dp_part_node(buf, desc, part);
return buf;
}
/* convert path to an UEFI style path (ie. DOS style backslashes and utf16) */
static void path_to_uefi(u16 *uefi, const char *path)
{
@ -536,6 +727,8 @@ struct efi_device_path *efi_dp_from_file(struct blk_desc *desc, int part,
dpsize += fpsize;
start = buf = dp_alloc(dpsize + sizeof(END));
if (!buf)
return NULL;
if (desc)
buf = dp_part_fill(buf, desc, part);
@ -570,6 +763,8 @@ struct efi_device_path *efi_dp_from_eth(void)
dpsize += sizeof(*ndp);
start = buf = dp_alloc(dpsize + sizeof(END));
if (!buf)
return NULL;
#ifdef CONFIG_DM_ETH
buf = dp_fill(buf, eth_get_dev());
@ -600,6 +795,8 @@ struct efi_device_path *efi_dp_from_mem(uint32_t memory_type,
void *buf, *start;
start = buf = dp_alloc(sizeof(*mdp) + sizeof(END));
if (!buf)
return NULL;
mdp = buf;
mdp->dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
@ -619,22 +816,31 @@ struct efi_device_path *efi_dp_from_mem(uint32_t memory_type,
* Helper to split a full device path (containing both device and file
* parts) into it's constituent parts.
*/
void efi_dp_split_file_path(struct efi_device_path *full_path,
struct efi_device_path **device_path,
struct efi_device_path **file_path)
efi_status_t efi_dp_split_file_path(struct efi_device_path *full_path,
struct efi_device_path **device_path,
struct efi_device_path **file_path)
{
struct efi_device_path *p, *dp, *fp;
*device_path = NULL;
*file_path = NULL;
dp = efi_dp_dup(full_path);
if (!dp)
return EFI_OUT_OF_RESOURCES;
p = dp;
while (!EFI_DP_TYPE(p, MEDIA_DEVICE, FILE_PATH))
while (!EFI_DP_TYPE(p, MEDIA_DEVICE, FILE_PATH)) {
p = efi_dp_next(p);
if (!p)
return EFI_OUT_OF_RESOURCES;
}
fp = efi_dp_dup(p);
if (!fp)
return EFI_OUT_OF_RESOURCES;
p->type = DEVICE_PATH_TYPE_END;
p->sub_type = DEVICE_PATH_SUB_TYPE_END;
p->length = sizeof(*p);
*device_path = dp;
*file_path = fp;
return EFI_SUCCESS;
}

@ -87,6 +87,20 @@ static char *dp_acpi(char *s, struct efi_device_path *dp)
static char *dp_msging(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_MSG_ATAPI: {
struct efi_device_path_atapi *ide =
(struct efi_device_path_atapi *)dp;
s += sprintf(s, "Ata(%d,%d,%d)", ide->primary_secondary,
ide->slave_master, ide->logical_unit_number);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_SCSI: {
struct efi_device_path_scsi *ide =
(struct efi_device_path_scsi *)dp;
s += sprintf(s, "Scsi(%u,%u)", ide->target_id,
ide->logical_unit_number);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_USB: {
struct efi_device_path_usb *udp =
(struct efi_device_path_usb *)dp;
@ -231,6 +245,8 @@ static char *efi_convert_single_device_node_to_text(
case DEVICE_PATH_TYPE_MEDIA_DEVICE:
str = dp_media(str, dp);
break;
case DEVICE_PATH_TYPE_END:
break;
default:
str = dp_unknown(str, dp);
}

@ -14,7 +14,7 @@
#include <part.h>
#include <malloc.h>
static const efi_guid_t efi_block_io_guid = BLOCK_IO_GUID;
const efi_guid_t efi_block_io_guid = BLOCK_IO_GUID;
struct efi_disk_obj {
/* Generic EFI object parent class data */
@ -91,7 +91,7 @@ static efi_status_t efi_disk_rw_blocks(struct efi_block_io *this,
}
static efi_status_t EFIAPI efi_disk_read_blocks(struct efi_block_io *this,
u32 media_id, u64 lba, unsigned long buffer_size,
u32 media_id, u64 lba, efi_uintn_t buffer_size,
void *buffer)
{
void *real_buffer = buffer;
@ -112,7 +112,7 @@ static efi_status_t EFIAPI efi_disk_read_blocks(struct efi_block_io *this,
real_buffer = efi_bounce_buffer;
#endif
EFI_ENTRY("%p, %x, %"PRIx64", %lx, %p", this, media_id, lba,
EFI_ENTRY("%p, %x, %" PRIx64 ", %zx, %p", this, media_id, lba,
buffer_size, buffer);
r = efi_disk_rw_blocks(this, media_id, lba, buffer_size, real_buffer,
@ -126,7 +126,7 @@ static efi_status_t EFIAPI efi_disk_read_blocks(struct efi_block_io *this,
}
static efi_status_t EFIAPI efi_disk_write_blocks(struct efi_block_io *this,
u32 media_id, u64 lba, unsigned long buffer_size,
u32 media_id, u64 lba, efi_uintn_t buffer_size,
void *buffer)
{
void *real_buffer = buffer;
@ -147,7 +147,7 @@ static efi_status_t EFIAPI efi_disk_write_blocks(struct efi_block_io *this,
real_buffer = efi_bounce_buffer;
#endif
EFI_ENTRY("%p, %x, %"PRIx64", %lx, %p", this, media_id, lba,
EFI_ENTRY("%p, %x, %" PRIx64 ", %zx, %p", this, media_id, lba,
buffer_size, buffer);
/* Populate bounce buffer if necessary */
@ -175,49 +175,72 @@ static const struct efi_block_io block_io_disk_template = {
};
/*
* Find filesystem from a device-path. The passed in path 'p' probably
* contains one or more /File(name) nodes, so the comparison stops at
* the first /File() node, and returns the pointer to that via 'rp'.
* This is mostly intended to be a helper to map a device-path to an
* efi_file_handle object.
* Get the simple file system protocol for a file device path.
*
* The full path provided is split into device part and into a file
* part. The device part is used to find the handle on which the
* simple file system protocol is installed.
*
* @full_path device path including device and file
* @return simple file system protocol
*/
struct efi_simple_file_system_protocol *
efi_fs_from_path(struct efi_device_path *fp)
efi_fs_from_path(struct efi_device_path *full_path)
{
struct efi_object *efiobj;
struct efi_disk_obj *diskobj;
struct efi_handler *handler;
struct efi_device_path *device_path;
struct efi_device_path *file_path;
efi_status_t ret;
efiobj = efi_dp_find_obj(fp, NULL);
/* Split the path into a device part and a file part */
ret = efi_dp_split_file_path(full_path, &device_path, &file_path);
if (ret != EFI_SUCCESS)
return NULL;
efi_free_pool(file_path);
/* Get the EFI object for the partition */
efiobj = efi_dp_find_obj(device_path, NULL);
efi_free_pool(device_path);
if (!efiobj)
return NULL;
diskobj = container_of(efiobj, struct efi_disk_obj, parent);
/* Find the simple file system protocol */
ret = efi_search_protocol(efiobj, &efi_simple_file_system_protocol_guid,
&handler);
if (ret != EFI_SUCCESS)
return NULL;
return diskobj->volume;
/* Return the simple file system protocol for the partition */
return handler->protocol_interface;
}
/*
* Create a device for a disk
* Create a handle for a partition or disk
*
* @name not used
* @parent parent handle
* @dp_parent parent device path
* @if_typename interface name for block device
* @desc internal block device
* @dev_index device index for block device
* @offset offset into disk for simple partitions
* @return disk object
*/
static void efi_disk_add_dev(const char *name,
const char *if_typename,
struct blk_desc *desc,
int dev_index,
lbaint_t offset,
unsigned int part)
static struct efi_disk_obj *efi_disk_add_dev(
efi_handle_t parent,
struct efi_device_path *dp_parent,
const char *if_typename,
struct blk_desc *desc,
int dev_index,
lbaint_t offset,
unsigned int part)
{
struct efi_disk_obj *diskobj;
efi_status_t ret;
/* Don't add empty devices */
if (!desc->lba)
return;
return NULL;
diskobj = calloc(1, sizeof(*diskobj));
if (!diskobj)
@ -227,7 +250,14 @@ static void efi_disk_add_dev(const char *name,
efi_add_handle(&diskobj->parent);
/* Fill in object data */
diskobj->dp = efi_dp_from_part(desc, part);
if (part) {
struct efi_device_path *node = efi_dp_part_node(desc, part);
diskobj->dp = efi_dp_append_node(dp_parent, node);
efi_free_pool(node);
} else {
diskobj->dp = efi_dp_from_part(desc, part);
}
diskobj->part = part;
ret = efi_add_protocol(diskobj->parent.handle, &efi_block_io_guid,
&diskobj->ops);
@ -242,7 +272,7 @@ static void efi_disk_add_dev(const char *name,
diskobj->dp);
ret = efi_add_protocol(diskobj->parent.handle,
&efi_simple_file_system_protocol_guid,
&diskobj->volume);
diskobj->volume);
if (ret != EFI_SUCCESS)
goto out_of_memory;
}
@ -261,20 +291,38 @@ static void efi_disk_add_dev(const char *name,
if (part != 0)
diskobj->media.logical_partition = 1;
diskobj->ops.media = &diskobj->media;
return;
return diskobj;
out_of_memory:
printf("ERROR: Out of memory\n");
return NULL;
}
static int efi_disk_create_partitions(struct blk_desc *desc,
const char *if_typename,
int diskid,
const char *pdevname)
/*
* Create handles and protocols for the partitions of a block device
*
* @parent handle of the parent disk
* @blk_desc block device
* @if_typename interface type
* @diskid device number
* @pdevname device name
* @return number of partitions created
*/
int efi_disk_create_partitions(efi_handle_t parent, struct blk_desc *desc,
const char *if_typename, int diskid,
const char *pdevname)
{
int disks = 0;
char devname[32] = { 0 }; /* dp->str is u16[32] long */
disk_partition_t info;
int part;
struct efi_device_path *dp = NULL;
efi_status_t ret;
struct efi_handler *handler;
/* Get the device path of the parent */
ret = efi_search_protocol(parent, &efi_guid_device_path, &handler);
if (ret == EFI_SUCCESS)
dp = handler->protocol_interface;
/* Add devices for each partition */
for (part = 1; part <= MAX_SEARCH_PARTITIONS; part++) {
@ -282,7 +330,7 @@ static int efi_disk_create_partitions(struct blk_desc *desc,
continue;
snprintf(devname, sizeof(devname), "%s:%d", pdevname,
part);
efi_disk_add_dev(devname, if_typename, desc, diskid,
efi_disk_add_dev(parent, dp, if_typename, desc, diskid,
info.start, part);
disks++;
}
@ -303,6 +351,7 @@ static int efi_disk_create_partitions(struct blk_desc *desc,
*/
int efi_disk_register(void)
{
struct efi_disk_obj *disk;
int disks = 0;
#ifdef CONFIG_BLK
struct udevice *dev;
@ -311,19 +360,21 @@ int efi_disk_register(void)
dev;
uclass_next_device_check(&dev)) {
struct blk_desc *desc = dev_get_uclass_platdata(dev);
const char *if_typename = dev->driver->name;
const char *if_typename = blk_get_if_type_name(desc->if_type);
printf("Scanning disk %s...\n", dev->name);
/* Add block device for the full device */
efi_disk_add_dev(dev->name, if_typename, desc,
desc->devnum, 0, 0);
disk = efi_disk_add_dev(NULL, NULL, if_typename,
desc, desc->devnum, 0, 0);
if (!disk)
return -ENOMEM;
disks++;
/* Partitions show up as block devices in EFI */
disks += efi_disk_create_partitions(desc, if_typename,
desc->devnum, dev->name);
disks += efi_disk_create_partitions(
disk->parent.handle, desc, if_typename,
desc->devnum, dev->name);
}
#else
int i, if_type;
@ -353,12 +404,16 @@ int efi_disk_register(void)
if_typename, i);
/* Add block device for the full device */
efi_disk_add_dev(devname, if_typename, desc, i, 0, 0);
disk = efi_disk_add_dev(NULL, NULL, if_typename, desc,
i, 0, 0);
if (!disk)
return -ENOMEM;
disks++;
/* Partitions show up as block devices in EFI */
disks += efi_disk_create_partitions(desc, if_typename,
i, devname);
disks += efi_disk_create_partitions(
disk->parent.handle, desc,
if_typename, i, devname);
}
}
#endif

@ -74,6 +74,40 @@ void __weak invalidate_icache_all(void)
}
/*
* Determine the memory types to be used for code and data.
*
* @loaded_image_info image descriptor
* @image_type field Subsystem of the optional header for
* Windows specific field
*/
static void efi_set_code_and_data_type(
struct efi_loaded_image *loaded_image_info,
uint16_t image_type)
{
switch (image_type) {
case IMAGE_SUBSYSTEM_EFI_APPLICATION:
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
case IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER:
loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA;
break;
default:
printf("%s: invalid image type: %u\n", __func__, image_type);
/* Let's assume it is an application */
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
}
}
/*
* This function loads all sections from a PE binary into a newly reserved
* piece of memory. On successful load it then returns the entry point for
* the binary. Otherwise NULL.
@ -94,7 +128,6 @@ void *efi_load_pe(void *efi, struct efi_loaded_image *loaded_image_info)
unsigned long virt_size = 0;
bool can_run_nt64 = true;
bool can_run_nt32 = true;
uint16_t image_type;
#if defined(CONFIG_ARM64)
can_run_nt32 = false;
@ -131,55 +164,38 @@ void *efi_load_pe(void *efi, struct efi_loaded_image *loaded_image_info)
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
image_size = opt->SizeOfImage;
efi_reloc = efi_alloc(virt_size, EFI_LOADER_DATA);
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
efi_reloc = efi_alloc(virt_size,
loaded_image_info->image_code_type);
if (!efi_reloc) {
printf("%s: Could not allocate %ld bytes\n",
__func__, virt_size);
printf("%s: Could not allocate %lu bytes\n",
__func__, virt_size);
return NULL;
}
entry = efi_reloc + opt->AddressOfEntryPoint;
rel_size = opt->DataDirectory[rel_idx].Size;
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
image_type = opt->Subsystem;
} else if (can_run_nt32 &&
(nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC)) {
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
image_size = opt->SizeOfImage;
efi_reloc = efi_alloc(virt_size, EFI_LOADER_DATA);
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
efi_reloc = efi_alloc(virt_size,
loaded_image_info->image_code_type);
if (!efi_reloc) {
printf("%s: Could not allocate %ld bytes\n",
__func__, virt_size);
printf("%s: Could not allocate %lu bytes\n",
__func__, virt_size);
return NULL;
}
entry = efi_reloc + opt->AddressOfEntryPoint;
rel_size = opt->DataDirectory[rel_idx].Size;
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
image_type = opt->Subsystem;
} else {
printf("%s: Invalid optional header magic %x\n", __func__,
nt->OptionalHeader.Magic);
return NULL;
}
switch (image_type) {
case IMAGE_SUBSYSTEM_EFI_APPLICATION:
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
case IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER:
loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA;
break;
default:
printf("%s: invalid image type: %u\n", __func__, image_type);
break;
}
/* Load sections into RAM */
for (i = num_sections - 1; i >= 0; i--) {
IMAGE_SECTION_HEADER *sec = &sections[i];

@ -275,6 +275,15 @@ static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
return 0;
}
/*
* Allocate memory pages.
*
* @type type of allocation to be performed
* @memory_type usage type of the allocated memory
* @pages number of pages to be allocated
* @memory allocated memory
* @return status code
*/
efi_status_t efi_allocate_pages(int type, int memory_type,
efi_uintn_t pages, uint64_t *memory)
{
@ -338,6 +347,13 @@ void *efi_alloc(uint64_t len, int memory_type)
return NULL;
}
/*
* Free memory pages.
*
* @memory start of the memory area to be freed
* @pages number of pages to be freed
* @return status code
*/
efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
{
uint64_t r = 0;
@ -351,8 +367,15 @@ efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
return EFI_NOT_FOUND;
}
efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size,
void **buffer)
/*
* Allocate memory from pool.
*
* @pool_type type of the pool from which memory is to be allocated
* @size number of bytes to be allocated
* @buffer allocated memory
* @return status code
*/
efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
{
efi_status_t r;
efi_physical_addr_t t;
@ -375,6 +398,12 @@ efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size,
return r;
}
/*
* Free memory from pool.
*
* @buffer start of memory to be freed
* @return status code
*/
efi_status_t efi_free_pool(void *buffer)
{
efi_status_t r;
@ -392,6 +421,17 @@ efi_status_t efi_free_pool(void *buffer)
return r;
}
/*
* Get map describing memory usage.
*
* @memory_map_size on entry the size, in bytes, of the memory map buffer,
* on exit the size of the copied memory map
* @memory_map buffer to which the memory map is written
* @map_key key for the memory map
* @descriptor_size size of an individual memory descriptor
* @descriptor_version version number of the memory descriptor structure
* @return status code
*/
efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
struct efi_mem_desc *memory_map,
efi_uintn_t *map_key,

@ -14,6 +14,22 @@
#include <efi_api.h>
static const efi_guid_t loaded_image_guid = LOADED_IMAGE_GUID;
static const efi_guid_t fdt_guid = EFI_FDT_GUID;
static const efi_guid_t smbios_guid = SMBIOS_TABLE_GUID;
static int hw_memcmp(const void *buf1, const void *buf2, size_t length)
{
const u8 *pos1 = buf1;
const u8 *pos2 = buf2;
for (; length; --length) {
if (*pos1 != *pos2)
return *pos1 - *pos2;
++pos1;
++pos2;
}
return 0;
}
/*
* Entry point of the EFI application.
@ -29,6 +45,7 @@ efi_status_t EFIAPI efi_main(efi_handle_t handle,
struct efi_boot_services *boottime = systable->boottime;
struct efi_loaded_image *loaded_image;
efi_status_t ret;
efi_uintn_t i;
con_out->output_string(con_out, L"Hello, world!\n");
@ -40,6 +57,15 @@ efi_status_t EFIAPI efi_main(efi_handle_t handle,
L"Cannot open loaded image protocol\n");
goto out;
}
/* Find configuration tables */
for (i = 0; i < systable->nr_tables; ++i) {
if (!hw_memcmp(&systable->tables[i].guid, &fdt_guid,
sizeof(efi_guid_t)))
con_out->output_string(con_out, L"Have device tree\n");
if (!hw_memcmp(&systable->tables[i].guid, &smbios_guid,
sizeof(efi_guid_t)))
con_out->output_string(con_out, L"Have SMBIOS table\n");
}
/* Output the load options */
con_out->output_string(con_out, L"Load options: ");
if (loaded_image->load_options_size && loaded_image->load_options)

@ -0,0 +1,2 @@
efi_miniapp_file_image.h
*.efi

@ -7,8 +7,12 @@
# This file only gets included with CONFIG_EFI_LOADER set, so all
# object inclusion implicitly depends on it
CFLAGS_efi_selftest_miniapp.o := $(CFLAGS_EFI) -Os -ffreestanding
CFLAGS_REMOVE_efi_selftest_miniapp.o := $(CFLAGS_NON_EFI) -Os
obj-$(CONFIG_CMD_BOOTEFI_SELFTEST) += \
efi_selftest.o \
efi_selftest_controllers.o \
efi_selftest_console.o \
efi_selftest_devicepath.o \
efi_selftest_events.o \
@ -20,3 +24,39 @@ efi_selftest_textoutput.o \
efi_selftest_tpl.o \
efi_selftest_util.o \
efi_selftest_watchdog.o
ifeq ($(CONFIG_BLK)$(CONFIG_PARTITIONS),yy)
obj-$(CONFIG_CMD_BOOTEFI_SELFTEST) += efi_selftest_block_device.o
endif
# TODO: As of v2018.01 the relocation code for the EFI application cannot
# be built on x86_64.
ifeq ($(CONFIG_X86_64),)
ifneq ($(CONFIG_CMD_BOOTEFI_SELFTEST),)
obj-y += \
efi_selftest_startimage_exit.o \
efi_selftest_startimage_return.o
targets += \
efi_miniapp_file_image_exit.h \
efi_miniapp_file_image_return.h \
efi_selftest_miniapp_exit.efi \
efi_selftest_miniapp_return.efi
$(obj)/efi_miniapp_file_image_exit.h: $(obj)/efi_selftest_miniapp_exit.efi
$(obj)/../../tools/file2include $(obj)/efi_selftest_miniapp_exit.efi > \
$(obj)/efi_miniapp_file_image_exit.h
$(obj)/efi_miniapp_file_image_return.h: $(obj)/efi_selftest_miniapp_return.efi
$(obj)/../../tools/file2include $(obj)/efi_selftest_miniapp_return.efi > \
$(obj)/efi_miniapp_file_image_return.h
$(obj)/efi_selftest_startimage_exit.o: $(obj)/efi_miniapp_file_image_exit.h
$(obj)/efi_selftest_startimage_return.o: $(obj)/efi_miniapp_file_image_return.h
endif
endif

@ -65,7 +65,7 @@ void efi_st_exit_boot_services(void)
efi_st_error("ExitBootServices did not return EFI_SUCCESS\n");
return;
}
efi_st_printf("\nBoot services terminated\n");
efi_st_printc(EFI_WHITE, "\nBoot services terminated\n");
}
/*
@ -81,13 +81,14 @@ static int setup(struct efi_unit_test *test, unsigned int *failures)
if (!test->setup)
return EFI_ST_SUCCESS;
efi_st_printf("\nSetting up '%s'\n", test->name);
efi_st_printc(EFI_LIGHTBLUE, "\nSetting up '%s'\n", test->name);
ret = test->setup(handle, systable);
if (ret != EFI_ST_SUCCESS) {
efi_st_error("Setting up '%s' failed\n", test->name);
++*failures;
} else {
efi_st_printf("Setting up '%s' succeeded\n", test->name);
efi_st_printc(EFI_LIGHTGREEN,
"Setting up '%s' succeeded\n", test->name);
}
return ret;
}
@ -105,13 +106,14 @@ static int execute(struct efi_unit_test *test, unsigned int *failures)
if (!test->execute)
return EFI_ST_SUCCESS;
efi_st_printf("\nExecuting '%s'\n", test->name);
efi_st_printc(EFI_LIGHTBLUE, "\nExecuting '%s'\n", test->name);
ret = test->execute();
if (ret != EFI_ST_SUCCESS) {
efi_st_error("Executing '%s' failed\n", test->name);
++*failures;
} else {
efi_st_printf("Executing '%s' succeeded\n", test->name);
efi_st_printc(EFI_LIGHTGREEN,
"Executing '%s' succeeded\n", test->name);
}
return ret;
}
@ -129,13 +131,14 @@ static int teardown(struct efi_unit_test *test, unsigned int *failures)
if (!test->teardown)
return EFI_ST_SUCCESS;
efi_st_printf("\nTearing down '%s'\n", test->name);
efi_st_printc(EFI_LIGHTBLUE, "\nTearing down '%s'\n", test->name);
ret = test->teardown();
if (ret != EFI_ST_SUCCESS) {
efi_st_error("Tearing down '%s' failed\n", test->name);
++*failures;
} else {
efi_st_printf("Tearing down '%s' succeeded\n", test->name);
efi_st_printc(EFI_LIGHTGREEN,
"Tearing down '%s' succeeded\n", test->name);
}
return ret;
}
@ -262,12 +265,12 @@ efi_status_t EFIAPI efi_selftest(efi_handle_t image_handle,
}
}
efi_st_printf("\nTesting EFI API implementation\n");
efi_st_printc(EFI_WHITE, "\nTesting EFI API implementation\n");
if (testname)
efi_st_printf("\nSelected test: '%ps'\n", testname);
efi_st_printc(EFI_WHITE, "\nSelected test: '%ps'\n", testname);
else
efi_st_printf("\nNumber of tests to execute: %u\n",
efi_st_printc(EFI_WHITE, "\nNumber of tests to execute: %u\n",
ll_entry_count(struct efi_unit_test,
efi_unit_test));
@ -291,7 +294,7 @@ efi_status_t EFIAPI efi_selftest(efi_handle_t image_handle,
&failures);
/* Give feedback */
efi_st_printf("\nSummary: %u failures\n\n", failures);
efi_st_printc(EFI_WHITE, "\nSummary: %u failures\n\n", failures);
/* Reset system */
efi_st_printf("Preparing for reset. Press any key.\n");

@ -0,0 +1,395 @@
/*
* efi_selftest_block
*
* Copyright (c) 2017 Heinrich Schuchardt <xypron.glpk@gmx.de>
*
* SPDX-License-Identifier: GPL-2.0+
*
* This test checks the driver for block IO devices.
* A disk image is created in memory.
* A handle is created for the new block IO device.
* The block I/O protocol is installed on the handle.
* ConnectController is used to setup partitions and to install the simple
* file protocol.
* A known file is read from the file system and verified.
*/
#include <efi_selftest.h>
#include "efi_selftest_disk_image.h"
/* Block size of compressed disk image */
#define COMPRESSED_DISK_IMAGE_BLOCK_SIZE 8
/* Binary logarithm of the block size */
#define LB_BLOCK_SIZE 9
static struct efi_boot_services *boottime;
static const efi_guid_t block_io_protocol_guid = BLOCK_IO_GUID;
static const efi_guid_t guid_device_path = DEVICE_PATH_GUID;
static const efi_guid_t guid_simple_file_system_protocol =
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID;
static efi_guid_t guid_vendor =
EFI_GUID(0xdbca4c98, 0x6cb0, 0x694d,
0x08, 0x72, 0x81, 0x9c, 0x65, 0x0c, 0xb7, 0xb8);
static struct efi_device_path *dp;
/* One 8 byte block of the compressed disk image */
struct line {
size_t addr;
char *line;
};
/* Compressed disk image */
struct compressed_disk_image {
size_t length;
struct line lines[];
};
static const struct compressed_disk_image img = EFI_ST_DISK_IMG;
/* Decompressed disk image */
static u8 *image;
/*
* Reset service of the block IO protocol.
*
* @this block IO protocol
* @return status code
*/
static efi_status_t EFIAPI reset(
struct efi_block_io *this,
char extended_verification)
{
return EFI_SUCCESS;
}
/*
* Read service of the block IO protocol.
*
* @this block IO protocol
* @media_id media id
* @lba start of the read in logical blocks
* @buffer_size number of bytes to read
* @buffer target buffer
* @return status code
*/
static efi_status_t EFIAPI read_blocks(
struct efi_block_io *this, u32 media_id, u64 lba,
efi_uintn_t buffer_size, void *buffer)
{
u8 *start;
if ((lba << LB_BLOCK_SIZE) + buffer_size > img.length)
return EFI_INVALID_PARAMETER;
start = image + (lba << LB_BLOCK_SIZE);
boottime->copy_mem(buffer, start, buffer_size);
return EFI_SUCCESS;
}
/*
* Write service of the block IO protocol.
*
* @this block IO protocol
* @media_id media id
* @lba start of the write in logical blocks
* @buffer_size number of bytes to read
* @buffer source buffer
* @return status code
*/
static efi_status_t EFIAPI write_blocks(
struct efi_block_io *this, u32 media_id, u64 lba,
efi_uintn_t buffer_size, void *buffer)
{
u8 *start;
if ((lba << LB_BLOCK_SIZE) + buffer_size > img.length)
return EFI_INVALID_PARAMETER;
start = image + (lba << LB_BLOCK_SIZE);
boottime->copy_mem(start, buffer, buffer_size);
return EFI_SUCCESS;
}
/*
* Flush service of the block IO protocol.
*
* @this block IO protocol
* @return status code
*/
static efi_status_t EFIAPI flush_blocks(struct efi_block_io *this)
{
return EFI_SUCCESS;
}
/*
* Decompress the disk image.
*
* @image decompressed disk image
* @return status code
*/
static efi_status_t decompress(u8 **image)
{
u8 *buf;
size_t i;
size_t addr;
size_t len;
efi_status_t ret;
ret = boottime->allocate_pool(EFI_LOADER_DATA, img.length,
(void **)&buf);
if (ret != EFI_SUCCESS) {
efi_st_error("Out of memory\n");
return ret;
}
boottime->set_mem(buf, img.length, 0);
for (i = 0; ; ++i) {
if (!img.lines[i].line)
break;
addr = img.lines[i].addr;
len = COMPRESSED_DISK_IMAGE_BLOCK_SIZE;
if (addr + len > img.length)
len = img.length - addr;
boottime->copy_mem(buf + addr, img.lines[i].line, len);
}
*image = buf;
return ret;
}
static struct efi_block_io_media media;
static struct efi_block_io block_io = {
.media = &media,
.reset = reset,
.read_blocks = read_blocks,
.write_blocks = write_blocks,
.flush_blocks = flush_blocks,
};
/* Handle for the block IO device */
static efi_handle_t disk_handle;
/*
* Setup unit test.
*
* @handle: handle of the loaded image
* @systable: system table
* @return: EFI_ST_SUCCESS for success
*/
static int setup(const efi_handle_t handle,
const struct efi_system_table *systable)
{
efi_status_t ret;
struct efi_device_path_vendor vendor_node;
struct efi_device_path end_node;
boottime = systable->boottime;
decompress(&image);
block_io.media->block_size = 1 << LB_BLOCK_SIZE;
block_io.media->last_block = img.length >> LB_BLOCK_SIZE;
ret = boottime->install_protocol_interface(
&disk_handle, &block_io_protocol_guid,
EFI_NATIVE_INTERFACE, &block_io);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to install block I/O protocol\n");
return EFI_ST_FAILURE;
}
ret = boottime->allocate_pool(EFI_LOADER_DATA,
sizeof(struct efi_device_path_vendor) +
sizeof(struct efi_device_path),
(void **)&dp);
if (ret != EFI_SUCCESS) {
efi_st_error("Out of memory\n");
return EFI_ST_FAILURE;
}
vendor_node.dp.type = DEVICE_PATH_TYPE_HARDWARE_DEVICE;
vendor_node.dp.sub_type = DEVICE_PATH_SUB_TYPE_VENDOR;
vendor_node.dp.length = sizeof(struct efi_device_path_vendor);
boottime->copy_mem(&vendor_node.guid, &guid_vendor,
sizeof(efi_guid_t));
boottime->copy_mem(dp, &vendor_node,
sizeof(struct efi_device_path_vendor));
end_node.type = DEVICE_PATH_TYPE_END;
end_node.sub_type = DEVICE_PATH_SUB_TYPE_END;
end_node.length = sizeof(struct efi_device_path);
boottime->copy_mem((char *)dp + sizeof(struct efi_device_path_vendor),
&end_node, sizeof(struct efi_device_path));
ret = boottime->install_protocol_interface(&disk_handle,
&guid_device_path,
EFI_NATIVE_INTERFACE,
dp);
if (ret != EFI_SUCCESS) {
efi_st_error("InstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;
}
/*
* Tear down unit test.
*
* @return: EFI_ST_SUCCESS for success
*/
static int teardown(void)
{
efi_status_t r = EFI_ST_SUCCESS;
if (disk_handle) {
r = boottime->uninstall_protocol_interface(disk_handle,
&guid_device_path,
dp);
if (r != EFI_SUCCESS) {
efi_st_error("Uninstall device path failed\n");
return EFI_ST_FAILURE;
}
r = boottime->uninstall_protocol_interface(
disk_handle, &block_io_protocol_guid,
&block_io);
if (r != EFI_SUCCESS) {
efi_st_todo(
"Failed to uninstall block I/O protocol\n");
return EFI_ST_SUCCESS;
}
}
if (image) {
r = efi_free_pool(image);
if (r != EFI_SUCCESS) {
efi_st_error("Failed to free image\n");
return EFI_ST_FAILURE;
}
}
return r;
}
/*
* Get length of device path without end tag.
*
* @dp device path
* @return length of device path in bytes
*/
static efi_uintn_t dp_size(struct efi_device_path *dp)
{
struct efi_device_path *pos = dp;
while (pos->type != DEVICE_PATH_TYPE_END)
pos = (struct efi_device_path *)((char *)pos + pos->length);
return (char *)pos - (char *)dp;
}
/*
* Execute unit test.
*
* @return: EFI_ST_SUCCESS for success
*/
static int execute(void)
{
efi_status_t ret;
efi_uintn_t no_handles, i, len;
efi_handle_t *handles;
efi_handle_t handle_partition = NULL;
struct efi_device_path *dp_partition;
struct efi_simple_file_system_protocol *file_system;
struct efi_file_handle *root, *file;
u64 buf_size;
char buf[16] __aligned(ARCH_DMA_MINALIGN);
ret = boottime->connect_controller(disk_handle, NULL, NULL, 1);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to connect controller\n");
return EFI_ST_FAILURE;
}
ret = boottime->locate_handle_buffer(
BY_PROTOCOL, &guid_device_path, NULL,
&no_handles, &handles);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to locate handles\n");
return EFI_ST_FAILURE;
}
len = dp_size(dp);
for (i = 0; i < no_handles; ++i) {
ret = boottime->open_protocol(handles[i], &guid_device_path,
(void **)&dp_partition,
NULL, NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to open device path protocol\n");
return EFI_ST_FAILURE;
}
if (len >= dp_size(dp_partition))
continue;
if (efi_st_memcmp(dp, dp_partition, len))
continue;
handle_partition = handles[i];
break;
}
ret = boottime->free_pool(handles);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to free pool memory\n");
return EFI_ST_FAILURE;
}
if (!handle_partition) {
efi_st_error("Partition handle not found\n");
return EFI_ST_FAILURE;
}
ret = boottime->open_protocol(handle_partition,
&guid_simple_file_system_protocol,
(void **)&file_system, NULL, NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to open simple file system protocol\n");
return EFI_ST_FAILURE;
}
ret = file_system->open_volume(file_system, &root);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to open volume\n");
return EFI_ST_FAILURE;
}
ret = root->open(root, &file, (s16 *)L"hello.txt", EFI_FILE_MODE_READ,
0);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to open file\n");
return EFI_ST_FAILURE;
}
buf_size = sizeof(buf) - 1;
ret = file->read(file, &buf_size, buf);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to read file\n");
return EFI_ST_FAILURE;
}
if (efi_st_memcmp(buf, "Hello world!", 12)) {
efi_st_error("Unexpected file content\n");
return EFI_ST_FAILURE;
}
ret = file->close(file);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to close file\n");
return EFI_ST_FAILURE;
}
ret = root->close(root);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to close volume\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;
}
EFI_UNIT_TEST(blkdev) = {
.name = "block device",
.phase = EFI_EXECUTE_BEFORE_BOOTTIME_EXIT,
.setup = setup,
.execute = execute,
.teardown = teardown,
};

@ -130,22 +130,25 @@ static void int2dec(s32 value, u16 **buf)
}
/*
* Print a formatted string to the EFI console
* Print a colored formatted string to the EFI console
*
* @fmt: format string
* @...: optional arguments
* @color color, see constants in efi_api.h, use -1 for no color
* @fmt format string
* @... optional arguments
*/
void efi_st_printf(const char *fmt, ...)
void efi_st_printc(int color, const char *fmt, ...)
{
va_list args;
u16 buf[160];
const char *c;
u16 *pos = buf;
const char *s;
const u16 *u;
u16 *u;
va_start(args, fmt);
if (color >= 0)
con_out->set_attribute(con_out, (unsigned long)color);
c = fmt;
for (; *c; ++c) {
switch (*c) {
@ -188,9 +191,13 @@ void efi_st_printf(const char *fmt, ...)
/* u16 string */
case 's':
u = va_arg(args, u16*);
/* Ensure string fits into buffer */
for (; *u && pos < buf + 120; ++u)
*pos++ = *u;
if (pos > buf) {
*pos = 0;
con_out->output_string(con_out,
buf);
}
con_out->output_string(con_out, u);
pos = buf;
break;
default:
--c;
@ -216,6 +223,8 @@ void efi_st_printf(const char *fmt, ...)
va_end(args);
*pos = 0;
con_out->output_string(con_out, buf);
if (color >= 0)
con_out->set_attribute(con_out, EFI_LIGHTGRAY);
}
/*

@ -0,0 +1,385 @@
/*
* efi_selftest_controllers
*
* Copyright (c) 2017 Heinrich Schuchardt <xypron.glpk@gmx.de>
*
* SPDX-License-Identifier: GPL-2.0+
*
* This unit test checks the following protocol services:
* ConnectController, DisconnectController,
* InstallProtocol, UninstallProtocol,
* OpenProtocol, CloseProtcol, OpenProtocolInformation
*/
#include <efi_selftest.h>
#define NUMBER_OF_CHILD_CONTROLLERS 4
static struct efi_boot_services *boottime;
const efi_guid_t guid_driver_binding_protocol =
EFI_DRIVER_BINDING_PROTOCOL_GUID;
static efi_guid_t guid_controller =
EFI_GUID(0xe6ab1d96, 0x6bff, 0xdb42,
0xaa, 0x05, 0xc8, 0x1f, 0x7f, 0x45, 0x26, 0x34);
static efi_guid_t guid_child_controller =
EFI_GUID(0x1d41f6f5, 0x2c41, 0xddfb,
0xe2, 0x9b, 0xb8, 0x0e, 0x2e, 0xe8, 0x3a, 0x85);
static efi_handle_t handle_controller;
static efi_handle_t handle_child_controller[NUMBER_OF_CHILD_CONTROLLERS];
static efi_handle_t handle_driver;
/*
* Count child controllers
*
* @handle handle on which child controllers are installed
* @protocol protocol for which the child controlles where installed
* @count number of child controllers
* @return status code
*/
static efi_status_t count_child_controllers(efi_handle_t handle,
efi_guid_t *protocol,
efi_uintn_t *count)
{
efi_status_t ret;
efi_uintn_t entry_count;
struct efi_open_protocol_info_entry *entry_buffer;
*count = 0;
ret = boottime->open_protocol_information(handle, protocol,
&entry_buffer, &entry_count);
if (ret != EFI_SUCCESS)
return ret;
if (!entry_count)
return EFI_SUCCESS;
while (entry_count) {
if (entry_buffer[--entry_count].attributes &
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER)
++*count;
}
ret = boottime->free_pool(entry_buffer);
if (ret != EFI_SUCCESS)
efi_st_error("Cannot free buffer\n");
return ret;
}
/*
* Check if the driver supports the controller.
*
* @this driver binding protocol
* @controller_handle handle of the controller
* @remaining_device_path path specifying the child controller
* @return status code
*/
static efi_status_t EFIAPI supported(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
struct efi_device_path *remaining_device_path)
{
efi_status_t ret;
void *interface;
ret = boottime->open_protocol(
controller_handle, &guid_controller,
&interface, handle_driver,
controller_handle, EFI_OPEN_PROTOCOL_BY_DRIVER);
switch (ret) {
case EFI_ACCESS_DENIED:
case EFI_ALREADY_STARTED:
return ret;
case EFI_SUCCESS:
break;
default:
return EFI_UNSUPPORTED;
}
ret = boottime->close_protocol(
controller_handle, &guid_controller,
handle_driver, controller_handle);
if (ret != EFI_SUCCESS)
ret = EFI_UNSUPPORTED;
return ret;
}
/*
* Create child controllers and attach driver.
*
* @this driver binding protocol
* @controller_handle handle of the controller
* @remaining_device_path path specifying the child controller
* @return status code
*/
static efi_status_t EFIAPI start(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
struct efi_device_path *remaining_device_path)
{
size_t i;
efi_status_t ret;
void *interface;
/* Attach driver to controller */
ret = boottime->open_protocol(
controller_handle, &guid_controller,
&interface, handle_driver,
controller_handle, EFI_OPEN_PROTOCOL_BY_DRIVER);
switch (ret) {
case EFI_ACCESS_DENIED:
case EFI_ALREADY_STARTED:
return ret;
case EFI_SUCCESS:
break;
default:
return EFI_UNSUPPORTED;
}
/* Create child controllers */
for (i = 0; i < NUMBER_OF_CHILD_CONTROLLERS; ++i) {
ret = boottime->install_protocol_interface(
&handle_child_controller[i], &guid_child_controller,
EFI_NATIVE_INTERFACE, NULL);
if (ret != EFI_SUCCESS) {
efi_st_error("InstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->open_protocol(
controller_handle, &guid_controller,
&interface, handle_child_controller[i],
handle_child_controller[i],
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER);
if (ret != EFI_SUCCESS) {
efi_st_error("OpenProtocol failed\n");
return EFI_ST_FAILURE;
}
}
return ret;
}
/*
* Remove a single child controller from the parent controller.
*
* @controller_handle parent controller
* @child_handle child controller
* @return status code
*/
static efi_status_t disconnect_child(efi_handle_t controller_handle,
efi_handle_t child_handle)
{
efi_status_t ret;
ret = boottime->close_protocol(
controller_handle, &guid_controller,
child_handle, child_handle);
if (ret != EFI_SUCCESS) {
efi_st_error("Cannot close protocol\n");
return ret;
}
ret = boottime->uninstall_protocol_interface(
child_handle, &guid_child_controller, NULL);
if (ret != EFI_SUCCESS) {
efi_st_error("Cannot uninstall protocol interface\n");
return ret;
}
return ret;
}
/*
* Remove child controllers and disconnect the controller.
*
* @this driver binding protocol
* @controller_handle handle of the controller
* @number_of_children number of child controllers to remove
* @child_handle_buffer handles of the child controllers to remove
* @return status code
*/
static efi_status_t EFIAPI stop(
struct efi_driver_binding_protocol *this,
efi_handle_t controller_handle,
size_t number_of_children,
efi_handle_t *child_handle_buffer)
{
efi_status_t ret;
efi_uintn_t count;
struct efi_open_protocol_info_entry *entry_buffer;
/* Destroy provided child controllers */
if (number_of_children) {
efi_uintn_t i;
for (i = 0; i < number_of_children; ++i) {
ret = disconnect_child(controller_handle,
child_handle_buffer[i]);
if (ret != EFI_SUCCESS)
return ret;
}
return EFI_SUCCESS;
}
/* Destroy all children */
ret = boottime->open_protocol_information(
controller_handle, &guid_controller,
&entry_buffer, &count);
if (ret != EFI_SUCCESS) {
efi_st_error("OpenProtocolInformation failed\n");
return ret;
}
while (count) {
if (entry_buffer[--count].attributes &
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) {
ret = disconnect_child(
controller_handle,
entry_buffer[count].agent_handle);
if (ret != EFI_SUCCESS)
return ret;
}
}
ret = boottime->free_pool(entry_buffer);
if (ret != EFI_SUCCESS)
efi_st_error("Cannot free buffer\n");
/* Detach driver from controller */
ret = boottime->close_protocol(
controller_handle, &guid_controller,
handle_driver, controller_handle);
if (ret != EFI_SUCCESS) {
efi_st_error("Cannot close protocol\n");
return ret;
}
return EFI_SUCCESS;
}
/* Driver binding protocol interface */
static struct efi_driver_binding_protocol binding_interface = {
supported,
start,
stop,
0xffffffff,
NULL,
NULL,
};
/*
* Setup unit test.
*
* @handle handle of the loaded image
* @systable system table
*/
static int setup(const efi_handle_t img_handle,
const struct efi_system_table *systable)
{
efi_status_t ret;
boottime = systable->boottime;
/* Create controller handle */
ret = boottime->install_protocol_interface(
&handle_controller, &guid_controller,
EFI_NATIVE_INTERFACE, NULL);
if (ret != EFI_SUCCESS) {
efi_st_error("InstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
/* Create driver handle */
ret = boottime->install_protocol_interface(
&handle_driver, &guid_driver_binding_protocol,
EFI_NATIVE_INTERFACE, &binding_interface);
if (ret != EFI_SUCCESS) {
efi_st_error("InstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;
}
/*
* Execute unit test.
*
* The number of child controllers is checked after each of the following
* actions:
*
* Connect a controller to a driver.
* Disconnect and destroy a child controller.
* Disconnect and destroy the remaining child controllers.
*
* Connect a controller to a driver.
* Uninstall the driver protocol from the controller.
*/
static int execute(void)
{
efi_status_t ret;
efi_uintn_t count;
/* Connect controller to driver */
ret = boottime->connect_controller(handle_controller, NULL, NULL, 1);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to connect controller\n");
return EFI_ST_FAILURE;
}
/* Check number of child controllers */
ret = count_child_controllers(handle_controller, &guid_controller,
&count);
if (ret != EFI_SUCCESS || count != NUMBER_OF_CHILD_CONTROLLERS) {
efi_st_error("Number of children %u != %u\n",
(unsigned int)count, NUMBER_OF_CHILD_CONTROLLERS);
}
/* Destroy second child controller */
ret = boottime->disconnect_controller(handle_controller,
handle_driver,
handle_child_controller[1]);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to disconnect child controller\n");
return EFI_ST_FAILURE;
}
/* Check number of child controllers */
ret = count_child_controllers(handle_controller, &guid_controller,
&count);
if (ret != EFI_SUCCESS || count != NUMBER_OF_CHILD_CONTROLLERS - 1) {
efi_st_error("Destroying single child controller failed\n");
return EFI_ST_FAILURE;
}
/* Destroy remaining child controllers and disconnect controller */
ret = boottime->disconnect_controller(handle_controller, NULL, NULL);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to disconnect controller\n");
return EFI_ST_FAILURE;
}
/* Check number of child controllers */
ret = count_child_controllers(handle_controller, &guid_controller,
&count);
if (ret != EFI_SUCCESS || count) {
efi_st_error("Destroying child controllers failed\n");
return EFI_ST_FAILURE;
}
/* Connect controller to driver */
ret = boottime->connect_controller(handle_controller, NULL, NULL, 1);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to connect controller\n");
return EFI_ST_FAILURE;
}
/* Check number of child controllers */
ret = count_child_controllers(handle_controller, &guid_controller,
&count);
if (ret != EFI_SUCCESS || count != NUMBER_OF_CHILD_CONTROLLERS) {
efi_st_error("Number of children %u != %u\n",
(unsigned int)count, NUMBER_OF_CHILD_CONTROLLERS);
}
/* Uninstall controller protocol */
ret = boottime->uninstall_protocol_interface(handle_controller,
&guid_controller, NULL);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to uninstall protocols\n");
return EFI_ST_FAILURE;
}
/* Check number of child controllers */
ret = count_child_controllers(handle_controller, &guid_controller,
&count);
if (ret == EFI_SUCCESS)
efi_st_error("Uninstall failed\n");
return EFI_ST_SUCCESS;
}
EFI_UNIT_TEST(controllers) = {
.name = "controllers",
.phase = EFI_EXECUTE_BEFORE_BOOTTIME_EXIT,
.setup = setup,
.execute = execute,
};

@ -192,31 +192,41 @@ static int teardown(void)
{
efi_status_t ret;
ret = boottime->uninstall_protocol_interface(&handle1,
ret = boottime->uninstall_protocol_interface(handle1,
&guid_device_path,
dp1);
if (ret != EFI_SUCCESS)
efi_st_todo("UninstallProtocolInterface failed\n");
ret = boottime->uninstall_protocol_interface(&handle1,
if (ret != EFI_SUCCESS) {
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->uninstall_protocol_interface(handle1,
&guid_protocol,
&interface);
if (ret != EFI_SUCCESS)
efi_st_todo("UninstallProtocolInterface failed\n");
ret = boottime->uninstall_protocol_interface(&handle2,
if (ret != EFI_SUCCESS) {
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->uninstall_protocol_interface(handle2,
&guid_device_path,
dp2);
if (ret != EFI_SUCCESS)
efi_st_todo("UninstallProtocolInterface failed\n");
ret = boottime->uninstall_protocol_interface(&handle2,
if (ret != EFI_SUCCESS) {
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->uninstall_protocol_interface(handle2,
&guid_protocol,
&interface);
if (ret != EFI_SUCCESS)
efi_st_todo("UninstallProtocolInterface failed\n");
ret = boottime->uninstall_protocol_interface(&handle3,
if (ret != EFI_SUCCESS) {
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->uninstall_protocol_interface(handle3,
&guid_device_path,
dp3);
if (ret != EFI_SUCCESS)
efi_st_todo("UninstallProtocolInterface failed\n");
if (ret != EFI_SUCCESS) {
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
if (dp1) {
ret = boottime->free_pool(dp1);
if (ret != EFI_SUCCESS) {
@ -299,17 +309,16 @@ static int execute(void)
efi_st_error("FreePool failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->close_protocol(handles[i], &guid_device_path,
NULL, NULL);
if (ret != EFI_SUCCESS)
efi_st_todo("Cannot close device path protocol.\n");
/*
* CloseProtocol cannot be called without agent handle.
* There is no need to close the device path protocol.
*/
}
ret = boottime->free_pool(handles);
if (ret != EFI_SUCCESS) {
efi_st_error("FreePool failed\n");
return EFI_ST_FAILURE;
}
efi_st_printf("\n");
/* Test ConvertDevicePathToText */
string = device_path_to_text->convert_device_path_to_text(
@ -318,15 +327,14 @@ static int execute(void)
efi_st_error("ConvertDevicePathToText failed\n");
return EFI_ST_FAILURE;
}
efi_st_printf("dp2: %ps\n", string);
if (efi_st_strcmp_16_8(
string,
"/VenHw(dbca4c98-6cb0-694d-0872-819c650cbbb1)/VenHw(dbca4c98-6cb0-694d-0872-819c650cbba2)")
) {
efi_st_printf("dp2: %ps\n", string);
efi_st_error("Incorrect text from ConvertDevicePathToText\n");
return EFI_ST_FAILURE;
}
ret = boottime->free_pool(string);
if (ret != EFI_SUCCESS) {
efi_st_error("FreePool failed\n");
@ -340,17 +348,17 @@ static int execute(void)
efi_st_error("ConvertDeviceNodeToText failed\n");
return EFI_ST_FAILURE;
}
efi_st_printf("dp_node: %ps\n", string);
ret = boottime->free_pool(string);
if (ret != EFI_SUCCESS) {
efi_st_error("FreePool failed\n");
return EFI_ST_FAILURE;
}
if (efi_st_strcmp_16_8(string, "u-boot")) {
efi_st_printf("dp_node: %ps\n", string);
efi_st_error(
"Incorrect conversion by ConvertDeviceNodeToText\n");
return EFI_ST_FAILURE;
}
ret = boottime->free_pool(string);
if (ret != EFI_SUCCESS) {
efi_st_error("FreePool failed\n");
return EFI_ST_FAILURE;
}
/* Test LocateDevicePath */
remaining_dp = (struct efi_device_path *)dp3;
@ -370,13 +378,18 @@ static int execute(void)
efi_st_error("ConvertDevicePathToText failed\n");
return EFI_ST_FAILURE;
}
efi_st_printf("remaining device path: %ps\n", string);
if (efi_st_strcmp_16_8(string,
"/VenHw(dbca4c98-6cb0-694d-0872-819c650cbbc3)")
) {
efi_st_printf("remaining device path: %ps\n", string);
efi_st_error("LocateDevicePath: wrong remaining device path\n");
return EFI_ST_FAILURE;
}
ret = boottime->free_pool(string);
if (ret != EFI_SUCCESS) {
efi_st_error("FreePool failed\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;
}

@ -0,0 +1,69 @@
/*
* Non-zero 8 byte strings of a disk image
*
* Generated with tools/file2include
*
* SPDX-License-Identifier: GPL-2.0+
*/
#define EFI_ST_DISK_IMG { 0x00010000, { \
{0x000001b8, "\x94\x37\x69\xfc\x00\x00\x00\x00"}, /* .7i..... */ \
{0x000001c0, "\x02\x00\x83\x02\x02\x00\x01\x00"}, /* ........ */ \
{0x000001c8, "\x00\x00\x7f\x00\x00\x00\x00\x00"}, /* ........ */ \
{0x000001f8, "\x00\x00\x00\x00\x00\x00\x55\xaa"}, /* ......U. */ \
{0x00000200, "\xeb\x3c\x90\x6d\x6b\x66\x73\x2e"}, /* .<.mkfs. */ \
{0x00000208, "\x66\x61\x74\x00\x02\x04\x01\x00"}, /* fat..... */ \
{0x00000210, "\x02\x00\x02\x7f\x00\xf8\x01\x00"}, /* ........ */ \
{0x00000218, "\x20\x00\x40\x00\x00\x00\x00\x00"}, /* .@..... */ \
{0x00000220, "\x00\x00\x00\x00\x80\x00\x29\x86"}, /* ......). */ \
{0x00000228, "\xe8\x82\x80\x4e\x4f\x20\x4e\x41"}, /* ...NO NA */ \
{0x00000230, "\x4d\x45\x20\x20\x20\x20\x46\x41"}, /* ME FA */ \
{0x00000238, "\x54\x31\x32\x20\x20\x20\x0e\x1f"}, /* T12 .. */ \
{0x00000240, "\xbe\x5b\x7c\xac\x22\xc0\x74\x0b"}, /* .[|.".t. */ \
{0x00000248, "\x56\xb4\x0e\xbb\x07\x00\xcd\x10"}, /* V....... */ \
{0x00000250, "\x5e\xeb\xf0\x32\xe4\xcd\x16\xcd"}, /* ^..2.... */ \
{0x00000258, "\x19\xeb\xfe\x54\x68\x69\x73\x20"}, /* ...This */ \
{0x00000260, "\x69\x73\x20\x6e\x6f\x74\x20\x61"}, /* is not a */ \
{0x00000268, "\x20\x62\x6f\x6f\x74\x61\x62\x6c"}, /* bootabl */ \
{0x00000270, "\x65\x20\x64\x69\x73\x6b\x2e\x20"}, /* e disk. */ \
{0x00000278, "\x20\x50\x6c\x65\x61\x73\x65\x20"}, /* Please */ \
{0x00000280, "\x69\x6e\x73\x65\x72\x74\x20\x61"}, /* insert a */ \
{0x00000288, "\x20\x62\x6f\x6f\x74\x61\x62\x6c"}, /* bootabl */ \
{0x00000290, "\x65\x20\x66\x6c\x6f\x70\x70\x79"}, /* e floppy */ \
{0x00000298, "\x20\x61\x6e\x64\x0d\x0a\x70\x72"}, /* and..pr */ \
{0x000002a0, "\x65\x73\x73\x20\x61\x6e\x79\x20"}, /* ess any */ \
{0x000002a8, "\x6b\x65\x79\x20\x74\x6f\x20\x74"}, /* key to t */ \
{0x000002b0, "\x72\x79\x20\x61\x67\x61\x69\x6e"}, /* ry again */ \
{0x000002b8, "\x20\x2e\x2e\x2e\x20\x0d\x0a\x00"}, /* ... ... */ \
{0x000003f8, "\x00\x00\x00\x00\x00\x00\x55\xaa"}, /* ......U. */ \
{0x00000400, "\xf8\xff\xff\x00\x00\x00\x00\xf0"}, /* ........ */ \
{0x00000408, "\xff\x00\x00\x00\x00\x00\x00\x00"}, /* ........ */ \
{0x00000600, "\xf8\xff\xff\x00\x00\x00\x00\xf0"}, /* ........ */ \
{0x00000608, "\xff\x00\x00\x00\x00\x00\x00\x00"}, /* ........ */ \
{0x00000800, "\xe5\x70\x00\x00\x00\xff\xff\xff"}, /* .p...... */ \
{0x00000808, "\xff\xff\xff\x0f\x00\x0e\xff\xff"}, /* ........ */ \
{0x00000810, "\xff\xff\xff\xff\xff\xff\xff\xff"}, /* ........ */ \
{0x00000818, "\xff\xff\x00\x00\xff\xff\xff\xff"}, /* ........ */ \
{0x00000820, "\xe5\x2e\x00\x68\x00\x65\x00\x6c"}, /* ...h.e.l */ \
{0x00000828, "\x00\x6c\x00\x0f\x00\x0e\x6f\x00"}, /* .l....o. */ \
{0x00000830, "\x2e\x00\x74\x00\x78\x00\x74\x00"}, /* ..t.x.t. */ \
{0x00000838, "\x2e\x00\x00\x00\x73\x00\x77\x00"}, /* ....s.w. */ \
{0x00000840, "\xe5\x45\x4c\x4c\x4f\x54\x7e\x31"}, /* .ELLOT~1 */ \
{0x00000848, "\x53\x57\x50\x20\x00\x64\xd0\x8a"}, /* SWP .d.. */ \
{0x00000850, "\x92\x4b\x92\x4b\x00\x00\xd0\x8a"}, /* .K.K.... */ \
{0x00000858, "\x92\x4b\x00\x00\x00\x00\x00\x00"}, /* .K...... */ \
{0x00000860, "\x41\x68\x00\x65\x00\x6c\x00\x6c"}, /* Ah.e.l.l */ \
{0x00000868, "\x00\x6f\x00\x0f\x00\xf1\x2e\x00"}, /* .o...... */ \
{0x00000870, "\x74\x00\x78\x00\x74\x00\x00\x00"}, /* t.x.t... */ \
{0x00000878, "\xff\xff\x00\x00\xff\xff\xff\xff"}, /* ........ */ \
{0x00000880, "\x48\x45\x4c\x4c\x4f\x20\x20\x20"}, /* HELLO */ \
{0x00000888, "\x54\x58\x54\x20\x00\x64\xd4\x8a"}, /* TXT .d.. */ \
{0x00000890, "\x92\x4b\x92\x4b\x00\x00\xd4\x8a"}, /* .K.K.... */ \
{0x00000898, "\x92\x4b\x05\x00\x0d\x00\x00\x00"}, /* .K...... */ \
{0x000008a0, "\xe5\x45\x4c\x4c\x4f\x54\x7e\x31"}, /* .ELLOT~1 */ \
{0x000008a8, "\x53\x57\x58\x20\x00\x64\xd0\x8a"}, /* SWX .d.. */ \
{0x000008b0, "\x92\x4b\x92\x4b\x00\x00\xd0\x8a"}, /* .K.K.... */ \
{0x000008b8, "\x92\x4b\x00\x00\x00\x00\x00\x00"}, /* .K...... */ \
{0x00006000, "\x48\x65\x6c\x6c\x6f\x20\x77\x6f"}, /* Hello wo */ \
{0x00006008, "\x72\x6c\x64\x21\x0a\x00\x00\x00"}, /* rld!.... */ \
{0, NULL} } }

@ -142,8 +142,8 @@ static int execute(void)
efi_st_error("WaitForEvent returned wrong index\n");
return EFI_ST_FAILURE;
}
efi_st_printf("Notification count periodic: %u\n", timer_ticks);
if (timer_ticks < 8 || timer_ticks > 12) {
efi_st_printf("Notification count periodic: %u\n", timer_ticks);
efi_st_error("Incorrect timing of events\n");
return EFI_ST_FAILURE;
}
@ -170,8 +170,9 @@ static int execute(void)
efi_st_error("Could not wait for event\n");
return EFI_ST_FAILURE;
}
efi_st_printf("Notification count single shot: %u\n", timer_ticks);
if (timer_ticks != 1) {
efi_st_printf("Notification count single shot: %u\n",
timer_ticks);
efi_st_error("Single shot timer failed\n");
return EFI_ST_FAILURE;
}
@ -180,8 +181,9 @@ static int execute(void)
efi_st_error("Could not wait for event\n");
return EFI_ST_FAILURE;
}
efi_st_printf("Notification count stopped timer: %u\n", timer_ticks);
if (timer_ticks != 1) {
efi_st_printf("Notification count stopped timer: %u\n",
timer_ticks);
efi_st_error("Stopped timer fired\n");
return EFI_ST_FAILURE;
}

@ -194,7 +194,7 @@ static int execute(void)
&guid3, &interface3,
NULL);
if (ret == EFI_SUCCESS) {
efi_st_todo("UninstallMultipleProtocolInterfaces did not catch error\n");
efi_st_error("UninstallMultipleProtocolInterfaces did not catch error\n");
return EFI_ST_FAILURE;
}
@ -273,8 +273,8 @@ static int execute(void)
&guid2, &interface2,
NULL);
if (ret != EFI_SUCCESS) {
efi_st_todo("UninstallMultipleProtocolInterfaces failed\n");
/* This test is known to fail due to missing implementation */
efi_st_error("UninstallMultipleProtocolInterfaces failed\n");
return EFI_ST_FAILURE;
}
/*
* Check that the protocols are really uninstalled.
@ -287,8 +287,8 @@ static int execute(void)
return EFI_ST_FAILURE;
}
if (count != 1) {
efi_st_todo("UninstallMultipleProtocolInterfaces failed to uninstall protocols\n");
/* This test is known to fail due to missing implementation */
efi_st_error("UninstallMultipleProtocolInterfaces failed to uninstall protocols\n");
return EFI_ST_FAILURE;
}
ret = find_in_buffer(handle1, count, buffer);
if (ret != EFI_SUCCESS) {
@ -327,19 +327,19 @@ static int execute(void)
ret = boottime->uninstall_protocol_interface(handle1, &guid1,
&interface1);
if (ret != EFI_SUCCESS) {
efi_st_todo("UninstallProtocolInterface failed\n");
/* This test is known to fail due to missing implementation */
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->handle_protocol(handle1, &guid1, (void **)&interface);
if (ret == EFI_SUCCESS) {
efi_st_todo("UninstallProtocolInterface failed\n");
/* This test is known to fail due to missing implementation */
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
ret = boottime->uninstall_protocol_interface(handle1, &guid3,
&interface1);
if (ret != EFI_SUCCESS) {
efi_st_todo("UninstallProtocolInterface failed\n");
/* This test is known to fail due to missing implementation */
efi_st_error("UninstallProtocolInterface failed\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;

@ -0,0 +1,37 @@
/*
* efi_selftest_miniapp_exit
*
* Copyright (c) 2018 Heinrich Schuchardt
*
* SPDX-License-Identifier: GPL-2.0+
*
* This EFI application is run by the StartImage selftest.
* It uses the Exit boot service to return.
*/
#include <common.h>
#include <efi_api.h>
/*
* Entry point of the EFI application.
*
* @handle handle of the loaded image
* @systable system table
* @return status code
*/
efi_status_t EFIAPI efi_main(efi_handle_t handle,
struct efi_system_table *systable)
{
struct efi_simple_text_output_protocol *con_out = systable->con_out;
con_out->output_string(con_out, L"EFI application calling Exit\n");
/* The return value is checked by the calling test */
systable->boottime->exit(handle, EFI_UNSUPPORTED, 0, NULL);
/*
* This statement should not be reached.
* To enable testing use a different return value.
*/
return EFI_SUCCESS;
}

@ -0,0 +1,32 @@
/*
* efi_selftest_miniapp_return
*
* Copyright (c) 2018 Heinrich Schuchardt
*
* SPDX-License-Identifier: GPL-2.0+
*
* This EFI application is run by the StartImage selftest.
* It returns directly without calling the Exit boot service.
*/
#include <common.h>
#include <efi_api.h>
/*
* Entry point of the EFI application.
*
* @handle handle of the loaded image
* @systable system table
* @return status code
*/
efi_status_t EFIAPI efi_main(efi_handle_t handle,
struct efi_system_table *systable)
{
struct efi_simple_text_output_protocol *con_out = systable->con_out;
con_out->output_string(con_out,
L"EFI application returning w/o calling Exit\n");
/* The return value is checked by the calling test */
return EFI_INCOMPATIBLE_VERSION;
}

@ -0,0 +1,149 @@
/*
* efi_selftest_start_image
*
* Copyright (c) 2018 Heinrich Schuchardt <xypron.glpk@gmx.de>
*
* SPDX-License-Identifier: GPL-2.0+
*
* This test checks the StartImage boot service.
* The efi_selftest_miniapp_exit.efi application is loaded into memory
* and started.
*/
#include <efi_selftest.h>
/* Include containing the miniapp.efi application */
#include "efi_miniapp_file_image_exit.h"
/* Block size of compressed disk image */
#define COMPRESSED_DISK_IMAGE_BLOCK_SIZE 8
/* Binary logarithm of the block size */
#define LB_BLOCK_SIZE 9
static efi_handle_t image_handle;
static struct efi_boot_services *boottime;
/* One 8 byte block of the compressed disk image */
struct line {
size_t addr;
char *line;
};
/* Compressed file image */
struct compressed_file_image {
size_t length;
struct line lines[];
};
static struct compressed_file_image img = EFI_ST_DISK_IMG;
/* Decompressed file image */
static u8 *image;
/*
* Decompress the disk image.
*
* @image decompressed disk image
* @return status code
*/
static efi_status_t decompress(u8 **image)
{
u8 *buf;
size_t i;
size_t addr;
size_t len;
efi_status_t ret;
ret = boottime->allocate_pool(EFI_LOADER_DATA, img.length,
(void **)&buf);
if (ret != EFI_SUCCESS) {
efi_st_error("Out of memory\n");
return ret;
}
boottime->set_mem(buf, img.length, 0);
for (i = 0; ; ++i) {
if (!img.lines[i].line)
break;
addr = img.lines[i].addr;
len = COMPRESSED_DISK_IMAGE_BLOCK_SIZE;
if (addr + len > img.length)
len = img.length - addr;
boottime->copy_mem(buf + addr, img.lines[i].line, len);
}
*image = buf;
return ret;
}
/*
* Setup unit test.
*
* @handle: handle of the loaded image
* @systable: system table
* @return: EFI_ST_SUCCESS for success
*/
static int setup(const efi_handle_t handle,
const struct efi_system_table *systable)
{
image_handle = handle;
boottime = systable->boottime;
/* Load the application image into memory */
decompress(&image);
return EFI_ST_SUCCESS;
}
/*
* Tear down unit test.
*
* @return: EFI_ST_SUCCESS for success
*/
static int teardown(void)
{
efi_status_t r = EFI_ST_SUCCESS;
if (image) {
r = efi_free_pool(image);
if (r != EFI_SUCCESS) {
efi_st_error("Failed to free image\n");
return EFI_ST_FAILURE;
}
}
return r;
}
/*
* Execute unit test.
*
* Load and start the application image.
*
* @return: EFI_ST_SUCCESS for success
*/
static int execute(void)
{
efi_status_t ret;
efi_handle_t handle;
ret = boottime->load_image(false, image_handle, NULL, image,
img.length, &handle);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to load image\n");
return EFI_ST_FAILURE;
}
ret = boottime->start_image(handle, NULL, NULL);
if (ret != EFI_UNSUPPORTED) {
efi_st_error("Wrong return value from application\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;
}
EFI_UNIT_TEST(startimage_exit) = {
.name = "start image exit",
.phase = EFI_EXECUTE_BEFORE_BOOTTIME_EXIT,
.setup = setup,
.execute = execute,
.teardown = teardown,
};

@ -0,0 +1,149 @@
/*
* efi_selftest_start_image
*
* Copyright (c) 2018 Heinrich Schuchardt <xypron.glpk@gmx.de>
*
* SPDX-License-Identifier: GPL-2.0+
*
* This test checks the StartImage boot service.
* The efi_selftest_miniapp_return.efi application is loaded into memory
* and started.
*/
#include <efi_selftest.h>
/* Include containing the miniapp.efi application */
#include "efi_miniapp_file_image_return.h"
/* Block size of compressed disk image */
#define COMPRESSED_DISK_IMAGE_BLOCK_SIZE 8
/* Binary logarithm of the block size */
#define LB_BLOCK_SIZE 9
static efi_handle_t image_handle;
static struct efi_boot_services *boottime;
/* One 8 byte block of the compressed disk image */
struct line {
size_t addr;
char *line;
};
/* Compressed file image */
struct compressed_file_image {
size_t length;
struct line lines[];
};
static struct compressed_file_image img = EFI_ST_DISK_IMG;
/* Decompressed file image */
static u8 *image;
/*
* Decompress the disk image.
*
* @image decompressed disk image
* @return status code
*/
static efi_status_t decompress(u8 **image)
{
u8 *buf;
size_t i;
size_t addr;
size_t len;
efi_status_t ret;
ret = boottime->allocate_pool(EFI_LOADER_DATA, img.length,
(void **)&buf);
if (ret != EFI_SUCCESS) {
efi_st_error("Out of memory\n");
return ret;
}
boottime->set_mem(buf, img.length, 0);
for (i = 0; ; ++i) {
if (!img.lines[i].line)
break;
addr = img.lines[i].addr;
len = COMPRESSED_DISK_IMAGE_BLOCK_SIZE;
if (addr + len > img.length)
len = img.length - addr;
boottime->copy_mem(buf + addr, img.lines[i].line, len);
}
*image = buf;
return ret;
}
/*
* Setup unit test.
*
* @handle: handle of the loaded image
* @systable: system table
* @return: EFI_ST_SUCCESS for success
*/
static int setup(const efi_handle_t handle,
const struct efi_system_table *systable)
{
image_handle = handle;
boottime = systable->boottime;
/* Load the application image into memory */
decompress(&image);
return EFI_ST_SUCCESS;
}
/*
* Tear down unit test.
*
* @return: EFI_ST_SUCCESS for success
*/
static int teardown(void)
{
efi_status_t r = EFI_ST_SUCCESS;
if (image) {
r = efi_free_pool(image);
if (r != EFI_SUCCESS) {
efi_st_error("Failed to free image\n");
return EFI_ST_FAILURE;
}
}
return r;
}
/*
* Execute unit test.
*
* Load and start the application image.
*
* @return: EFI_ST_SUCCESS for success
*/
static int execute(void)
{
efi_status_t ret;
efi_handle_t handle;
ret = boottime->load_image(false, image_handle, NULL, image,
img.length, &handle);
if (ret != EFI_SUCCESS) {
efi_st_error("Failed to load image\n");
return EFI_ST_FAILURE;
}
ret = boottime->start_image(handle, NULL, NULL);
if (ret != EFI_INCOMPATIBLE_VERSION) {
efi_st_error("Wrong return value from application\n");
return EFI_ST_FAILURE;
}
return EFI_ST_SUCCESS;
}
EFI_UNIT_TEST(startimage) = {
.name = "start image return",
.phase = EFI_EXECUTE_BEFORE_BOOTTIME_EXIT,
.setup = setup,
.execute = execute,
.teardown = teardown,
};

@ -144,9 +144,10 @@ static int execute(void)
efi_st_error("WaitForEvent returned wrong index\n");
return EFI_ST_FAILURE;
}
efi_st_printf("Notification count with TPL level TPL_APPLICATION: %u\n",
notification_count);
if (notification_count < 8 || notification_count > 12) {
efi_st_printf(
"Notification count with TPL level TPL_APPLICATION: %u\n",
notification_count);
efi_st_error("Incorrect timing of events\n");
return EFI_ST_FAILURE;
}
@ -181,9 +182,10 @@ static int execute(void)
efi_st_error("Could not check event\n");
return EFI_ST_FAILURE;
}
efi_st_printf("Notification count with TPL level TPL_CALLBACK: %u\n",
notification_count);
if (notification_count != 0) {
efi_st_printf(
"Notification count with TPL level TPL_CALLBACK: %u\n",
notification_count);
efi_st_error("Suppressed timer fired\n");
return EFI_ST_FAILURE;
}
@ -200,9 +202,10 @@ static int execute(void)
efi_st_error("Could not wait for event\n");
return EFI_ST_FAILURE;
}
efi_st_printf("Notification count with TPL level TPL_APPLICATION: %u\n",
notification_count);
if (notification_count < 1) {
efi_st_printf(
"Notification count with TPL level TPL_APPLICATION: %u\n",
notification_count);
efi_st_error("Queued timer event did not fire\n");
return EFI_ST_FAILURE;
}

@ -11,16 +11,17 @@
* from hush: simple_itoa() was lifted from boa-0.93.15
*/
#include <stdarg.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <common.h>
#include <charset.h>
#include <efi_loader.h>
#include <div64.h>
#include <uuid.h>
#include <stdarg.h>
#include <linux/ctype.h>
#include <linux/err.h>
#include <linux/types.h>
#include <linux/string.h>
#include <div64.h>
#define noinline __attribute__((noinline))
/* we use this so that we can do without the ctype library */
@ -292,6 +293,26 @@ static char *string16(char *buf, char *end, u16 *s, int field_width,
return buf;
}
#if defined(CONFIG_EFI_LOADER) && \
!defined(CONFIG_SPL_BUILD) && !defined(API_BUILD)
static char *device_path_string(char *buf, char *end, void *dp, int field_width,
int precision, int flags)
{
u16 *str;
if (!dp)
return "<NULL>";
str = efi_dp_str((struct efi_device_path *)dp);
if (!str)
return ERR_PTR(-ENOMEM);
buf = string16(buf, end, str, field_width, precision, flags);
efi_free_pool(str);
return buf;
}
#endif
#ifdef CONFIG_CMD_NET
static const char hex_asc[] = "0123456789abcdef";
#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
@ -435,6 +456,12 @@ static char *pointer(const char *fmt, char *buf, char *end, void *ptr,
#endif
switch (*fmt) {
#if defined(CONFIG_EFI_LOADER) && \
!defined(CONFIG_SPL_BUILD) && !defined(API_BUILD)
case 'D':
return device_path_string(buf, end, ptr, field_width,
precision, flags);
#endif
#ifdef CONFIG_CMD_NET
case 'a':
flags |= SPECIAL | ZEROPAD;
@ -604,6 +631,8 @@ repeat:
str = pointer(fmt + 1, str, end,
va_arg(args, void *),
field_width, precision, flags);
if (IS_ERR(str))
return PTR_ERR(str);
/* Skip all alphanumeric pointer suffixes */
while (isalnum(fmt[1]))
fmt++;
@ -768,6 +797,9 @@ int printf(const char *fmt, ...)
i = vscnprintf(printbuffer, sizeof(printbuffer), fmt, args);
va_end(args);
/* Handle error */
if (i <= 0)
return i;
/* Print the string */
puts(printbuffer);
return i;
@ -784,6 +816,9 @@ int vprintf(const char *fmt, va_list args)
*/
i = vscnprintf(printbuffer, sizeof(printbuffer), fmt, args);
/* Handle error */
if (i <= 0)
return i;
/* Print the string */
puts(printbuffer);
return i;

@ -7,12 +7,46 @@
#define DEBUG
#include <common.h>
#if defined(CONFIG_EFI_LOADER) && \
!defined(CONFIG_SPL_BUILD) && !defined(API_BUILD)
#include <efi_api.h>
#endif
#include <display_options.h>
#include <version.h>
#define FAKE_BUILD_TAG "jenkins-u-boot-denx_uboot_dm-master-build-aarch64" \
"and a lot more text to come"
/* Test efi_loader specific printing */
static void efi_ut_print(void)
{
#if defined(CONFIG_EFI_LOADER) && \
!defined(CONFIG_SPL_BUILD) && !defined(API_BUILD)
char str[10];
u8 buf[sizeof(struct efi_device_path_sd_mmc_path) +
sizeof(struct efi_device_path)];
u8 *pos = buf;
struct efi_device_path *dp_end;
struct efi_device_path_sd_mmc_path *dp_sd =
(struct efi_device_path_sd_mmc_path *)pos;
/* Create a device path for an SD card */
dp_sd->dp.type = DEVICE_PATH_TYPE_MESSAGING_DEVICE;
dp_sd->dp.sub_type = DEVICE_PATH_SUB_TYPE_MSG_SD;
dp_sd->dp.length = sizeof(struct efi_device_path_sd_mmc_path);
dp_sd->slot_number = 3;
pos += sizeof(struct efi_device_path_sd_mmc_path);
/* Append end node */
dp_end = (struct efi_device_path *)pos;
dp_end->type = DEVICE_PATH_TYPE_END;
dp_end->sub_type = DEVICE_PATH_SUB_TYPE_END;
dp_end->length = sizeof(struct efi_device_path);
snprintf(str, sizeof(str), "_%pD_", buf);
assert(!strcmp("_/SD(3)_", str));
#endif
}
static int do_ut_print(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
@ -75,6 +109,9 @@ static int do_ut_print(cmd_tbl_t *cmdtp, int flag, int argc,
assert(!strncmp(FAKE_BUILD_TAG, s + 9 + len, 12));
assert(!strcmp("\n\n", s + big_str_len - 3));
/* Test efi_loader specific printing */
efi_ut_print();
printf("%s: Everything went swimmingly\n", __func__);
return 0;
}

1
tools/.gitignore vendored

@ -6,6 +6,7 @@
/easylogo/easylogo
/envcrc
/fdtgrep
/file2include
/fit_check_sign
/fit_info
/gdb/gdbcont

@ -57,6 +57,8 @@ mkenvimage-objs := mkenvimage.o os_support.o lib/crc32.o
hostprogs-y += dumpimage mkimage
hostprogs-$(CONFIG_FIT_SIGNATURE) += fit_info fit_check_sign
hostprogs-$(CONFIG_CMD_BOOTEFI_SELFTEST) += file2include
FIT_SIG_OBJS-$(CONFIG_FIT_SIGNATURE) := common/image-sig.o
# The following files are synced with upstream DTC.
@ -118,6 +120,7 @@ dumpimage-objs := $(dumpimage-mkimage-objs) dumpimage.o
mkimage-objs := $(dumpimage-mkimage-objs) mkimage.o
fit_info-objs := $(dumpimage-mkimage-objs) fit_info.o
fit_check_sign-objs := $(dumpimage-mkimage-objs) fit_check_sign.o
file2include-objs := file2include.o
ifneq ($(CONFIG_MX23)$(CONFIG_MX28),)
# Add CONFIG_MXS into host CFLAGS, so we can check whether or not register

@ -0,0 +1,106 @@
/*
* Convert a file image to a C define
*
* Copyright (c) 2017 Heinrich Schuchardt <xypron.glpk@gmx.de>
*
* SPDX-License-Identifier: GPL-2.0+
*
* For testing EFI disk management we need an in memory image of
* a disk.
*
* The tool file2include converts a file to a C include. The file
* is separated into strings of 8 bytes. Only the non-zero strings
* are written to the include. The output format has been designed
* to maintain readability.
*
* As the disk image needed for testing contains mostly zeroes a high
* compression ratio can be attained.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <malloc.h>
/* Size of the blocks written to the compressed file */
#define BLOCK_SIZE 8
int main(int argc, char *argv[])
{
FILE *file;
int ret;
unsigned char *buf;
size_t count, i, j;
/* Provide usage help */
if (argc != 2) {
printf("Usage:\n%s FILENAME\n", argv[0]);
return EXIT_FAILURE;
}
/* Open file */
file = fopen(argv[1], "r");
if (!file) {
perror("fopen");
return EXIT_FAILURE;
}
/* Get file length */
ret = fseek(file, 0, SEEK_END);
if (ret < 0) {
perror("fseek");
return EXIT_FAILURE;
}
count = ftell(file);
if (!count) {
fprintf(stderr, "File %s has length 0\n", argv[1]);
return EXIT_FAILURE;
}
rewind(file);
/* Read file */
buf = malloc(count);
if (!buf) {
perror("calloc");
return EXIT_FAILURE;
}
count = fread(buf, 1, count, file);
/* Generate output */
printf("/*\n");
printf(" * Non-zero %u byte strings of a disk image\n", BLOCK_SIZE);
printf(" *\n");
printf(" * Generated with tools/file2include\n");
printf(" *\n");
printf(" * SPDX-License-Identifier: GPL-2.0+\n");
printf(" */\n\n");
printf("#define EFI_ST_DISK_IMG { 0x%08zx, { \\\n", count);
for (i = 0; i < count; i += BLOCK_SIZE) {
int c = 0;
for (j = i; j < i + BLOCK_SIZE && j < count; ++j) {
if (buf[j])
c = 1;
}
if (!c)
continue;
printf("\t{0x%08zx, \"", i);
for (j = i; j < i + BLOCK_SIZE && j < count; ++j)
printf("\\x%02x", buf[j]);
printf("\"}, /* ");
for (j = i; j < i + BLOCK_SIZE && j < count; ++j) {
if (buf[j] >= 0x20 && buf[j] <= 0x7e)
printf("%c", buf[j]);
else
printf(".");
}
printf(" */ \\\n");
}
printf("\t{0, NULL} } }\n");
/* Release resources */
free(buf);
ret = fclose(file);
if (ret) {
perror("fclose");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Loading…
Cancel
Save