ppc4xx: Remove AP1000 board support

As the board seems to be unmaintained for some time, lets remove
the support in mainline completely.

Signed-off-by: Stefan Roese <sr@denx.de>
Cc: James MacAulay <james.macaulay@amirix.com>
Acked-by: Marek Vasut <marex@denx.de>
master
Stefan Roese 12 years ago committed by Tom Rini
parent dee9c534db
commit a821d08dca
  1. 8
      arch/powerpc/cpu/ppc4xx/speed.c
  2. 7
      arch/powerpc/include/asm/ppc4xx.h
  3. 47
      board/amirix/ap1000/Makefile
  4. 704
      board/amirix/ap1000/ap1000.c
  5. 172
      board/amirix/ap1000/ap1000.h
  6. 900
      board/amirix/ap1000/flash.c
  7. 30
      board/amirix/ap1000/init.S
  8. 318
      board/amirix/ap1000/pci.c
  9. 750
      board/amirix/ap1000/powerspan.c
  10. 170
      board/amirix/ap1000/powerspan.h
  11. 134
      board/amirix/ap1000/serial.c
  12. 96
      board/amirix/ap1000/u-boot.lds
  13. 1
      boards.cfg
  14. 42
      drivers/net/e1000.c
  15. 4
      include/common.h
  16. 247
      include/configs/AP1000.h

@ -812,14 +812,6 @@ unsigned long determine_pci_clock_per(void)
extern void get_sys_info (sys_info_t * sysInfo);
extern ulong get_PCI_freq (void);
#elif defined(CONFIG_AP1000)
void get_sys_info (sys_info_t * sysInfo)
{
sysInfo->freqProcessor = 240 * 1000 * 1000;
sysInfo->freqPLB = 80 * 1000 * 1000;
sysInfo->freqPCI = 33 * 1000 * 1000;
}
#elif defined(CONFIG_405)
void get_sys_info (sys_info_t * sysInfo)

@ -84,13 +84,6 @@
#endif
/*
* Configure which SDRAM/DDR/DDR2 controller is equipped
*/
#if defined(CONFIG_AP1000)
#define CONFIG_SDRAM_PPC4xx_IBM_SDRAM /* IBM SDRAM controller */
#endif
/*
* Common registers for all SoC's
*/
/* DCR registers */

@ -1,47 +0,0 @@
#
# (C) Copyright 2000-2006
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
#
# See file CREDITS for list of people who contributed to this
# project.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
#
include $(TOPDIR)/config.mk
LIB = $(obj)lib$(BOARD).o
COBJS = $(BOARD).o flash.o serial.o pci.o powerspan.o
SOBJS = init.o
SRCS := $(SOBJS:.o=.S) $(COBJS:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS))
SOBJS := $(addprefix $(obj),$(SOBJS))
all: $(LIB) $(SOBJS)
$(LIB): $(OBJS)
$(call cmd_link_o_target, $^)
#########################################################################
# defines $(obj).depend target
include $(SRCTREE)/rules.mk
sinclude $(obj).depend
#########################################################################

@ -1,704 +0,0 @@
/*
* amirix.c: ppcboot platform support for AMIRIX board
*
* Copyright 2002 Mind NV
* Copyright 2003 AMIRIX Systems Inc.
*
* http://www.mind.be/
* http://www.amirix.com/
*
* Author : Peter De Schrijver (p2@mind.be)
* Frank Smith (smith@amirix.com)
*
* Derived from : Other platform support files in this tree, ml2
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL) version 2, incorporated herein by
* reference. Drivers based on or derived from this code fall under the GPL
* and must retain the authorship, copyright and this license notice. This
* file is not a complete program and may only be used when the entire
* program is licensed under the GPL.
*
*/
#include <common.h>
#include <command.h>
#include <netdev.h>
#include <asm/processor.h>
#include "powerspan.h"
#include "ap1000.h"
int board_pre_init (void)
{
return 0;
}
/** serial number and platform display at startup */
int checkboard (void)
{
char buf[64];
int l = getenv_f("serial#", buf, sizeof(buf));
/* After a loadace command, the SystemAce control register is left in a wonky state. */
/* this code did not work in board_pre_init */
unsigned char *p = (unsigned char *) AP1000_SYSACE_REGBASE;
unsigned int *revision_reg_ptr = (unsigned int *) AP1xx_FPGA_REV_ADDR;
unsigned int device = (*revision_reg_ptr & AP1xx_TARGET_MASK);
p[SYSACE_CTRLREG0] = 0x0;
/* add platform and device to banner */
switch (device) {
case AP1xx_AP107_TARGET:
puts (AP1xx_AP107_TARGET_STR);
break;
case AP1xx_AP120_TARGET:
puts (AP1xx_AP120_TARGET_STR);
break;
case AP1xx_AP130_TARGET:
puts (AP1xx_AP130_TARGET_STR);
break;
case AP1xx_AP1070_TARGET:
puts (AP1xx_AP1070_TARGET_STR);
break;
case AP1xx_AP1100_TARGET:
puts (AP1xx_AP1100_TARGET_STR);
break;
default:
puts (AP1xx_UNKNOWN_STR);
break;
}
puts (AP1xx_TARGET_STR);
puts (" with ");
switch (get_platform ()) {
case AP100_BASELINE_PLATFORM:
case AP1000_BASELINE_PLATFORM:
puts (AP1xx_BASELINE_PLATFORM_STR);
break;
case AP1xx_QUADGE_PLATFORM:
puts (AP1xx_QUADGE_PLATFORM_STR);
break;
case AP1xx_MGT_REF_PLATFORM:
puts (AP1xx_MGT_REF_PLATFORM_STR);
break;
case AP1xx_STANDARD_PLATFORM:
puts (AP1xx_STANDARD_PLATFORM_STR);
break;
case AP1xx_DUAL_PLATFORM:
puts (AP1xx_DUAL_PLATFORM_STR);
break;
case AP1xx_BASE_SRAM_PLATFORM:
puts (AP1xx_BASE_SRAM_PLATFORM_STR);
break;
case AP1xx_PCI_PCB_TESTPLATFORM:
case AP1000_PCI_PCB_TESTPLATFORM:
puts (AP1xx_PCI_PCB_TESTPLATFORM_STR);
break;
case AP1xx_DUAL_GE_MEZZ_TESTPLATFORM:
puts (AP1xx_DUAL_GE_MEZZ_TESTPLATFORM_STR);
break;
case AP1xx_SFP_MEZZ_TESTPLATFORM:
puts (AP1xx_SFP_MEZZ_TESTPLATFORM_STR);
break;
default:
puts (AP1xx_UNKNOWN_STR);
break;
}
if ((get_platform () & AP1xx_TESTPLATFORM_MASK) != 0) {
puts (AP1xx_TESTPLATFORM_STR);
} else {
puts (AP1xx_PLATFORM_STR);
}
putc ('\n');
puts ("Serial#: ");
if (l < 0) {
printf ("### No HW ID - assuming AMIRIX");
} else {
int i;
for (i = 0; i < l; ++i) {
if (buf[i] == ' ') {
buf[i] = '\0';
break;
}
}
puts(buf);
}
putc ('\n');
return (0);
}
phys_size_t initdram (int board_type)
{
char buf[64];
int i = getenv_f("dramsize", buf, sizeof(buf));
if (i > 0) {
char *s = buf;
if ((s[0] == '0') && ((s[1] == 'x') || (s[1] == 'X'))) {
s += 2;
}
return (long int)simple_strtoul (s, NULL, 16);
} else {
/* give all 64 MB */
return 64 * 1024 * 1024;
}
}
unsigned int get_platform (void)
{
unsigned int *revision_reg_ptr = (unsigned int *) AP1xx_FPGA_REV_ADDR;
return (*revision_reg_ptr & AP1xx_PLATFORM_MASK);
}
#if 0 /* loadace is not working; it appears to be a hardware issue with the system ace. */
/*
This function loads FPGA configurations from the SystemACE CompactFlash
*/
int do_loadace (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
unsigned char *p = (unsigned char *) AP1000_SYSACE_REGBASE;
int cfg;
if ((p[SYSACE_STATREG0] & 0x10) == 0) {
p[SYSACE_CTRLREG0] = 0x80;
printf ("\nNo CompactFlash Detected\n\n");
p[SYSACE_CTRLREG0] = 0x00;
return 1;
}
/* reset configuration controller: | 0x80 */
/* select cpflash & ~0x40 */
/* cfg start | 0x20 */
/* wait for cfgstart & ~0x10 */
/* force cfgmode: | 0x08 */
/* do no force cfgaddr: & ~0x04 */
/* clear mpulock: & ~0x02 */
/* do not force lock request & ~0x01 */
p[SYSACE_CTRLREG0] = 0x80 | 0x20 | 0x08;
p[SYSACE_CTRLREG1] = 0x00;
/* force config address if arg2 exists */
if (argc == 2) {
cfg = simple_strtoul (argv[1], NULL, 10);
if (cfg > 7) {
printf ("\nInvalid Configuration\n\n");
p[SYSACE_CTRLREG0] = 0x00;
return 1;
}
/* Set config address */
p[SYSACE_CTRLREG1] = (cfg << 5);
/* force cfgaddr */
p[SYSACE_CTRLREG0] |= 0x04;
} else {
cfg = (p[SYSACE_STATREG1] & 0xE0) >> 5;
}
/* release configuration controller */
printf ("\nLoading V2PRO with config %d...\n", cfg);
p[SYSACE_CTRLREG0] &= ~0x80;
while ((p[SYSACE_STATREG1] & 0x01) == 0) {
if (p[SYSACE_ERRREG0] & 0x80) {
/* attempting to load an invalid configuration makes the cpflash */
/* appear to be removed. Reset here to avoid that problem */
p[SYSACE_CTRLREG0] = 0x80;
printf ("\nConfiguration %d Read Error\n\n", cfg);
p[SYSACE_CTRLREG0] = 0x00;
return 1;
}
}
p[SYSACE_CTRLREG0] |= 0x20;
return 0;
}
#endif
/** Console command to display and set the software reconfigure byte
* <pre>
* swconfig - display the current value of the software reconfigure byte
* swconfig [#] - change the software reconfigure byte to #
* </pre>
* @param *cmdtp [IN] as passed by run_command (ignored)
* @param flag [IN] as passed by run_command (ignored)
* @param argc [IN] as passed by run_command if 1, display, if 2 change
* @param *argv[] [IN] contains the parameters to use
* @return
* <pre>
* 0 if passed
* -1 if failed
* </pre>
*/
int do_swconfigbyte (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
unsigned char *sector_buffer = NULL;
unsigned char input_char;
int write_result;
unsigned int input_uint;
/* display value if no argument */
if (argc < 2) {
printf ("Software configuration byte is currently: 0x%02x\n",
*((unsigned char *) (SW_BYTE_SECTOR_ADDR +
SW_BYTE_SECTOR_OFFSET)));
return 0;
} else if (argc > 3) {
printf ("Too many arguments\n");
return -1;
}
/* if 3 arguments, 3rd argument is the address to use */
if (argc == 3) {
input_uint = simple_strtoul (argv[1], NULL, 16);
sector_buffer = (unsigned char *) input_uint;
} else {
sector_buffer = (unsigned char *) DEFAULT_TEMP_ADDR;
}
input_char = simple_strtoul (argv[1], NULL, 0);
if ((input_char & ~SW_BYTE_MASK) != 0) {
printf ("Input of 0x%02x will be masked to 0x%02x\n",
input_char, (input_char & SW_BYTE_MASK));
input_char = input_char & SW_BYTE_MASK;
}
memcpy (sector_buffer, (void *) SW_BYTE_SECTOR_ADDR,
SW_BYTE_SECTOR_SIZE);
sector_buffer[SW_BYTE_SECTOR_OFFSET] = input_char;
printf ("Erasing Flash...");
if (flash_sect_erase
(SW_BYTE_SECTOR_ADDR,
(SW_BYTE_SECTOR_ADDR + SW_BYTE_SECTOR_OFFSET))) {
return -1;
}
printf ("Writing to Flash... ");
write_result =
flash_write ((char *)sector_buffer, SW_BYTE_SECTOR_ADDR,
SW_BYTE_SECTOR_SIZE);
if (write_result != 0) {
flash_perror (write_result);
return -1;
} else {
printf ("done\n");
printf ("Software configuration byte is now: 0x%02x\n",
*((unsigned char *) (SW_BYTE_SECTOR_ADDR +
SW_BYTE_SECTOR_OFFSET)));
}
return 0;
}
#define ONE_SECOND 1000000
int do_pause (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
int pause_time;
unsigned int delay_time;
int break_loop = 0;
/* display value if no argument */
if (argc < 2) {
pause_time = 1;
}
else if (argc > 2) {
printf ("Too many arguments\n");
return -1;
} else {
pause_time = simple_strtoul (argv[1], NULL, 0);
}
printf ("Pausing with a poll time of %d, press any key to reactivate\n", pause_time);
delay_time = pause_time * ONE_SECOND;
while (break_loop == 0) {
udelay (delay_time);
if (serial_tstc () != 0) {
break_loop = 1;
/* eat user key presses */
while (serial_tstc () != 0) {
serial_getc ();
}
}
}
return 0;
}
int do_swreconfig (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
printf ("Triggering software reconfigure (software config byte is 0x%02x)...\n",
*((unsigned char *) (SW_BYTE_SECTOR_ADDR + SW_BYTE_SECTOR_OFFSET)));
udelay (1000);
*((unsigned char *) AP1000_CPLD_BASE) = 1;
return 0;
}
#define GET_DECIMAL(low_byte) ((low_byte >> 5) * 125)
#define TEMP_BUSY_BIT 0x80
#define TEMP_LHIGH_BIT 0x40
#define TEMP_LLOW_BIT 0x20
#define TEMP_EHIGH_BIT 0x10
#define TEMP_ELOW_BIT 0x08
#define TEMP_OPEN_BIT 0x04
#define TEMP_ETHERM_BIT 0x02
#define TEMP_LTHERM_BIT 0x01
int do_temp_sensor (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
char cmd;
int ret_val = 0;
unsigned char temp_byte;
int temp;
int temp_low;
int low;
int low_low;
int high;
int high_low;
int therm;
unsigned char user_data[4] = { 0 };
int user_data_count = 0;
int ii;
if (argc > 1) {
cmd = argv[1][0];
} else {
cmd = 's'; /* default to status */
}
user_data_count = argc - 2;
for (ii = 0; ii < user_data_count; ii++) {
user_data[ii] = simple_strtoul (argv[2 + ii], NULL, 0);
}
switch (cmd) {
case 's':
if (I2CAccess
(0x2, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
printf ("Status : 0x%02x ", temp_byte);
if (temp_byte & TEMP_BUSY_BIT)
printf ("BUSY ");
if (temp_byte & TEMP_LHIGH_BIT)
printf ("LHIGH ");
if (temp_byte & TEMP_LLOW_BIT)
printf ("LLOW ");
if (temp_byte & TEMP_EHIGH_BIT)
printf ("EHIGH ");
if (temp_byte & TEMP_ELOW_BIT)
printf ("ELOW ");
if (temp_byte & TEMP_OPEN_BIT)
printf ("OPEN ");
if (temp_byte & TEMP_ETHERM_BIT)
printf ("ETHERM ");
if (temp_byte & TEMP_LTHERM_BIT)
printf ("LTHERM");
printf ("\n");
if (I2CAccess
(0x3, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
printf ("Config : 0x%02x ", temp_byte);
if (I2CAccess
(0x4, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
printf ("\n");
goto fail;
}
printf ("Conversion: 0x%02x\n", temp_byte);
if (I2CAccess
(0x22, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
printf ("Cons Alert: 0x%02x ", temp_byte);
if (I2CAccess
(0x21, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
printf ("\n");
goto fail;
}
printf ("Therm Hyst: %d\n", temp_byte);
if (I2CAccess
(0x0, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
temp = temp_byte;
if (I2CAccess
(0x6, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
low = temp_byte;
if (I2CAccess
(0x5, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
high = temp_byte;
if (I2CAccess
(0x20, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
therm = temp_byte;
printf ("Local Temp: %2d Low: %2d High: %2d THERM: %2d\n", temp, low, high, therm);
if (I2CAccess
(0x1, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
temp = temp_byte;
if (I2CAccess
(0x10, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
temp_low = temp_byte;
if (I2CAccess
(0x8, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
low = temp_byte;
if (I2CAccess
(0x14, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
low_low = temp_byte;
if (I2CAccess
(0x7, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
high = temp_byte;
if (I2CAccess
(0x13, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
high_low = temp_byte;
if (I2CAccess
(0x19, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
therm = temp_byte;
if (I2CAccess
(0x11, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&temp_byte, I2C_READ) != 0) {
goto fail;
}
printf ("Ext Temp : %2d.%03d Low: %2d.%03d High: %2d.%03d THERM: %2d Offset: %2d\n", temp, GET_DECIMAL (temp_low), low, GET_DECIMAL (low_low), high, GET_DECIMAL (high_low), therm, temp_byte);
break;
case 'l': /* alter local limits : low, high, therm */
if (argc < 3) {
goto usage;
}
/* low */
if (I2CAccess
(0xC, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&user_data[0], I2C_WRITE) != 0) {
goto fail;
}
if (user_data_count > 1) {
/* high */
if (I2CAccess
(0xB, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&user_data[1], I2C_WRITE) != 0) {
goto fail;
}
}
if (user_data_count > 2) {
/* therm */
if (I2CAccess
(0x20, I2C_SENSOR_DEV,
I2C_SENSOR_CHIP_SEL, &user_data[2],
I2C_WRITE) != 0) {
goto fail;
}
}
break;
case 'e': /* alter external limits: low, high, therm, offset */
if (argc < 3) {
goto usage;
}
/* low */
if (I2CAccess
(0xE, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&user_data[0], I2C_WRITE) != 0) {
goto fail;
}
if (user_data_count > 1) {
/* high */
if (I2CAccess
(0xD, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&user_data[1], I2C_WRITE) != 0) {
goto fail;
}
}
if (user_data_count > 2) {
/* therm */
if (I2CAccess
(0x19, I2C_SENSOR_DEV,
I2C_SENSOR_CHIP_SEL, &user_data[2],
I2C_WRITE) != 0) {
goto fail;
}
}
if (user_data_count > 3) {
/* offset */
if (I2CAccess
(0x11, I2C_SENSOR_DEV,
I2C_SENSOR_CHIP_SEL, &user_data[3],
I2C_WRITE) != 0) {
goto fail;
}
}
break;
case 'c': /* alter config settings: config, conv, cons alert, therm hyst */
if (argc < 3) {
goto usage;
}
/* config */
if (I2CAccess
(0x9, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&user_data[0], I2C_WRITE) != 0) {
goto fail;
}
if (user_data_count > 1) {
/* conversion */
if (I2CAccess
(0xA, I2C_SENSOR_DEV, I2C_SENSOR_CHIP_SEL,
&user_data[1], I2C_WRITE) != 0) {
goto fail;
}
}
if (user_data_count > 2) {
/* cons alert */
if (I2CAccess
(0x22, I2C_SENSOR_DEV,
I2C_SENSOR_CHIP_SEL, &user_data[2],
I2C_WRITE) != 0) {
goto fail;
}
}
if (user_data_count > 3) {
/* therm hyst */
if (I2CAccess
(0x21, I2C_SENSOR_DEV,
I2C_SENSOR_CHIP_SEL, &user_data[3],
I2C_WRITE) != 0) {
goto fail;
}
}
break;
default:
goto usage;
}
goto done;
fail:
printf ("Access to sensor failed\n");
ret_val = -1;
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}
U_BOOT_CMD (temp, 6, 0, do_temp_sensor,
"interact with the temperature sensor",
"temp [s]\n"
" - Show status.\n"
"temp l LOW [HIGH] [THERM]\n"
" - Set local limits.\n"
"temp e LOW [HIGH] [THERM] [OFFSET]\n"
" - Set external limits.\n"
"temp c CONFIG [CONVERSION] [CONS. ALERT] [THERM HYST]\n"
" - Set config options.\n"
"\n"
"All values can be decimal or hex (hex preceded with 0x).\n"
"Only whole numbers are supported for external limits.");
#if 0
U_BOOT_CMD (loadace, 2, 0, do_loadace,
"load fpga configuration from System ACE compact flash",
"N\n"
" - Load configuration N (0-7) from System ACE compact flash\n"
"loadace\n" " - loads default configuration");
#endif
U_BOOT_CMD (swconfig, 2, 0, do_swconfigbyte,
"display or modify the software configuration byte",
"N [ADDRESS]\n"
" - set software configuration byte to N, optionally use ADDRESS as\n"
" location of buffer for flash copy\n"
"swconfig\n" " - display software configuration byte");
U_BOOT_CMD (pause, 2, 0, do_pause,
"sleep processor until any key is pressed with poll time of N seconds",
"N\n"
" - sleep processor until any key is pressed with poll time of N seconds\n"
"pause\n"
" - sleep processor until any key is pressed with poll time of 1 second");
U_BOOT_CMD (swrecon, 1, 0, do_swreconfig,
"trigger a board reconfigure to the software selected configuration",
"\n"
" - trigger a board reconfigure to the software selected configuration");
int board_eth_init(bd_t *bis)
{
return pci_eth_init(bis);
}

@ -1,172 +0,0 @@
/*
* ap1000.h: AP1000 (e.g. AP1070, AP1100) board specific definitions and functions that are needed globally
*
* Author : James MacAulay
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL) version 2, incorporated herein by
* reference. Drivers based on or derived from this code fall under the GPL
* and must retain the authorship, copyright and this license notice. This
* file is not a complete program and may only be used when the entire
* program is licensed under the GPL.
*
*/
#ifndef __AP1000_H
#define __AP1000_H
/*
* Revision Register stuff
*/
#define AP1xx_FPGA_REV_ADDR 0x29000000
#define AP1xx_PLATFORM_MASK 0xFF000000
#define AP100_BASELINE_PLATFORM 0x01000000
#define AP1xx_QUADGE_PLATFORM 0x02000000
#define AP1xx_MGT_REF_PLATFORM 0x03000000
#define AP1xx_STANDARD_PLATFORM 0x04000000
#define AP1xx_DUAL_PLATFORM 0x05000000
#define AP1xx_BASE_SRAM_PLATFORM 0x06000000
#define AP1000_BASELINE_PLATFORM 0x21000000
#define AP1xx_TESTPLATFORM_MASK 0xC0000000
#define AP1xx_PCI_PCB_TESTPLATFORM 0xC0000000
#define AP1xx_DUAL_GE_MEZZ_TESTPLATFORM 0xC1000000
#define AP1xx_SFP_MEZZ_TESTPLATFORM 0xC2000000
#define AP1000_PCI_PCB_TESTPLATFORM 0xC3000000
#define AP1xx_TARGET_MASK 0x00FF0000
#define AP1xx_AP107_TARGET 0x00010000
#define AP1xx_AP120_TARGET 0x00020000
#define AP1xx_AP130_TARGET 0x00030000
#define AP1xx_AP1070_TARGET 0x00040000
#define AP1xx_AP1100_TARGET 0x00050000
#define AP1xx_UNKNOWN_STR "Unknown"
#define AP1xx_PLATFORM_STR " Platform"
#define AP1xx_BASELINE_PLATFORM_STR "Baseline"
#define AP1xx_QUADGE_PLATFORM_STR "Quad GE"
#define AP1xx_MGT_REF_PLATFORM_STR "MGT Reference"
#define AP1xx_STANDARD_PLATFORM_STR "Standard"
#define AP1xx_DUAL_PLATFORM_STR "Dual"
#define AP1xx_BASE_SRAM_PLATFORM_STR "Baseline with SRAM"
#define AP1xx_TESTPLATFORM_STR " Test Platform"
#define AP1xx_PCI_PCB_TESTPLATFORM_STR "Base"
#define AP1xx_DUAL_GE_MEZZ_TESTPLATFORM_STR "Dual GE Mezzanine"
#define AP1xx_SFP_MEZZ_TESTPLATFORM_STR "SFP Mezzanine"
#define AP1xx_TARGET_STR " Board"
#define AP1xx_AP107_TARGET_STR "AP107"
#define AP1xx_AP120_TARGET_STR "AP120"
#define AP1xx_AP130_TARGET_STR "AP130"
#define AP1xx_AP1070_TARGET_STR "AP1070"
#define AP1xx_AP1100_TARGET_STR "AP1100"
/*
* Flash Stuff
*/
#define AP1xx_PROGRAM_FLASH_INDEX 0
#define AP1xx_CONFIG_FLASH_INDEX 1
/*
* System Ace Stuff
*/
#define AP1000_SYSACE_REGBASE 0x28000000
#define SYSACE_STATREG0 0x04 /* 7:0 */
#define SYSACE_STATREG1 0x05 /* 15:8 */
#define SYSACE_STATREG2 0x06 /* 23:16 */
#define SYSACE_STATREG3 0x07 /* 31:24 */
#define SYSACE_ERRREG0 0x08 /* 7:0 */
#define SYSACE_ERRREG1 0x09 /* 15:8 */
#define SYSACE_ERRREG2 0x0a /* 23:16 */
#define SYSACE_ERRREG3 0x0b /* 31:24 */
#define SYSACE_CTRLREG0 0x18 /* 7:0 */
#define SYSACE_CTRLREG1 0x19 /* 15:8 */
#define SYSACE_CTRLREG2 0x1A /* 23:16 */
#define SYSACE_CTRLREG3 0x1B /* 31:24 */
/*
* Software reconfig thing
*/
#define SW_BYTE_SECTOR_ADDR 0x24FE0000
#define SW_BYTE_SECTOR_OFFSET 0x0001FFFF
#define SW_BYTE_SECTOR_SIZE 0x00020000
#define SW_BYTE_MASK 0x00000003
#define DEFAULT_TEMP_ADDR 0x00100000
#define AP1000_CPLD_BASE 0x26000000
/* PowerSpan II Stuff */
#define PSII_SYNC() asm("eieio")
#define PSPAN_BASEADDR 0x30000000
#define EEPROM_DEFAULT { 0x01, /* Byte 0 - Long Load = 0x02, short = 01, use 0xff for try no load */ \
0x0,0x0,0x0, /* Bytes 1 - 3 Power span reserved */ \
0x0, /* Byte 4 - Powerspan reserved - start of short load */ \
0x0F, /* Byte 5 - Enable PCI 1 & 2 as Bus masters and Memory targets. */ \
0x0E, /* Byte 6 - PCI 1 Target image prefetch - on for image 0,1,2, off for i20 & 3. */ \
0x00, 0x00, /* Byte 7,8 - PCI-1 Subsystem ID - */ \
0x00, 0x00, /* Byte 9,10 - PCI-1 Subsystem Vendor Id - */ \
0x00, /* Byte 11 - No PCI interrupt generation on PCI-1 PCI-2 int A */ \
0x1F, /* Byte 12 - PCI-1 enable bridge registers, all target images */ \
0xBA, /* Byte 13 - Target 0 image 128 Meg(Ram), Target 1 image 64 Meg. (config Flash/CPLD )*/ \
0xA0, /* Byte 14 - Target 2 image 64 Meg(program Flash), target 3 64k. */ \
0x00, /* Byte 15 - Vital Product Data Disabled. */ \
0x88, /* Byte 16 - PCI arbiter config complete, all requests routed through PCI-1, Unlock PCI-1 */ \
0x40, /* Byte 17 - Interrupt direction control - PCI-1 Int A out, everything else in. */ \
0x00, /* Byte 18 - I2O disabled */ \
0x00, /* Byte 19 - PCI-2 Target image prefetch - off for all images. */ \
0x00,0x00, /* Bytes 20,21 - PCI 2 Subsystem Id */ \
0x00,0x00, /* Bytes 22,23 - PCI 2 Subsystem Vendor id */ \
0x0C, /* Byte 24 - PCI-2 BAR enables, target image 0, & 1 */ \
0xBB, /* Byte 25 - PCI-2 target 0 - 128 Meg(Ram), target 1 - 128 Meg (program/config flash) */ \
0x00, /* Byte 26 - PCI-2 target 2 & 3 unused. */ \
0x00,0x00,0x00,0x00,0x00, /* Bytes 27,28,29,30, 31 - Reserved */ \
/* Long Load Information */ \
0x82,0x60, /* Bytes 32,33 - PCI-1 Device ID - Powerspan II */ \
0x10,0xE3, /* Bytes 24,35 - PCI-1 Vendor ID - Tundra */ \
0x06, /* Byte 36 - PCI-1 Class Base - Bridge device. */ \
0x80, /* Byte 37 - PCI-1 Class sub class - Other bridge. */ \
0x00, /* Byte 38 - PCI-1 Class programing interface - Other bridge */ \
0x01, /* Byte 39 - Power span revision 1. */ \
0x6E, /* Byte 40 - PB SI0 enabled, translation enabled, decode enabled, 64 Meg */ \
0x40, /* Byte 41 - PB SI0 memory command mode, PCI-1 dest */ \
0x22, /* Byte 42 - Prefetch discard after read, PCI-little endian conversion, 32 byte prefetch */ \
0x00,0x00, /* Bytes 43, 44 - Translation address for SI0, set to zero for now. */ \
0x0E, /* Byte 45 - Translation address (0) and PB bus master enables - all. */ \
0x2c,00,00, /* Bytes 46,47,48 - PB SI0 processor base address - 0x2C000000 */ \
0x30,00,00, /* Bytes 49,50,51 - PB Address for Powerspan registers - 0x30000000, big Endian */ \
0x82,0x60, /* Bytes 52, 53 - PCI-2 Device ID - Powerspan II */ \
0x10,0xE3, /* Bytes 54,55 - PCI 2 Vendor Id - Tundra */ \
0x06, /* Byte 56 - PCI-2 Class Base - Bridge device */ \
0x80, /* Byte 57 - PCI-2 Class sub class - Other Bridge. */ \
0x00, /* Byte 58 - PCI-2 class programming interface - Other bridge */ \
0x01, /* Byte 59 - PCI-2 class revision 1 */ \
0x00,0x00,0x00,0x00 }; /* Bytes 60,61, 62, 63 - Powerspan reserved */
#define EEPROM_LENGTH 64 /* Long Load */
#define I2C_SENSOR_DEV 0x9
#define I2C_SENSOR_CHIP_SEL 0x4
/*
* Board Functions
*/
void set_eat_machine_checks(int a_flag);
int get_eat_machine_checks(void);
unsigned int get_platform(void);
void* memcpyb(void * dest,const void *src,size_t count);
int process_bootflag(ulong bootflag);
void user_led_on(void);
void user_led_off(void);
#endif /* __COMMON_H_ */

@ -1,900 +0,0 @@
/**
* @file flash.c
*/
/*
* (C) Copyright 2003
* AMIRIX Systems Inc.
*
* Originated from ppcboot-2.0.0/board/esd/cpci440/strataflash.c
*
* (C) Copyright 2002
* Brad Kemp, Seranoa Networks, Brad.Kemp@seranoa.com
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/processor.h>
#undef DEBUG_FLASH
/*
* This file implements a Common Flash Interface (CFI) driver for ppcboot.
* The width of the port and the width of the chips are determined at initialization.
* These widths are used to calculate the address for access CFI data structures.
* It has been tested on an Intel Strataflash implementation.
*
* References
* JEDEC Standard JESD68 - Common Flash Interface (CFI)
* JEDEC Standard JEP137-A Common Flash Interface (CFI) ID Codes
* Intel Application Note 646 Common Flash Interface (CFI) and Command Sets
* Intel 290667-008 3 Volt Intel StrataFlash Memory datasheet
*
* TODO
* Use Primary Extended Query table (PRI) and Alternate Algorithm Query Table (ALT) to determine if protection is available
* Add support for other command sets Use the PRI and ALT to determine command set
* Verify erase and program timeouts.
*/
#define FLASH_CMD_CFI 0x98
#define FLASH_CMD_READ_ID 0x90
#define FLASH_CMD_RESET 0xff
#define FLASH_CMD_BLOCK_ERASE 0x20
#define FLASH_CMD_ERASE_CONFIRM 0xD0
#define FLASH_CMD_WRITE 0x40
#define FLASH_CMD_PROTECT 0x60
#define FLASH_CMD_PROTECT_SET 0x01
#define FLASH_CMD_PROTECT_CLEAR 0xD0
#define FLASH_CMD_CLEAR_STATUS 0x50
#define FLASH_CMD_WRITE_TO_BUFFER 0xE8
#define FLASH_CMD_WRITE_BUFFER_CONFIRM 0xD0
#define FLASH_STATUS_DONE 0x80
#define FLASH_STATUS_ESS 0x40
#define FLASH_STATUS_ECLBS 0x20
#define FLASH_STATUS_PSLBS 0x10
#define FLASH_STATUS_VPENS 0x08
#define FLASH_STATUS_PSS 0x04
#define FLASH_STATUS_DPS 0x02
#define FLASH_STATUS_R 0x01
#define FLASH_STATUS_PROTECT 0x01
#define FLASH_OFFSET_CFI 0x55
#define FLASH_OFFSET_CFI_RESP 0x10
#define FLASH_OFFSET_WTOUT 0x1F
#define FLASH_OFFSET_WBTOUT 0x20
#define FLASH_OFFSET_ETOUT 0x21
#define FLASH_OFFSET_CETOUT 0x22
#define FLASH_OFFSET_WMAX_TOUT 0x23
#define FLASH_OFFSET_WBMAX_TOUT 0x24
#define FLASH_OFFSET_EMAX_TOUT 0x25
#define FLASH_OFFSET_CEMAX_TOUT 0x26
#define FLASH_OFFSET_SIZE 0x27
#define FLASH_OFFSET_INTERFACE 0x28
#define FLASH_OFFSET_BUFFER_SIZE 0x2A
#define FLASH_OFFSET_NUM_ERASE_REGIONS 0x2C
#define FLASH_OFFSET_ERASE_REGIONS 0x2D
#define FLASH_OFFSET_PROTECT 0x02
#define FLASH_OFFSET_USER_PROTECTION 0x85
#define FLASH_OFFSET_INTEL_PROTECTION 0x81
#define FLASH_MAN_CFI 0x01000000
typedef union {
unsigned char c;
unsigned short w;
unsigned long l;
} cfiword_t;
typedef union {
unsigned char *cp;
unsigned short *wp;
unsigned long *lp;
} cfiptr_t;
#define NUM_ERASE_REGIONS 4
flash_info_t flash_info[CONFIG_SYS_MAX_FLASH_BANKS]; /* info for FLASH chips */
/*-----------------------------------------------------------------------
* Functions
*/
static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c);
static void flash_make_cmd (flash_info_t * info, uchar cmd, void *cmdbuf);
static void flash_write_cmd (flash_info_t * info, int sect, uchar offset,
uchar cmd);
static int flash_isequal (flash_info_t * info, int sect, uchar offset,
uchar cmd);
static int flash_isset (flash_info_t * info, int sect, uchar offset,
uchar cmd);
static int flash_detect_cfi (flash_info_t * info);
static ulong flash_get_size (ulong base, int banknum);
static int flash_write_cfiword (flash_info_t * info, ulong dest,
cfiword_t cword);
static int flash_full_status_check (flash_info_t * info, ulong sector,
ulong tout, char *prompt);
#ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE
static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp,
int len);
#endif
/*-----------------------------------------------------------------------
* create an address based on the offset and the port width
*/
uchar *flash_make_addr (flash_info_t * info, int sect, int offset)
{
return ((uchar *) (info->start[sect] + (offset * info->chipwidth)));
}
/*-----------------------------------------------------------------------
* read a character at a port width address
*/
uchar flash_read_uchar (flash_info_t * info, uchar offset)
{
if (info->portwidth == FLASH_CFI_8BIT) {
volatile uchar *cp;
uchar c;
cp = flash_make_addr (info, 0, offset);
c = *cp;
#ifdef DEBUG_FLASH
printf ("flash_read_uchar offset=%04x ptr=%08x c=%02x\n",
offset, (unsigned int) cp, c);
#endif
return (c);
} else if (info->portwidth == FLASH_CFI_16BIT) {
volatile ushort *sp;
ushort s;
uchar c;
sp = (ushort *) flash_make_addr (info, 0, offset);
s = *sp;
c = (uchar) s;
#ifdef DEBUG_FLASH
printf ("flash_read_uchar offset=%04x ptr=%08x s=%04x c=%02x\n", offset, (unsigned int) sp, s, c);
#endif
return (c);
}
return 0;
}
/*-----------------------------------------------------------------------
* read a short word by swapping for ppc format.
*/
ushort flash_read_ushort (flash_info_t * info, int sect, uchar offset)
{
if (info->portwidth == FLASH_CFI_8BIT) {
volatile uchar *cp;
uchar c0, c1;
ushort s;
cp = flash_make_addr (info, 0, offset);
c1 = cp[2];
c0 = cp[0];
s = c1 << 8 | c0;
#ifdef DEBUG_FLASH
printf ("flash_read_ushort offset=%04x ptr=%08x c1=%02x c0=%02x s=%04x\n", offset, (unsigned int) cp, c1, c0, s);
#endif
return (s);
} else if (info->portwidth == FLASH_CFI_16BIT) {
volatile ushort *sp;
ushort s;
uchar c0, c1;
sp = (ushort *) flash_make_addr (info, 0, offset);
s = *sp;
c1 = (uchar) sp[1];
c0 = (uchar) sp[0];
s = c1 << 8 | c0;
#ifdef DEBUG_FLASH
printf ("flash_read_ushort offset=%04x ptr=%08x c1=%02x c0=%02x s=%04x\n", offset, (unsigned int) sp, c1, c0, s);
#endif
return (s);
}
return 0;
}
/*-----------------------------------------------------------------------
* read a long word by picking the least significant byte of each maiximum
* port size word. Swap for ppc format.
*/
ulong flash_read_long (flash_info_t * info, int sect, uchar offset)
{
if (info->portwidth == FLASH_CFI_8BIT) {
volatile uchar *cp;
uchar c0, c1, c2, c3;
ulong l;
cp = flash_make_addr (info, 0, offset);
c3 = cp[6];
c2 = cp[4];
c1 = cp[2];
c0 = cp[0];
l = c3 << 24 | c2 << 16 | c1 << 8 | c0;
#ifdef DEBUG_FLASH
printf ("flash_read_long offset=%04x ptr=%08x c3=%02x c2=%02x c1=%02x c0=%02x l=%08x\n", offset, (unsigned int) cp, c3, c2, c1, c0, l);
#endif
return (l);
} else if (info->portwidth == FLASH_CFI_16BIT) {
volatile ushort *sp;
uchar c0, c1, c2, c3;
ulong l;
sp = (ushort *) flash_make_addr (info, 0, offset);
c3 = (uchar) sp[3];
c2 = (uchar) sp[2];
c1 = (uchar) sp[1];
c0 = (uchar) sp[0];
l = c3 << 24 | c2 << 16 | c1 << 8 | c0;
#ifdef DEBUG_FLASH
printf ("flash_read_long offset=%04x ptr=%08x c3=%02x c2=%02x c1=%02x c0=%02x l=%08x\n", offset, (unsigned int) sp, c3, c2, c1, c0, l);
#endif
return (l);
}
return 0;
}
/*-----------------------------------------------------------------------
*/
unsigned long flash_init (void)
{
unsigned long size;
size = 0;
flash_info[0].flash_id = FLASH_UNKNOWN;
flash_info[0].portwidth = FLASH_CFI_16BIT;
flash_info[0].chipwidth = FLASH_CFI_16BIT;
size += flash_info[0].size = flash_get_size (CONFIG_SYS_PROGFLASH_BASE, 0);
if (flash_info[0].flash_id == FLASH_UNKNOWN) {
printf ("## Unknown FLASH on Bank %d - Size = 0x%08lx = %ld MB\n", 1, flash_info[0].size, flash_info[0].size << 20);
};
flash_info[1].flash_id = FLASH_UNKNOWN;
flash_info[1].portwidth = FLASH_CFI_8BIT;
flash_info[1].chipwidth = FLASH_CFI_16BIT;
size += flash_info[1].size = flash_get_size (CONFIG_SYS_CONFFLASH_BASE, 1);
if (flash_info[1].flash_id == FLASH_UNKNOWN) {
printf ("## Unknown FLASH on Bank %d - Size = 0x%08lx = %ld MB\n", 2, flash_info[1].size, flash_info[1].size << 20);
};
return (size);
}
/*-----------------------------------------------------------------------
*/
int flash_erase (flash_info_t * info, int s_first, int s_last)
{
int rcode = 0;
int prot;
int sect;
if (info->flash_id != FLASH_MAN_CFI) {
printf ("Can't erase unknown flash type - aborted\n");
return 1;
}
if ((s_first < 0) || (s_first > s_last)) {
printf ("- no sectors to erase\n");
return 1;
}
prot = 0;
for (sect = s_first; sect <= s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
}
if (prot) {
printf ("- Warning: %d protected sectors will not be erased!\n", prot);
} else {
printf ("\n");
}
for (sect = s_first; sect <= s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
flash_write_cmd (info, sect, 0,
FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, sect, 0,
FLASH_CMD_BLOCK_ERASE);
flash_write_cmd (info, sect, 0,
FLASH_CMD_ERASE_CONFIRM);
if (flash_full_status_check
(info, sect, info->erase_blk_tout, "erase")) {
rcode = 1;
} else
printf (".");
}
}
printf (" done\n");
return rcode;
}
/*-----------------------------------------------------------------------
*/
void flash_print_info (flash_info_t * info)
{
int i;
if (info->flash_id != FLASH_MAN_CFI) {
printf ("missing or unknown FLASH type\n");
return;
}
printf ("CFI conformant FLASH (x%d device in x%d mode)",
(info->chipwidth << 3), (info->portwidth << 3));
printf (" Size: %ld MB in %d Sectors\n",
info->size >> 20, info->sector_count);
printf (" Erase timeout %ld ms, write timeout %ld ms, buffer write timeout %ld ms, buffer size %d\n", info->erase_blk_tout, info->write_tout, info->buffer_write_tout, info->buffer_size);
printf (" Sector Start Addresses:");
for (i = 0; i < info->sector_count; ++i) {
if ((i % 5) == 0)
printf ("\n");
printf (" %08lX%5s",
info->start[i], info->protect[i] ? " (RO)" : " ");
}
printf ("\n");
return;
}
/*-----------------------------------------------------------------------
* Copy memory to flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt)
{
ulong wp;
ulong cp;
int aln;
cfiword_t cword;
int i, rc;
/* get lower aligned address */
wp = (addr & ~(info->portwidth - 1));
/* handle unaligned start */
if ((aln = addr - wp) != 0) {
cword.l = 0;
cp = wp;
for (i = 0; i < aln; ++i, ++cp)
flash_add_byte (info, &cword, (*(uchar *) cp));
for (; (i < info->portwidth) && (cnt > 0); i++) {
flash_add_byte (info, &cword, *src++);
cnt--;
cp++;
}
for (; (cnt == 0) && (i < info->portwidth); ++i, ++cp)
flash_add_byte (info, &cword, (*(uchar *) cp));
if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
return rc;
wp = cp;
}
#ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE
while (cnt >= info->portwidth) {
i = info->buffer_size > cnt ? cnt : info->buffer_size;
if ((rc = flash_write_cfibuffer (info, wp, src, i)) != ERR_OK)
return rc;
wp += i;
src += i;
cnt -= i;
}
#else
/* handle the aligned part */
while (cnt >= info->portwidth) {
cword.l = 0;
for (i = 0; i < info->portwidth; i++) {
flash_add_byte (info, &cword, *src++);
}
if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
return rc;
wp += info->portwidth;
cnt -= info->portwidth;
}
#endif /* CONFIG_SYS_FLASH_USE_BUFFER_WRITE */
if (cnt == 0) {
return (0);
}
/*
* handle unaligned tail bytes
*/
cword.l = 0;
for (i = 0, cp = wp; (i < info->portwidth) && (cnt > 0); ++i, ++cp) {
flash_add_byte (info, &cword, *src++);
--cnt;
}
for (; i < info->portwidth; ++i, ++cp) {
flash_add_byte (info, &cword, (*(uchar *) cp));
}
return flash_write_cfiword (info, wp, cword);
}
/*-----------------------------------------------------------------------
*/
int flash_real_protect (flash_info_t * info, long sector, int prot)
{
int retcode = 0;
flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT);
if (prot)
flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_SET);
else
flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_CLEAR);
if ((retcode =
flash_full_status_check (info, sector, info->erase_blk_tout,
prot ? "protect" : "unprotect")) == 0) {
info->protect[sector] = prot;
/* Intel's unprotect unprotects all locking */
if (prot == 0) {
int i;
for (i = 0; i < info->sector_count; i++) {
if (info->protect[i])
flash_real_protect (info, i, 1);
}
}
}
return retcode;
}
/*-----------------------------------------------------------------------
* wait for XSR.7 to be set. Time out with an error if it does not.
* This routine does not set the flash to read-array mode.
*/
static int flash_status_check (flash_info_t * info, ulong sector, ulong tout,
char *prompt)
{
ulong start;
/* Wait for command completion */
start = get_timer (0);
while (!flash_isset (info, sector, 0, FLASH_STATUS_DONE)) {
if (get_timer (start) > info->erase_blk_tout) {
printf ("Flash %s timeout at address %lx\n", prompt,
info->start[sector]);
flash_write_cmd (info, sector, 0, FLASH_CMD_RESET);
return ERR_TIMOUT;
}
}
return ERR_OK;
}
/*-----------------------------------------------------------------------
* Wait for XSR.7 to be set, if it times out print an error, otherwise do a full status check.
* This routine sets the flash to read-array mode.
*/
static int flash_full_status_check (flash_info_t * info, ulong sector,
ulong tout, char *prompt)
{
int retcode;
retcode = flash_status_check (info, sector, tout, prompt);
if ((retcode == ERR_OK)
&& !flash_isequal (info, sector, 0, FLASH_STATUS_DONE)) {
retcode = ERR_INVAL;
printf ("Flash %s error at address %lx\n", prompt,
info->start[sector]);
if (flash_isset
(info, sector, 0,
FLASH_STATUS_ECLBS | FLASH_STATUS_PSLBS)) {
printf ("Command Sequence Error.\n");
} else if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS)) {
printf ("Block Erase Error.\n");
retcode = ERR_NOT_ERASED;
} else if (flash_isset (info, sector, 0, FLASH_STATUS_PSLBS)) {
printf ("Locking Error\n");
}
if (flash_isset (info, sector, 0, FLASH_STATUS_DPS)) {
printf ("Block locked.\n");
retcode = ERR_PROTECTED;
}
if (flash_isset (info, sector, 0, FLASH_STATUS_VPENS))
printf ("Vpp Low Error.\n");
}
flash_write_cmd (info, sector, 0, FLASH_CMD_RESET);
return retcode;
}
/*-----------------------------------------------------------------------
*/
static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c)
{
switch (info->portwidth) {
case FLASH_CFI_8BIT:
cword->c = c;
break;
case FLASH_CFI_16BIT:
cword->w = (cword->w << 8) | c;
break;
case FLASH_CFI_32BIT:
cword->l = (cword->l << 8) | c;
}
}
/*-----------------------------------------------------------------------
* make a proper sized command based on the port and chip widths
*/
static void flash_make_cmd (flash_info_t * info, uchar cmd, void *cmdbuf)
{
/*int i; */
uchar *cp = (uchar *) cmdbuf;
/* for(i=0; i< info->portwidth; i++) */
/* *cp++ = ((i+1) % info->chipwidth) ? '\0':cmd; */
if (info->portwidth == FLASH_CFI_8BIT
&& info->chipwidth == FLASH_CFI_16BIT) {
cp[0] = cmd;
} else if (info->portwidth == FLASH_CFI_16BIT
&& info->chipwidth == FLASH_CFI_16BIT) {
cp[0] = '\0';
cp[1] = cmd;
};
}
/*
* Write a proper sized command to the correct address
*/
static void flash_write_cmd (flash_info_t * info, int sect, uchar offset,
uchar cmd)
{
volatile cfiptr_t addr;
cfiword_t cword;
addr.cp = flash_make_addr (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
*addr.cp = cword.c;
break;
case FLASH_CFI_16BIT:
*addr.wp = cword.w;
break;
case FLASH_CFI_32BIT:
*addr.lp = cword.l;
break;
}
}
/*-----------------------------------------------------------------------
*/
static int flash_isequal (flash_info_t * info, int sect, uchar offset,
uchar cmd)
{
cfiptr_t cptr;
cfiword_t cword;
int retval;
cptr.cp = flash_make_addr (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
retval = (cptr.cp[0] == cword.c);
break;
case FLASH_CFI_16BIT:
retval = (cptr.wp[0] == cword.w);
break;
case FLASH_CFI_32BIT:
retval = (cptr.lp[0] == cword.l);
break;
default:
retval = 0;
break;
}
return retval;
}
/*-----------------------------------------------------------------------
*/
static int flash_isset (flash_info_t * info, int sect, uchar offset,
uchar cmd)
{
cfiptr_t cptr;
cfiword_t cword;
int retval;
cptr.cp = flash_make_addr (info, sect, offset);
flash_make_cmd (info, cmd, &cword);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
retval = ((cptr.cp[0] & cword.c) == cword.c);
break;
case FLASH_CFI_16BIT:
retval = ((cptr.wp[0] & cword.w) == cword.w);
break;
case FLASH_CFI_32BIT:
retval = ((cptr.lp[0] & cword.l) == cword.l);
break;
default:
retval = 0;
break;
}
return retval;
}
/*-----------------------------------------------------------------------
* detect if flash is compatible with the Common Flash Interface (CFI)
* http://www.jedec.org/download/search/jesd68.pdf
*
*/
static int flash_detect_cfi (flash_info_t * info)
{
#if 0
for (info->portwidth = FLASH_CFI_8BIT;
info->portwidth <= FLASH_CFI_32BIT; info->portwidth <<= 1) {
for (info->chipwidth = FLASH_CFI_BY8;
info->chipwidth <= info->portwidth;
info->chipwidth <<= 1) {
flash_write_cmd (info, 0, 0, FLASH_CMD_RESET);
flash_write_cmd (info, 0, FLASH_OFFSET_CFI,
FLASH_CMD_CFI);
if (flash_isequal
(info, 0, FLASH_OFFSET_CFI_RESP, 'Q')
&& flash_isequal (info, 0,
FLASH_OFFSET_CFI_RESP + 1, 'R')
&& flash_isequal (info, 0,
FLASH_OFFSET_CFI_RESP + 2, 'Y'))
return 1;
}
}
#endif
flash_write_cmd (info, 0, 0, FLASH_CMD_RESET);
flash_write_cmd (info, 0, FLASH_OFFSET_CFI, FLASH_CMD_CFI);
if (flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP, 'Q') &&
flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 1, 'R') &&
flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 2, 'Y')) {
return 1;
} else {
return 0;
};
}
/*
* The following code cannot be run from FLASH!
*
*/
static ulong flash_get_size (ulong base, int banknum)
{
flash_info_t *info = &flash_info[banknum];
int i, j;
int sect_cnt;
unsigned long sector;
unsigned long tmp;
int size_ratio;
uchar num_erase_regions;
int erase_region_size;
int erase_region_count;
info->start[0] = base;
if (flash_detect_cfi (info)) {
#ifdef DEBUG_FLASH
printf ("portwidth=%d chipwidth=%d\n", info->portwidth, info->chipwidth); /* test-only */
#endif
size_ratio = 1; /* info->portwidth / info->chipwidth; */
num_erase_regions =
flash_read_uchar (info,
FLASH_OFFSET_NUM_ERASE_REGIONS);
#ifdef DEBUG_FLASH
printf ("found %d erase regions\n", num_erase_regions);
#endif
sect_cnt = 0;
sector = base;
for (i = 0; i < num_erase_regions; i++) {
if (i > NUM_ERASE_REGIONS) {
printf ("%d erase regions found, only %d used\n", num_erase_regions, NUM_ERASE_REGIONS);
break;
}
tmp = flash_read_long (info, 0,
FLASH_OFFSET_ERASE_REGIONS);
erase_region_count = (tmp & 0xffff) + 1;
tmp >>= 16;
erase_region_size =
(tmp & 0xffff) ? ((tmp & 0xffff) * 256) : 128;
for (j = 0; j < erase_region_count; j++) {
info->start[sect_cnt] = sector;
sector += (erase_region_size * size_ratio);
info->protect[sect_cnt] =
flash_isset (info, sect_cnt,
FLASH_OFFSET_PROTECT,
FLASH_STATUS_PROTECT);
sect_cnt++;
}
}
info->sector_count = sect_cnt;
/* multiply the size by the number of chips */
info->size =
(1 << flash_read_uchar (info, FLASH_OFFSET_SIZE)) *
size_ratio;
info->buffer_size =
(1 <<
flash_read_ushort (info, 0,
FLASH_OFFSET_BUFFER_SIZE));
tmp = 1 << flash_read_uchar (info, FLASH_OFFSET_ETOUT);
info->erase_blk_tout =
(tmp *
(1 <<
flash_read_uchar (info, FLASH_OFFSET_EMAX_TOUT)));
tmp = 1 << flash_read_uchar (info, FLASH_OFFSET_WBTOUT);
info->buffer_write_tout =
(tmp *
(1 <<
flash_read_uchar (info, FLASH_OFFSET_WBMAX_TOUT)));
tmp = 1 << flash_read_uchar (info, FLASH_OFFSET_WTOUT);
info->write_tout =
(tmp *
(1 <<
flash_read_uchar (info,
FLASH_OFFSET_WMAX_TOUT))) / 1000;
info->flash_id = FLASH_MAN_CFI;
}
flash_write_cmd (info, 0, 0, FLASH_CMD_RESET);
return (info->size);
}
/*-----------------------------------------------------------------------
*/
static int flash_write_cfiword (flash_info_t * info, ulong dest,
cfiword_t cword)
{
cfiptr_t cptr;
int flag;
cptr.cp = (uchar *) dest;
/* Check if Flash is (sufficiently) erased */
switch (info->portwidth) {
case FLASH_CFI_8BIT:
flag = ((cptr.cp[0] & cword.c) == cword.c);
break;
case FLASH_CFI_16BIT:
flag = ((cptr.wp[0] & cword.w) == cword.w);
break;
case FLASH_CFI_32BIT:
flag = ((cptr.lp[0] & cword.l) == cword.l);
break;
default:
return 2;
}
if (!flag)
return 2;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts ();
flash_write_cmd (info, 0, 0, FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, 0, 0, FLASH_CMD_WRITE);
switch (info->portwidth) {
case FLASH_CFI_8BIT:
cptr.cp[0] = cword.c;
break;
case FLASH_CFI_16BIT:
cptr.wp[0] = cword.w;
break;
case FLASH_CFI_32BIT:
cptr.lp[0] = cword.l;
break;
}
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts ();
return flash_full_status_check (info, 0, info->write_tout, "write");
}
#ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE
/* loop through the sectors from the highest address
* when the passed address is greater or equal to the sector address
* we have a match
*/
static int find_sector (flash_info_t * info, ulong addr)
{
int sector;
for (sector = info->sector_count - 1; sector >= 0; sector--) {
if (addr >= info->start[sector])
break;
}
return sector;
}
static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp,
int len)
{
int sector;
int cnt;
int retcode;
volatile cfiptr_t src;
volatile cfiptr_t dst;
src.cp = cp;
dst.cp = (uchar *) dest;
sector = find_sector (info, dest);
flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
flash_write_cmd (info, sector, 0, FLASH_CMD_WRITE_TO_BUFFER);
if ((retcode =
flash_status_check (info, sector, info->buffer_write_tout,
"write to buffer")) == ERR_OK) {
switch (info->portwidth) {
case FLASH_CFI_8BIT:
cnt = len;
break;
case FLASH_CFI_16BIT:
cnt = len >> 1;
break;
case FLASH_CFI_32BIT:
cnt = len >> 2;
break;
default:
return ERR_INVAL;
break;
}
flash_write_cmd (info, sector, 0, (uchar) cnt - 1);
while (cnt-- > 0) {
switch (info->portwidth) {
case FLASH_CFI_8BIT:
*dst.cp++ = *src.cp++;
break;
case FLASH_CFI_16BIT:
*dst.wp++ = *src.wp++;
break;
case FLASH_CFI_32BIT:
*dst.lp++ = *src.lp++;
break;
default:
return ERR_INVAL;
break;
}
}
flash_write_cmd (info, sector, 0,
FLASH_CMD_WRITE_BUFFER_CONFIRM);
retcode =
flash_full_status_check (info, sector,
info->buffer_write_tout,
"buffer write");
}
flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
return retcode;
}
#endif /* CONFIG_SYS_USE_FLASH_BUFFER_WRITE */

@ -1,30 +0,0 @@
/*
* init.S: Stubs for ppcboot initialization
*
* Copyright 2002 Mind NV
*
* http://www.mind.be/
*
* Author : Peter De Schrijver (p2@mind.be)
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL) version 2, incorporated herein by
* reference. Drivers based on or derived from this code fall under the GPL
* and must retain the authorship, copyright and this license notice. This
* file is not a complete program and may only be used when the entire
* program is licensed under the GPL.
*
*/
#include <asm/ppc4xx.h>
#include <ppc_asm.tmpl>
#include <ppc_defs.h>
#include <asm/cache.h>
#include <asm/mmu.h>
.globl ext_bus_cntlr_init
ext_bus_cntlr_init:
blr

@ -1,318 +0,0 @@
/*
* (C) Copyright 2003
* AMIRIX Systems Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/ppc4xx.h>
#include <asm/processor.h>
#include <pci.h>
#define PCI_MEM_82559ER_CSR_BASE 0x30200000
#define PCI_IO_82559ER_CSR_BASE 0x40000200
/** AP1100 specific values */
#define PSII_BASE 0x30000000 /**< PowerSpan II dual bridge local bus register address */
#define PSII_CONFIG_ADDR 0x30000290 /**< PowerSpan II Configuration Cycle Address configuration register */
#define PSII_CONFIG_DATA 0x30000294 /**< PowerSpan II Configuration Cycle Data register. */
#define PSII_CONFIG_DEST_PCI2 0x01000000 /**< PowerSpan II configuration cycle destination selection, set for PCI2 bus */
#define PSII_PCI_MEM_BASE 0x30200000 /**< Local Bus address for start of PCI memory space on PCI2 bus. */
#define PSII_PCI_MEM_SIZE 0x1BE00000 /**< PCI Memory space about 510 Meg. */
#define AP1000_SYS_MEM_START 0x00000000 /**< System memory starts at 0. */
#define AP1000_SYS_MEM_SIZE 0x08000000 /**< System memory is 128 Meg. */
/* static int G_verbosity_level = 1; */
#define G_verbosity_level 1
void write1 (unsigned long addr, unsigned char val)
{
volatile unsigned char *p = (volatile unsigned char *) addr;
if (G_verbosity_level > 1)
printf ("write1: addr=%08x val=%02x\n", (unsigned int) addr,
val);
*p = val;
asm ("eieio");
}
unsigned char read1 (unsigned long addr)
{
unsigned char val;
volatile unsigned char *p = (volatile unsigned char *) addr;
if (G_verbosity_level > 1)
printf ("read1: addr=%08x ", (unsigned int) addr);
val = *p;
asm ("eieio");
if (G_verbosity_level > 1)
printf ("val=%08x\n", val);
return val;
}
void write2 (unsigned long addr, unsigned short val)
{
volatile unsigned short *p = (volatile unsigned short *) addr;
if (G_verbosity_level > 1)
printf ("write2: addr=%08x val=%04x -> *p=%04x\n",
(unsigned int) addr, val,
((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8));
*p = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
asm ("eieio");
}
unsigned short read2 (unsigned long addr)
{
unsigned short val;
volatile unsigned short *p = (volatile unsigned short *) addr;
if (G_verbosity_level > 1)
printf ("read2: addr=%08x ", (unsigned int) addr);
val = *p;
val = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
asm ("eieio");
if (G_verbosity_level > 1)
printf ("*p=%04x -> val=%04x\n",
((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8), val);
return val;
}
void write4 (unsigned long addr, unsigned long val)
{
volatile unsigned long *p = (volatile unsigned long *) addr;
if (G_verbosity_level > 1)
printf ("write4: addr=%08x val=%08x -> *p=%08x\n",
(unsigned int) addr, (unsigned int) val,
(unsigned int) (((val & 0xFF000000) >> 24) |
((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) |
((val & 0x0000FF00) << 8)));
*p = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
asm ("eieio");
}
unsigned long read4 (unsigned long addr)
{
unsigned long val;
volatile unsigned long *p = (volatile unsigned long *) addr;
if (G_verbosity_level > 1)
printf ("read4: addr=%08x", (unsigned int) addr);
val = *p;
val = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
asm ("eieio");
if (G_verbosity_level > 1)
printf ("*p=%04x -> val=%04x\n",
(unsigned int) (((val & 0xFF000000) >> 24) |
((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) |
((val & 0x0000FF00) << 8)),
(unsigned int) val);
return val;
}
void write4be (unsigned long addr, unsigned long val)
{
volatile unsigned long *p = (volatile unsigned long *) addr;
if (G_verbosity_level > 1)
printf ("write4: addr=%08x val=%08x\n", (unsigned int) addr,
(unsigned int) val);
*p = val;
asm ("eieio");
}
/** One byte configuration write on PSII.
* Currently fixes destination PCI bus to PCI2, onboard
* pci.
* @param hose PCI Host controller information. Ignored.
* @param dev Encoded PCI device/Bus and Function value.
* @param reg PCI Configuration register number.
* @param val Address of location for received byte.
* @return Always Zero.
*/
static int psII_read_config_byte (struct pci_controller *hose,
pci_dev_t dev, int reg, u8 * val)
{
write4be (PSII_CONFIG_ADDR, PSII_CONFIG_DEST_PCI2 | /* Operate on PCI2 bus interface . */
(PCI_BUS (dev) << 16) | (PCI_DEV (dev) << 11) | (PCI_FUNC (dev) << 8) | ((reg & 0xFF) & ~3)); /* Configuation cycle type 0 */
*val = read1 (PSII_CONFIG_DATA + (reg & 0x03));
return (0);
}
/** One byte configuration write on PSII.
* Currently fixes destination bus to PCI2, onboard
* pci.
* @param hose PCI Host controller information. Ignored.
* @param dev Encoded PCI device/Bus and Function value.
* @param reg PCI Configuration register number.
* @param val Output byte.
* @return Always Zero.
*/
static int psII_write_config_byte (struct pci_controller *hose,
pci_dev_t dev, int reg, u8 val)
{
write4be (PSII_CONFIG_ADDR, PSII_CONFIG_DEST_PCI2 | /* Operate on PCI2 bus interface . */
(PCI_BUS (dev) << 16) | (PCI_DEV (dev) << 11) | (PCI_FUNC (dev) << 8) | ((reg & 0xFF) & ~3)); /* Configuation cycle type 0 */
write1 (PSII_CONFIG_DATA + (reg & 0x03), (unsigned char) val);
return (0);
}
/** One word (16 bit) configuration read on PSII.
* Currently fixes destination PCI bus to PCI2, onboard
* pci.
* @param hose PCI Host controller information. Ignored.
* @param dev Encoded PCI device/Bus and Function value.
* @param reg PCI Configuration register number.
* @param val Address of location for received word.
* @return Always Zero.
*/
static int psII_read_config_word (struct pci_controller *hose,
pci_dev_t dev, int reg, u16 * val)
{
write4be (PSII_CONFIG_ADDR, PSII_CONFIG_DEST_PCI2 | /* Operate on PCI2 bus interface . */
(PCI_BUS (dev) << 16) | (PCI_DEV (dev) << 11) | (PCI_FUNC (dev) << 8) | ((reg & 0xFF) & ~3)); /* Configuation cycle type 0 */
*val = read2 (PSII_CONFIG_DATA + (reg & 0x03));
return (0);
}
/** One word (16 bit) configuration write on PSII.
* Currently fixes destination bus to PCI2, onboard
* pci.
* @param hose PCI Host controller information. Ignored.
* @param dev Encoded PCI device/Bus and Function value.
* @param reg PCI Configuration register number.
* @param val Output word.
* @return Always Zero.
*/
static int psII_write_config_word (struct pci_controller *hose,
pci_dev_t dev, int reg, u16 val)
{
write4be (PSII_CONFIG_ADDR, PSII_CONFIG_DEST_PCI2 | /* Operate on PCI2 bus interface . */
(PCI_BUS (dev) << 16) | (PCI_DEV (dev) << 11) | (PCI_FUNC (dev) << 8) | ((reg & 0xFF) & ~3)); /* Configuation cycle type 0 */
write2 (PSII_CONFIG_DATA + (reg & 0x03), (unsigned short) val);
return (0);
}
/** One DWord (32 bit) configuration read on PSII.
* Currently fixes destination PCI bus to PCI2, onboard
* pci.
* @param hose PCI Host controller information. Ignored.
* @param dev Encoded PCI device/Bus and Function value.
* @param reg PCI Configuration register number.
* @param val Address of location for received byte.
* @return Always Zero.
*/
static int psII_read_config_dword (struct pci_controller *hose,
pci_dev_t dev, int reg, u32 * val)
{
write4be (PSII_CONFIG_ADDR, PSII_CONFIG_DEST_PCI2 | /* Operate on PCI2 bus interface . */
(PCI_BUS (dev) << 16) | (PCI_DEV (dev) << 11) | (PCI_FUNC (dev) << 8) | ((reg & 0xFF) & ~3)); /* Configuation cycle type 0 */
*val = read4 (PSII_CONFIG_DATA);
return (0);
}
/** One DWord (32 bit) configuration write on PSII.
* Currently fixes destination bus to PCI2, onboard
* pci.
* @param hose PCI Host controller information. Ignored.
* @param dev Encoded PCI device/Bus and Function value.
* @param reg PCI Configuration register number.
* @param val Output Dword.
* @return Always Zero.
*/
static int psII_write_config_dword (struct pci_controller *hose,
pci_dev_t dev, int reg, u32 val)
{
write4be (PSII_CONFIG_ADDR, PSII_CONFIG_DEST_PCI2 | /* Operate on PCI2 bus interface . */
(PCI_BUS (dev) << 16) | (PCI_DEV (dev) << 11) | (PCI_FUNC (dev) << 8) | ((reg & 0xFF) & ~3)); /* Configuation cycle type 0 */
write4 (PSII_CONFIG_DATA, (unsigned long) val);
return (0);
}
static struct pci_config_table ap1000_config_table[] = {
#ifdef CONFIG_AP1000
{PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
PCI_BUS (CONFIG_SYS_ETH_DEV_FN), PCI_DEV (CONFIG_SYS_ETH_DEV_FN),
PCI_FUNC (CONFIG_SYS_ETH_DEV_FN),
pci_cfgfunc_config_device,
{CONFIG_SYS_ETH_IOBASE, CONFIG_SYS_ETH_MEMBASE,
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER}},
#endif
{}
};
static struct pci_controller psII_hose = {
config_table:ap1000_config_table,
};
void pci_init_board (void)
{
struct pci_controller *hose = &psII_hose;
/*
* Register the hose
*/
hose->first_busno = 0;
hose->last_busno = 0xff;
/* System memory space */
pci_set_region (hose->regions + 0,
AP1000_SYS_MEM_START, AP1000_SYS_MEM_START,
AP1000_SYS_MEM_SIZE,
PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
/* PCI Memory space */
pci_set_region (hose->regions + 1,
PSII_PCI_MEM_BASE, PSII_PCI_MEM_BASE,
PSII_PCI_MEM_SIZE, PCI_REGION_MEM);
/* No IO Memory space - for now */
pci_set_ops (hose,
psII_read_config_byte,
psII_read_config_word,
psII_read_config_dword,
psII_write_config_byte,
psII_write_config_word, psII_write_config_dword);
hose->region_count = 2;
pci_register_hose (hose);
hose->last_busno = pci_hose_scan (hose);
}

@ -1,750 +0,0 @@
/**
* @file powerspan.c Source file for PowerSpan II code.
*/
/*
* (C) Copyright 2005
* AMIRIX Systems Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <asm/processor.h>
#include "powerspan.h"
#define tolower(x) x
#include "ap1000.h"
#ifdef INCLUDE_PCI
/** Write one byte with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write1 (unsigned long addr, unsigned char val)
{
volatile unsigned char *p = (volatile unsigned char *) addr;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("write1: addr=%08x val=%02x\n", addr, val);
}
#endif
*p = val;
PSII_SYNC ();
}
/** Read one byte with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned char read1 (unsigned long addr)
{
unsigned char val;
volatile unsigned char *p = (volatile unsigned char *) addr;
val = *p;
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("read1: addr=%08x val=%02x\n", addr, val);
}
#endif
return val;
}
/** Write one 2-byte word with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write2 (unsigned long addr, unsigned short val)
{
volatile unsigned short *p = (volatile unsigned short *) addr;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("write2: addr=%08x val=%04x -> *p=%04x\n", addr, val,
((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8));
}
#endif
*p = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
PSII_SYNC ();
}
/** Read one 2-byte word with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned short read2 (unsigned long addr)
{
unsigned short val;
volatile unsigned short *p = (volatile unsigned short *) addr;
val = *p;
val = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("read2: addr=%08x *p=%04x -> val=%04x\n", addr, *p,
val);
}
#endif
return val;
}
/** Write one 4-byte word with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write4 (unsigned long addr, unsigned long val)
{
volatile unsigned long *p = (volatile unsigned long *) addr;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("write4: addr=%08x val=%08x -> *p=%08x\n", addr, val,
((val & 0xFF000000) >> 24) |
((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) |
((val & 0x0000FF00) << 8));
}
#endif
*p = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
PSII_SYNC ();
}
/** Read one 4-byte word with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned long read4 (unsigned long addr)
{
unsigned long val;
volatile unsigned long *p = (volatile unsigned long *) addr;
val = *p;
val = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("read4: addr=%08x *p=%08x -> val=%08x\n", addr, *p,
val);
}
#endif
return val;
}
int PCIReadConfig (int bus, int dev, int fn, int reg, int width,
unsigned long *val)
{
unsigned int conAdrVal;
unsigned int conDataReg = REG_CONFIG_DATA;
unsigned int status;
int ret_val = 0;
/* DEST bit hardcoded to 1: local pci is PCI-2 */
/* TYPE bit is hardcoded to 1: all config cycles are local */
conAdrVal = (1 << 24)
| ((bus & 0xFF) << 16)
| ((dev & 0xFF) << 11)
| ((fn & 0x07) << 8)
| (reg & 0xFC);
/* clear any pending master aborts */
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
/* Load the conAdrVal value first, then read from pb_conf_data */
write4 (REG_CONFIG_ADDRESS, conAdrVal);
PSII_SYNC ();
/* Note: documentation does not match the pspan library code */
/* Note: *pData comes back as -1 if device is not present */
switch (width) {
case 4:
*(unsigned int *) val = read4 (conDataReg);
break;
case 2:
*(unsigned short *) val = read2 (conDataReg);
break;
case 1:
*(unsigned char *) val = read1 (conDataReg);
break;
default:
ret_val = ILLEGAL_REG_OFFSET;
break;
}
PSII_SYNC ();
/* clear any pending master aborts */
status = read4 (REG_P1_CSR);
if (status & CLEAR_MASTER_ABORT) {
ret_val = NO_DEVICE_FOUND;
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
}
return ret_val;
}
int PCIWriteConfig (int bus, int dev, int fn, int reg, int width,
unsigned long val)
{
unsigned int conAdrVal;
unsigned int conDataReg = REG_CONFIG_DATA;
unsigned int status;
int ret_val = 0;
/* DEST bit hardcoded to 1: local pci is PCI-2 */
/* TYPE bit is hardcoded to 1: all config cycles are local */
conAdrVal = (1 << 24)
| ((bus & 0xFF) << 16)
| ((dev & 0xFF) << 11)
| ((fn & 0x07) << 8)
| (reg & 0xFC);
/* clear any pending master aborts */
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
/* Load the conAdrVal value first, then read from pb_conf_data */
write4 (REG_CONFIG_ADDRESS, conAdrVal);
PSII_SYNC ();
/* Note: documentation does not match the pspan library code */
/* Note: *pData comes back as -1 if device is not present */
switch (width) {
case 4:
write4 (conDataReg, val);
break;
case 2:
write2 (conDataReg, val);
break;
case 1:
write1 (conDataReg, val);
break;
default:
ret_val = ILLEGAL_REG_OFFSET;
break;
}
PSII_SYNC ();
/* clear any pending master aborts */
status = read4 (REG_P1_CSR);
if (status & CLEAR_MASTER_ABORT) {
ret_val = NO_DEVICE_FOUND;
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
}
return ret_val;
}
int pci_read_config_byte (int bus, int dev, int fn, int reg,
unsigned char *val)
{
unsigned long read_val;
int ret_val;
ret_val = PCIReadConfig (bus, dev, fn, reg, 1, &read_val);
*val = read_val & 0xFF;
return ret_val;
}
int pci_write_config_byte (int bus, int dev, int fn, int reg,
unsigned char val)
{
return PCIWriteConfig (bus, dev, fn, reg, 1, val);
}
int pci_read_config_word (int bus, int dev, int fn, int reg,
unsigned short *val)
{
unsigned long read_val;
int ret_val;
ret_val = PCIReadConfig (bus, dev, fn, reg, 2, &read_val);
*val = read_val & 0xFFFF;
return ret_val;
}
int pci_write_config_word (int bus, int dev, int fn, int reg,
unsigned short val)
{
return PCIWriteConfig (bus, dev, fn, reg, 2, val);
}
int pci_read_config_dword (int bus, int dev, int fn, int reg,
unsigned long *val)
{
return PCIReadConfig (bus, dev, fn, reg, 4, val);
}
int pci_write_config_dword (int bus, int dev, int fn, int reg,
unsigned long val)
{
return PCIWriteConfig (bus, dev, fn, reg, 4, val);
}
#endif /* INCLUDE_PCI */
int I2CAccess (unsigned char theI2CAddress, unsigned char theDevCode,
unsigned char theChipSel, unsigned char *theValue, int RWFlag)
{
int ret_val = 0;
unsigned int reg_value;
reg_value = PowerSpanRead (REG_I2C_CSR);
if (reg_value & I2C_CSR_ACT) {
printf ("Error: I2C busy\n");
ret_val = I2C_BUSY;
} else {
reg_value = ((theI2CAddress & 0xFF) << 24)
| ((theDevCode & 0x0F) << 12)
| ((theChipSel & 0x07) << 9)
| I2C_CSR_ERR;
if (RWFlag == I2C_WRITE) {
reg_value |= I2C_CSR_RW | ((*theValue & 0xFF) << 16);
}
PowerSpanWrite (REG_I2C_CSR, reg_value);
udelay (1);
do {
reg_value = PowerSpanRead (REG_I2C_CSR);
if ((reg_value & I2C_CSR_ACT) == 0) {
if (reg_value & I2C_CSR_ERR) {
ret_val = I2C_ERR;
} else {
*theValue =
(reg_value & I2C_CSR_DATA) >>
16;
}
}
} while (reg_value & I2C_CSR_ACT);
}
return ret_val;
}
int EEPROMRead (unsigned char theI2CAddress, unsigned char *theValue)
{
return I2CAccess (theI2CAddress, I2C_EEPROM_DEV, I2C_EEPROM_CHIP_SEL,
theValue, I2C_READ);
}
int EEPROMWrite (unsigned char theI2CAddress, unsigned char theValue)
{
return I2CAccess (theI2CAddress, I2C_EEPROM_DEV, I2C_EEPROM_CHIP_SEL,
&theValue, I2C_WRITE);
}
int do_eeprom (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
char cmd;
int ret_val = 0;
unsigned int address = 0;
unsigned char value = 1;
unsigned char read_value;
int ii;
int error = 0;
unsigned char *mem_ptr;
unsigned char default_eeprom[] = EEPROM_DEFAULT;
if (argc < 2) {
goto usage;
}
cmd = argv[1][0];
if (argc > 2) {
address = simple_strtoul (argv[2], NULL, 16);
if (argc > 3) {
value = simple_strtoul (argv[3], NULL, 16) & 0xFF;
}
}
switch (cmd) {
case 'r':
if (address > 256) {
printf ("Illegal Address\n");
goto usage;
}
printf ("@0x%x: ", address);
for (ii = 0; ii < value; ii++) {
if (EEPROMRead (address + ii, &read_value) !=
0) {
printf ("Read Error\n");
} else {
printf ("0x%02x ", read_value);
}
if (((ii + 1) % 16) == 0) {
printf ("\n");
}
}
printf ("\n");
break;
case 'w':
if (address > 256) {
printf ("Illegal Address\n");
goto usage;
}
if (argc < 4) {
goto usage;
}
if (EEPROMWrite (address, value) != 0) {
printf ("Write Error\n");
}
break;
case 'g':
if (argc != 3) {
goto usage;
}
mem_ptr = (unsigned char *) address;
for (ii = 0; ((ii < EEPROM_LENGTH) && (error == 0));
ii++) {
if (EEPROMRead (ii, &read_value) != 0) {
printf ("Read Error\n");
error = 1;
} else {
*mem_ptr = read_value;
mem_ptr++;
}
}
break;
case 'p':
if (argc != 3) {
goto usage;
}
mem_ptr = (unsigned char *) address;
for (ii = 0; ((ii < EEPROM_LENGTH) && (error == 0));
ii++) {
if (EEPROMWrite (ii, *mem_ptr) != 0) {
printf ("Write Error\n");
error = 1;
}
mem_ptr++;
}
break;
case 'd':
if (argc != 2) {
goto usage;
}
for (ii = 0; ((ii < EEPROM_LENGTH) && (error == 0));
ii++) {
if (EEPROMWrite (ii, default_eeprom[ii]) != 0) {
printf ("Write Error\n");
error = 1;
}
}
break;
default:
goto usage;
}
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}
U_BOOT_CMD (eeprom, 4, 0, do_eeprom,
"read/write/copy to/from the PowerSpan II eeprom",
"eeprom r OFF [NUM]\n"
" - read NUM words starting at OFF\n"
"eeprom w OFF VAL\n"
" - write word VAL at offset OFF\n"
"eeprom g ADD\n"
" - store contents of eeprom at address ADD\n"
"eeprom p ADD\n"
" - put data stored at address ADD into the eeprom\n"
"eeprom d\n" " - return eeprom to default contents");
unsigned int PowerSpanRead (unsigned int theOffset)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
unsigned int ret_val;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanRead: offset=%08x ", theOffset);
}
#endif
ret_val = *ptr;
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("value=%08x\n", ret_val);
}
#endif
return ret_val;
}
void PowerSpanWrite (unsigned int theOffset, unsigned int theValue)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanWrite: offset=%08x val=%02x\n", theOffset,
theValue);
}
#endif
*ptr = theValue;
PSII_SYNC ();
}
/**
* Sets the indicated bits in the indicated register.
* @param theOffset [IN] the register to access.
* @param theMask [IN] bits set in theMask will be set in the register.
*/
void PowerSpanSetBits (unsigned int theOffset, unsigned int theMask)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
unsigned int register_value;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanSetBits: offset=%08x mask=%02x\n",
theOffset, theMask);
}
#endif
register_value = *ptr;
PSII_SYNC ();
register_value |= theMask;
*ptr = register_value;
PSII_SYNC ();
}
/**
* Clears the indicated bits in the indicated register.
* @param theOffset [IN] the register to access.
* @param theMask [IN] bits set in theMask will be cleared in the register.
*/
void PowerSpanClearBits (unsigned int theOffset, unsigned int theMask)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
unsigned int register_value;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanClearBits: offset=%08x mask=%02x\n",
theOffset, theMask);
}
#endif
register_value = *ptr;
PSII_SYNC ();
register_value &= ~theMask;
*ptr = register_value;
PSII_SYNC ();
}
/**
* Configures a slave image on the local bus, based on the parameters and some hardcoded system values.
* Slave Images are images that cause the PowerSpan II to be a master on the PCI bus. Thus, they
* are outgoing from the standpoint of the local bus.
* @param theImageIndex [IN] the PowerSpan II image to set (assumed to be 0-7).
* @param theBlockSize [IN] the block size of the image (as used by PowerSpan II: PB_SIx_CTL[BS]).
* @param theMemIOFlag [IN] if PX_TGT_USE_MEM_IO, this image will have the MEM_IO bit set.
* @param theEndianness [IN] the endian bits for the image (already shifted, use defines).
* @param theLocalBaseAddr [IN] the Local address for the image (assumed to be valid with provided block size).
* @param thePCIBaseAddr [IN] the PCI address for the image (assumed to be valid with provided block size).
*/
int SetSlaveImage (int theImageIndex, unsigned int theBlockSize,
int theMemIOFlag, int theEndianness,
unsigned int theLocalBaseAddr, unsigned int thePCIBaseAddr)
{
unsigned int reg_offset = theImageIndex * PB_SLAVE_IMAGE_OFF;
unsigned int reg_value = 0;
/* Make sure that the Slave Image is disabled */
PowerSpanClearBits ((REGS_PB_SLAVE_CSR + reg_offset),
PB_SLAVE_CSR_IMG_EN);
/* Setup the mask required for requested PB Slave Image configuration */
reg_value = PB_SLAVE_CSR_TA_EN | theEndianness | (theBlockSize << 24);
if (theMemIOFlag == PB_SLAVE_USE_MEM_IO) {
reg_value |= PB_SLAVE_CSR_MEM_IO;
}
/* hardcoding the following:
TA_EN = 1
MD_EN = 0
MODE = 0
PRKEEP = 0
RD_AMT = 0
*/
PowerSpanWrite ((REGS_PB_SLAVE_CSR + reg_offset), reg_value);
/* these values are not checked by software */
PowerSpanWrite ((REGS_PB_SLAVE_BADDR + reg_offset), theLocalBaseAddr);
PowerSpanWrite ((REGS_PB_SLAVE_TADDR + reg_offset), thePCIBaseAddr);
/* Enable the Slave Image */
PowerSpanSetBits ((REGS_PB_SLAVE_CSR + reg_offset),
PB_SLAVE_CSR_IMG_EN);
return 0;
}
/**
* Configures a target image on the local bus, based on the parameters and some hardcoded system values.
* Target Images are used when the PowerSpan II is acting as a target for an access. Thus, they
* are incoming from the standpoint of the local bus.
* In order to behave better on the host PCI bus, if thePCIBaseAddr is NULL (0x00000000), then the PCI
* base address will not be updated; makes sense given that the hosts own memory should be mapped to
* PCI address 0x00000000.
* @param theImageIndex [IN] the PowerSpan II image to set.
* @param theBlockSize [IN] the block size of the image (as used by PowerSpan II: Px_TIx_CTL[BS]).
* @param theMemIOFlag [IN] if PX_TGT_USE_MEM_IO, this image will have the MEM_IO bit set.
* @param theEndianness [IN] the endian bits for the image (already shifted, use defines).
* @param theLocalBaseAddr [IN] the Local address for the image (assumed to be valid with provided block size).
* @param thePCIBaseAddr [IN] the PCI address for the image (assumed to be valid with provided block size).
*/
int SetTargetImage (int theImageIndex, unsigned int theBlockSize,
int theMemIOFlag, int theEndianness,
unsigned int theLocalBaseAddr,
unsigned int thePCIBaseAddr)
{
unsigned int csr_reg_offset = theImageIndex * P1_TGT_IMAGE_OFF;
unsigned int pci_reg_offset = theImageIndex * P1_BST_OFF;
unsigned int reg_value = 0;
/* Make sure that the Slave Image is disabled */
PowerSpanClearBits ((REGS_P1_TGT_CSR + csr_reg_offset),
PB_SLAVE_CSR_IMG_EN);
/* Setup the mask required for requested PB Slave Image configuration */
reg_value =
PX_TGT_CSR_TA_EN | PX_TGT_CSR_BAR_EN | (theBlockSize << 24) |
PX_TGT_CSR_RTT_READ | PX_TGT_CSR_WTT_WFLUSH | theEndianness;
if (theMemIOFlag == PX_TGT_USE_MEM_IO) {
reg_value |= PX_TGT_MEM_IO;
}
/* hardcoding the following:
TA_EN = 1
BAR_EN = 1
MD_EN = 0
MODE = 0
DEST = 0
RTT = 01010
GBL = 0
CI = 0
WTT = 00010
PRKEEP = 0
MRA = 0
RD_AMT = 0
*/
PowerSpanWrite ((REGS_P1_TGT_CSR + csr_reg_offset), reg_value);
PowerSpanWrite ((REGS_P1_TGT_TADDR + csr_reg_offset),
theLocalBaseAddr);
if (thePCIBaseAddr != (unsigned int) NULL) {
PowerSpanWrite ((REGS_P1_BST + pci_reg_offset),
thePCIBaseAddr);
}
/* Enable the Slave Image */
PowerSpanSetBits ((REGS_P1_TGT_CSR + csr_reg_offset),
PB_SLAVE_CSR_IMG_EN);
return 0;
}
int do_bridge (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
{
char cmd;
int ret_val = 1;
unsigned int image_index;
unsigned int block_size;
unsigned int mem_io;
unsigned int local_addr;
unsigned int pci_addr;
int endianness;
if (argc != 8) {
goto usage;
}
cmd = argv[1][0];
image_index = simple_strtoul (argv[2], NULL, 16);
block_size = simple_strtoul (argv[3], NULL, 16);
mem_io = simple_strtoul (argv[4], NULL, 16);
endianness = argv[5][0];
local_addr = simple_strtoul (argv[6], NULL, 16);
pci_addr = simple_strtoul (argv[7], NULL, 16);
switch (cmd) {
case 'i':
if (tolower (endianness) == 'b') {
endianness = PX_TGT_CSR_BIG_END;
} else if (tolower (endianness) == 'l') {
endianness = PX_TGT_CSR_TRUE_LEND;
} else {
goto usage;
}
SetTargetImage (image_index, block_size, mem_io,
endianness, local_addr, pci_addr);
break;
case 'o':
if (tolower (endianness) == 'b') {
endianness = PB_SLAVE_CSR_BIG_END;
} else if (tolower (endianness) == 'l') {
endianness = PB_SLAVE_CSR_TRUE_LEND;
} else {
goto usage;
}
SetSlaveImage (image_index, block_size, mem_io,
endianness, local_addr, pci_addr);
break;
default:
goto usage;
}
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}

@ -1,170 +0,0 @@
/**
* @file powerspan.h Header file for PowerSpan II code.
*/
/*
* (C) Copyright 2005
* AMIRIX Systems Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef POWERSPAN_H
#define POWERSPAN_H
#define CLEAR_MASTER_ABORT 0xdeadbeef
#define NO_DEVICE_FOUND -1
#define ILLEGAL_REG_OFFSET -2
#define I2C_BUSY -3
#define I2C_ERR -4
#define REG_P1_CSR 0x004
#define REGS_P1_BST 0x018
#define REG_P1_ERR_CSR 0x150
#define REG_P1_MISC_CSR 0x160
#define REGS_P1_TGT_CSR 0x100
#define REGS_P1_TGT_TADDR 0x104
#define REGS_PB_SLAVE_CSR 0x200
#define REGS_PB_SLAVE_TADDR 0x204
#define REGS_PB_SLAVE_BADDR 0x208
#define REG_CONFIG_ADDRESS 0x290
#define REG_CONFIG_DATA 0x294
#define REG_PB_ERR_CSR 0x2B0
#define REG_PB_MISC_CSR 0x2C0
#define REG_MISC_CSR 0x400
#define REG_I2C_CSR 0x408
#define REG_RESET_CSR 0x40C
#define REG_ISR0 0x410
#define REG_ISR1 0x414
#define REG_IER0 0x418
#define REG_MBOX_MAP 0x420
#define REG_HW_MAP 0x42C
#define REG_IDR 0x444
#define CSR_MEMORY_SPACE_ENABLE 0x00000002
#define CSR_PCI_MASTER_ENABLE 0x00000004
#define P1_BST_OFF 0x04
#define PX_ERR_ERR_STATUS 0x01000000
#define PX_MISC_CSR_MAX_RETRY_MASK 0x00000F00
#define PX_MISC_CSR_MAX_RETRY 0x00000F00
#define PX_MISC_REG_BAR_ENABLE 0x00008000
#define PB_MISC_TEA_ENABLE 0x00000010
#define PB_MISC_MAC_TEA 0x00000040
#define P1_TGT_IMAGE_OFF 0x010
#define PX_TGT_CSR_IMG_EN 0x80000000
#define PX_TGT_CSR_TA_EN 0x40000000
#define PX_TGT_CSR_BAR_EN 0x20000000
#define PX_TGT_CSR_MD_EN 0x10000000
#define PX_TGT_CSR_MODE 0x00800000
#define PX_TGT_CSR_DEST 0x00400000
#define PX_TGT_CSR_MEM_IO 0x00200000
#define PX_TGT_CSR_GBL 0x00080000
#define PX_TGT_CSR_CL 0x00040000
#define PX_TGT_CSR_PRKEEP 0x00000080
#define PX_TGT_CSR_BS_MASK 0x0F000000
#define PX_TGT_MEM_IO 0x00200000
#define PX_TGT_CSR_RTT_MASK 0x001F0000
#define PX_TGT_CSR_RTT_READ 0x000A0000
#define PX_TGT_CSR_WTT_MASK 0x00001F00
#define PX_TGT_CSR_WTT_WFLUSH 0x00000200
#define PX_TGT_CSR_END_MASK 0x00000060
#define PX_TGT_CSR_BIG_END 0x00000040
#define PX_TGT_CSR_TRUE_LEND 0x00000060
#define PX_TGT_CSR_RDAMT_MASK 0x00000007
#define PX_TGT_CSR_BS_64MB 0xa
#define PX_TGT_CSR_BS_16MB 0x8
#define PX_TGT_USE_MEM_IO 1
#define PX_TGT_NOT_MEM_IO 0
#define PB_SLAVE_IMAGE_OFF 0x010
#define PB_SLAVE_CSR_IMG_EN 0x80000000
#define PB_SLAVE_CSR_TA_EN 0x40000000
#define PB_SLAVE_CSR_MD_EN 0x20000000
#define PB_SLAVE_CSR_MODE 0x00800000
#define PB_SLAVE_CSR_DEST 0x00400000
#define PB_SLAVE_CSR_MEM_IO 0x00200000
#define PB_SLAVE_CSR_PRKEEP 0x00000080
#define PB_SLAVE_CSR_BS_MASK 0x1F000000
#define PB_SLAVE_CSR_END_MASK 0x00000060
#define PB_SLAVE_CSR_BIG_END 0x00000040
#define PB_SLAVE_CSR_TRUE_LEND 0x00000060
#define PB_SLAVE_CSR_RDAMT_MASK 0x00000007
#define PB_SLAVE_USE_MEM_IO 1
#define PB_SLAVE_NOT_MEM_IO 0
#define MISC_CSR_PCI1_LOCK 0x00000080
#define I2C_CSR_ADDR 0xFF000000 /* Specifies I2C Device Address to be Accessed */
#define I2C_CSR_DATA 0x00FF0000 /* Specifies the Required Data for a Write */
#define I2C_CSR_DEV_CODE 0x0000F000 /* Device Select. I2C 4-bit Device Code */
#define I2C_CSR_CS 0x00000E00 /* Chip Select */
#define I2C_CSR_RW 0x00000100 /* Read/Write */
#define I2C_CSR_ACT 0x00000080 /* I2C Interface Active */
#define I2C_CSR_ERR 0x00000040 /* Error */
#define I2C_EEPROM_DEV 0xa
#define I2C_EEPROM_CHIP_SEL 0
#define I2C_READ 0
#define I2C_WRITE 1
#define RESET_CSR_EEPROM_LOAD 0x00000010
#define ISR_CLEAR_ALL 0xFFFFFFFF
#define IER0_DMA_INTS_EN 0x0F000000
#define IER0_PCI_1_EN 0x00400000
#define IER0_HW_INTS_EN 0x003F0000
#define IER0_MB_INTS_EN 0x000000FF
#define IER0_DEFAULT (IER0_DMA_INTS_EN | IER0_PCI_1_EN | IER0_HW_INTS_EN | IER0_MB_INTS_EN)
#define MBOX_MAP_TO_INT4 0xCCCCCCCC
#define HW_MAP_HW4_TO_INT4 0x000C0000
#define IDR_PCI_A_OUT 0x40000000
#define IDR_MBOX_OUT 0x10000000
int pci_read_config_byte(int bus, int dev, int fn, int reg, unsigned char* val);
int pci_write_config_byte(int bus, int dev, int fn, int reg, unsigned char val);
int pci_read_config_word(int bus, int dev, int fn, int reg, unsigned short* val);
int pci_write_config_word(int bus, int dev, int fn, int reg, unsigned short val);
int pci_read_config_dword(int bus, int dev, int fn, int reg, unsigned long* val);
int pci_write_config_dword(int bus, int dev, int fn, int reg, unsigned long val);
unsigned int PowerSpanRead(unsigned int theOffset);
void PowerSpanWrite(unsigned int theOffset, unsigned int theValue);
int I2CAccess(unsigned char theI2CAddress, unsigned char theDevCode, unsigned char theChipSel, unsigned char* theValue, int RWFlag);
int PCIWriteConfig(int bus, int dev, int fn, int reg, int width, unsigned long val);
int PCIReadConfig(int bus, int dev, int fn, int reg, int width, unsigned long* val);
int SetSlaveImage(int theImageIndex, unsigned int theBlockSize, int theMemIOFlag, int theEndianness, unsigned int theLocalBaseAddr, unsigned int thePCIBaseAddr);
int SetTargetImage(int theImageIndex, unsigned int theBlockSize, int theMemIOFlag, int theEndianness, unsigned int theLocalBaseAddr, unsigned int thePCIBaseAddr);
#endif

@ -1,134 +0,0 @@
/*
* (C) Copyright 2002
* Peter De Schrijver (p2@mind.be), Mind Linux Solutions, NV.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
#include <common.h>
#include <asm/u-boot.h>
#include <asm/processor.h>
#include <command.h>
#include <config.h>
#include <serial.h>
#include <linux/compiler.h>
#include <ns16550.h>
DECLARE_GLOBAL_DATA_PTR;
const NS16550_t COM_PORTS[] =
{ (NS16550_t) CONFIG_SYS_NS16550_COM1, (NS16550_t) CONFIG_SYS_NS16550_COM2 };
#undef CONFIG_SYS_DUART_CHAN
#define CONFIG_SYS_DUART_CHAN gComPort
static int gComPort = 0;
static int amirix_serial_init(void)
{
int clock_divisor = CONFIG_SYS_NS16550_CLK / 16 / gd->baudrate;
(void) NS16550_init (COM_PORTS[0], clock_divisor);
gComPort = 0;
return 0;
}
static void amirix_serial_putc(const char c)
{
if (c == '\n') {
NS16550_putc (COM_PORTS[CONFIG_SYS_DUART_CHAN], '\r');
}
NS16550_putc (COM_PORTS[CONFIG_SYS_DUART_CHAN], c);
}
static int amirix_serial_getc(void)
{
return NS16550_getc (COM_PORTS[CONFIG_SYS_DUART_CHAN]);
}
static int amirix_serial_tstc(void)
{
return NS16550_tstc (COM_PORTS[CONFIG_SYS_DUART_CHAN]);
}
static void amirix_serial_setbrg(void)
{
int clock_divisor = CONFIG_SYS_NS16550_CLK / 16 / gd->baudrate;
#ifdef CONFIG_SYS_INIT_CHAN1
NS16550_reinit (COM_PORTS[0], clock_divisor);
#endif
#ifdef CONFIG_SYS_INIT_CHAN2
NS16550_reinit (COM_PORTS[1], clock_divisor);
#endif
}
static void amirix_serial_puts(const char *s)
{
while (*s) {
serial_putc (*s++);
}
}
static struct serial_device amirix_serial_drv = {
.name = "amirix_serial",
.start = amirix_serial_init,
.stop = NULL,
.setbrg = amirix_serial_setbrg,
.putc = amirix_serial_putc,
.puts = amirix_serial_puts,
.getc = amirix_serial_getc,
.tstc = amirix_serial_tstc,
};
void amirix_serial_initialize(void)
{
serial_register(&amirix_serial_drv);
}
__weak struct serial_device *default_serial_console(void)
{
return &amirix_serial_drv;
}
#if defined(CONFIG_CMD_KGDB)
void kgdb_serial_init (void)
{
}
void putDebugChar (int c)
{
serial_putc (c);
}
void putDebugStr (const char *str)
{
serial_puts (str);
}
int getDebugChar (void)
{
return serial_getc ();
}
void kgdb_interruptible (int yes)
{
return;
}
#endif

@ -1,96 +0,0 @@
/*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
OUTPUT_ARCH(powerpc)
SECTIONS
{
/* Read-only sections, merged into text segment: */
. = + SIZEOF_HEADERS;
.text :
{
/* WARNING - the following is hand-optimized to fit within */
/* the sector layout of our flash chips! XXX FIXME XXX */
arch/powerpc/cpu/ppc4xx/start.o (.text)
board/amirix/ap1000/init.o (.text)
*(.text*)
}
_etext = .;
PROVIDE (etext = .);
.rodata :
{
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*)))
}
/* Read-write section, merged into data segment: */
. = (. + 0x00FF) & 0xFFFFFF00;
_erotext = .;
PROVIDE (erotext = .);
.reloc :
{
_GOT2_TABLE_ = .;
KEEP(*(.got2))
KEEP(*(.got))
PROVIDE(_GLOBAL_OFFSET_TABLE_ = . + 4);
_FIXUP_TABLE_ = .;
KEEP(*(.fixup))
}
__got2_entries = ((_GLOBAL_OFFSET_TABLE_ - _GOT2_TABLE_) >> 2) - 1;
__fixup_entries = (. - _FIXUP_TABLE_)>>2;
.data :
{
*(.data*)
*(.sdata*)
}
_edata = .;
PROVIDE (edata = .);
__u_boot_cmd_start = .;
.u_boot_cmd : { *(.u_boot_cmd) }
__u_boot_cmd_end = .;
__start___ex_table = .;
__ex_table : { *(__ex_table) }
__stop___ex_table = .;
. = ALIGN(256);
__init_begin = .;
.text.init : { *(.text.init) }
.data.init : { *(.data.init) }
. = ALIGN(256);
__init_end = .;
__bss_start = .;
.bss (NOLOAD) :
{
*(.bss*)
*(.sbss*)
*(COMMON)
. = ALIGN(4);
}
__bss_end__ = . ;
PROVIDE (end = .);
}

@ -998,7 +998,6 @@ walnut powerpc ppc4xx walnut amcc
yellowstone powerpc ppc4xx yosemite amcc - yosemite:YELLOWSTONE
yosemite powerpc ppc4xx yosemite amcc - yosemite:YOSEMITE
yucca powerpc ppc4xx - amcc
AP1000 powerpc ppc4xx ap1000 amirix
fx12mm powerpc ppc4xx fx12mm avnet - fx12mm:SYS_TEXT_BASE=0x04000000,RESET_VECTOR_ADDRESS=0x04100000,INIT_TLB=board/xilinx/ppc405-generic/init.o
fx12mm_flash powerpc ppc4xx fx12mm avnet - fx12mm:SYS_TEXT_BASE=0xF7F60000,RESET_VECTOR_ADDRESS=0xF7FFFFFC,INIT_TLB=board/xilinx/ppc405-generic/init.o
v5fx30teval powerpc ppc4xx v5fx30teval avnet - v5fx30teval:SYS_TEXT_BASE=0x04000000,RESET_VECTOR_ADDRESS=0x04100000,BOOT_FROM_XMD=1,INIT_TLB=board/xilinx/ppc440-generic/init.o

@ -135,7 +135,6 @@ static void e1000_set_media_type(struct e1000_hw *hw);
static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#ifndef CONFIG_AP1000 /* remove for warnings */
static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t words,
uint16_t *data);
@ -942,7 +941,6 @@ e1000_set_phy_mode(struct e1000_hw *hw)
return E1000_SUCCESS;
}
#endif /* #ifndef CONFIG_AP1000 */
/***************************************************************************
*
@ -1123,7 +1121,6 @@ static boolean_t e1000_is_second_port(struct e1000_hw *hw)
static int
e1000_read_mac_addr(struct eth_device *nic)
{
#ifndef CONFIG_AP1000
struct e1000_hw *hw = nic->priv;
uint16_t offset;
uint16_t eeprom_data;
@ -1152,31 +1149,6 @@ e1000_read_mac_addr(struct eth_device *nic)
memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
}
#endif
#else
/*
* The AP1000's e1000 has no eeprom; the MAC address is stored in the
* environment variables. Currently this does not support the addition
* of a PMC e1000 card, which is certainly a possibility, so this should
* be updated to properly use the env variable only for the onboard e1000
*/
int ii;
char *s, *e;
DEBUGFUNC();
s = getenv ("ethaddr");
if (s == NULL) {
return -E1000_ERR_EEPROM;
} else {
for(ii = 0; ii < 6; ii++) {
nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
if (s){
s = (*e) ? e + 1 : e;
}
}
}
#endif
return 0;
}
@ -1808,7 +1780,6 @@ e1000_setup_link(struct eth_device *nic)
if (e1000_check_phy_reset_block(hw))
return E1000_SUCCESS;
#ifndef CONFIG_AP1000
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
@ -1822,11 +1793,6 @@ e1000_setup_link(struct eth_device *nic)
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
#else
/* we have to hardcode the proper value for our hardware. */
/* this value is for the 82540EM pci card used for prototyping, and it works. */
eeprom_data = 0xb220;
#endif
if (hw->fc == e1000_fc_default) {
switch (hw->mac_type) {
@ -1836,16 +1802,12 @@ e1000_setup_link(struct eth_device *nic)
hw->fc = e1000_fc_full;
break;
default:
#ifndef CONFIG_AP1000
ret_val = e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
if (ret_val) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
#else
eeprom_data = 0xb220;
#endif
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
@ -2109,12 +2071,10 @@ e1000_copper_link_preconfig(struct e1000_hw *hw)
}
DEBUGOUT("Phy ID = %x \n", hw->phy_id);
#ifndef CONFIG_AP1000
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
if (ret_val)
return ret_val;
#endif
if ((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
@ -5242,7 +5202,7 @@ e1000_initialize(bd_t * bis)
list_add_tail(&hw->list_node, &e1000_hw_list);
/* Validate the EEPROM and get chipset information */
#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
#if !defined(CONFIG_MVBC_1G)
if (e1000_init_eeprom_params(hw)) {
E1000_ERR(nic, "EEPROM is invalid!\n");
continue;

@ -42,7 +42,7 @@ typedef volatile unsigned char vu_char;
#include <linux/stringify.h>
#include <asm/ptrace.h>
#include <stdarg.h>
#if defined(CONFIG_PCI) && (defined(CONFIG_4xx) && !defined(CONFIG_AP1000))
#if defined(CONFIG_PCI) && defined(CONFIG_4xx)
#include <pci.h>
#endif
#if defined(CONFIG_8xx)
@ -376,7 +376,7 @@ void pci_init (void);
void pci_init_board(void);
void pciinfo (int, int);
#if defined(CONFIG_PCI) && (defined(CONFIG_4xx) && !defined(CONFIG_AP1000))
#if defined(CONFIG_PCI) && defined(CONFIG_4xx)
int pci_pre_init (struct pci_controller *);
int is_pci_host (struct pci_controller *);
#endif

@ -1,247 +0,0 @@
/*
* AMIRIX.h: AMIRIX specific config options
*
* Author : Frank Smith (smith at amirix dot com)
*
* Derived from : other configuration header files in this tree
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL) version 2, incorporated herein by
* reference. Drivers based on or derived from this code fall under the GPL
* and must retain the authorship, copyright and this license notice. This
* file is not a complete program and may only be used when the entire
* program is licensed under the GPL.
*
*/
#ifndef __CONFIG_H
#define __CONFIG_H
/*
* High Level Configuration Options
* (easy to change)
*/
#define CONFIG_405 1 /* This is a PPC405 CPU */
#define CONFIG_4xx 1 /* ...member of PPC4xx family */
#define CONFIG_AP1000 1 /* ...on an AP1000 board */
/*
* Start at bottom of RAM, but at an aliased address so that it looks
* like it's not in RAM. This is a bit of voodoo to allow it to be
* run from RAM instead of Flash.
*/
#define CONFIG_SYS_TEXT_BASE 0x08000000
#define CONFIG_SYS_LDSCRIPT "board/amirix/ap1000/u-boot.lds"
#define CONFIG_PCI 1
#define CONFIG_SYS_HUSH_PARSER 1 /* use "hush" command parser */
#define CONFIG_SYS_PROMPT "0> "
#define CONFIG_COMMAND_EDIT 1
#define CONFIG_COMPLETE_ADDRESSES 1
#define CONFIG_ENV_IS_IN_FLASH 1
#define CONFIG_SYS_FLASH_USE_BUFFER_WRITE
#ifdef CONFIG_ENV_IS_IN_NVRAM
#undef CONFIG_ENV_IS_IN_FLASH
#else
#ifdef CONFIG_ENV_IS_IN_FLASH
#undef CONFIG_ENV_IS_IN_NVRAM
#endif
#endif
#define CONFIG_BAUDRATE 57600
#define CONFIG_BOOTDELAY 3 /* autoboot after 3 seconds */
#define CONFIG_BOOTCOMMAND "" /* autoboot command */
#define CONFIG_BOOTARGS "console=ttyS0,57600"
#define CONFIG_LOADS_ECHO 1 /* echo on for serial download */
#define CONFIG_SYS_LOADS_BAUD_CHANGE 1 /* allow baudrate change */
/*
* BOOTP options
*/
#define CONFIG_BOOTP_BOOTFILESIZE
#define CONFIG_BOOTP_BOOTPATH
#define CONFIG_BOOTP_GATEWAY
#define CONFIG_BOOTP_HOSTNAME
/*
* Command line configuration.
*/
#include <config_cmd_default.h>
#define CONFIG_CMD_ASKENV
#define CONFIG_CMD_DHCP
#define CONFIG_CMD_ELF
#define CONFIG_CMD_IRQ
#define CONFIG_CMD_MVENV
#define CONFIG_CMD_PCI
#define CONFIG_CMD_PING
#undef CONFIG_WATCHDOG /* watchdog disabled */
#define CONFIG_SYS_CLK_FREQ 30000000
#define CONFIG_SPD_EEPROM 1 /* use SPD EEPROM for setup */
/*
* I2C
*/
#define CONFIG_HARD_I2C /* I2C with hardware support */
#define CONFIG_PPC4XX_I2C /* use PPC4xx driver */
#define CONFIG_SYS_I2C_SLAVE 0x7F
#define CONFIG_SYS_I2C_SPEED 400000
/*
* Miscellaneous configurable options
*/
#define CONFIG_SYS_LONGHELP /* undef to save memory */
#if defined(CONFIG_CMD_KGDB)
#define CONFIG_SYS_CBSIZE 1024 /* Console I/O Buffer Size */
#else
#define CONFIG_SYS_CBSIZE 256 /* Console I/O Buffer Size */
#endif
/* usually: (CONFIG_SYS_CBSIZE+sizeof(CONFIG_SYS_PROMPT)+16) */
#define CONFIG_SYS_PBSIZE (CONFIG_SYS_CBSIZE+4+16) /* Print Buffer Size */
#define CONFIG_SYS_MAXARGS 16 /* max number of command args */
#define CONFIG_SYS_BARGSIZE CONFIG_SYS_CBSIZE /* Boot Argument Buffer Size */
#define CONFIG_SYS_ALT_MEMTEST 1
#define CONFIG_SYS_MEMTEST_START 0x00400000 /* memtest works on */
#define CONFIG_SYS_MEMTEST_END 0x01000000 /* 4 ... 16 MB in DRAM */
/*
* If CONFIG_SYS_EXT_SERIAL_CLOCK, then the UART divisor is 1.
* If CONFIG_SYS_405_UART_ERRATA_59, then UART divisor is 31.
* Otherwise, UART divisor is determined by CPU Clock and CONFIG_SYS_BASE_BAUD value.
* The Linux BASE_BAUD define should match this configuration.
* baseBaud = cpuClock/(uartDivisor*16)
* If CONFIG_SYS_405_UART_ERRATA_59 and 200MHz CPU clock,
* set Linux BASE_BAUD to 403200.
*/
#undef CONFIG_SYS_EXT_SERIAL_CLOCK /* external serial clock */
#undef CONFIG_SYS_405_UART_ERRATA_59 /* 405GP/CR Rev. D silicon */
#define CONFIG_SYS_NS16550_CLK 40000000
#define CONFIG_SYS_DUART_CHAN 0
#define CONFIG_SYS_NS16550_COM1 (0x4C000000 + 0x1000)
#define CONFIG_SYS_NS16550_COM2 (0x4C800000 + 0x1000)
#define CONFIG_SYS_NS16550_REG_SIZE 4
#define CONFIG_SYS_NS16550 1
#define CONFIG_SYS_INIT_CHAN1 1
#define CONFIG_SYS_INIT_CHAN2 0
/* The following table includes the supported baudrates */
#define CONFIG_SYS_BAUDRATE_TABLE \
{300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400}
#define CONFIG_SYS_LOAD_ADDR 0x00200000 /* default load address */
#define CONFIG_SYS_EXTBDINFO 1 /* To use extended board_into (bd_t) */
#define CONFIG_SYS_HZ 1000 /* decrementer freq: 1 ms ticks */
/*-----------------------------------------------------------------------
* Start addresses for the final memory configuration
* (Set up by the startup code)
* Please note that CONFIG_SYS_SDRAM_BASE _must_ start at 0
*/
#define CONFIG_SYS_SDRAM_BASE 0x00000000
#define CONFIG_SYS_FLASH_BASE 0x20000000
#define CONFIG_SYS_MONITOR_BASE CONFIG_SYS_TEXT_BASE
#define CONFIG_SYS_MONITOR_LEN (192 * 1024) /* Reserve 196 kB for Monitor */
#define CONFIG_SYS_MALLOC_LEN (128 * 1024) /* Reserve 128 kB for malloc() */
/*
* For booting Linux, the board info and command line data
* have to be in the first 8 MB of memory, since this is
* the maximum mapped by the Linux kernel during initialization.
*/
#define CONFIG_SYS_BOOTMAPSZ (8 << 20) /* Initial Memory map for Linux */
/*-----------------------------------------------------------------------
* FLASH organization
*/
#define CONFIG_SYS_FLASH_CFI 1
#define CONFIG_SYS_PROGFLASH_BASE CONFIG_SYS_FLASH_BASE
#define CONFIG_SYS_CONFFLASH_BASE 0x24000000
#define CONFIG_SYS_MAX_FLASH_BANKS 2 /* max number of memory banks */
#define CONFIG_SYS_MAX_FLASH_SECT 256 /* max number of sectors on one chip */
#define CONFIG_SYS_FLASH_ERASE_TOUT 120000 /* Timeout for Flash Erase (in ms) */
#define CONFIG_SYS_FLASH_WRITE_TOUT 500 /* Timeout for Flash Write (in ms) */
#define CONFIG_SYS_FLASH_PROTECTION 1 /* use hardware protection */
/* BEG ENVIRONNEMENT FLASH */
#ifdef CONFIG_ENV_IS_IN_FLASH
#define CONFIG_ENV_OFFSET 0x00040000 /* Offset of Environment Sector */
#define CONFIG_ENV_SIZE 0x1000 /* Total Size of Environment Sector */
#define CONFIG_ENV_SECT_SIZE 0x20000 /* see README - env sector total size */
#endif
/* END ENVIRONNEMENT FLASH */
/*-----------------------------------------------------------------------
* NVRAM organization
*/
#define CONFIG_SYS_NVRAM_BASE_ADDR 0xf0000000 /* NVRAM base address */
#define CONFIG_SYS_NVRAM_SIZE 0x1ff8 /* NVRAM size */
#ifdef CONFIG_ENV_IS_IN_NVRAM
#define CONFIG_ENV_SIZE 0x1000 /* Size of Environment vars */
#define CONFIG_ENV_ADDR \
(CONFIG_SYS_NVRAM_BASE_ADDR+CONFIG_SYS_NVRAM_SIZE-CONFIG_ENV_SIZE) /* Env */
#endif
/*
* Init Memory Controller:
*
* BR0/1 and OR0/1 (FLASH)
*/
#define FLASH_BASE0_PRELIM CONFIG_SYS_FLASH_BASE /* FLASH bank #0 */
#define FLASH_BASE1_PRELIM 0 /* FLASH bank #1 */
/* Configuration Port location */
#define CONFIG_PORT_ADDR 0xF0000500
/*-----------------------------------------------------------------------
* Definitions for initial stack pointer and data area (in DPRAM)
*/
#define CONFIG_SYS_INIT_RAM_ADDR 0x400000 /* inside of SDRAM */
#define CONFIG_SYS_INIT_RAM_SIZE 0x2000 /* Size of used area in RAM */
#define CONFIG_SYS_GBL_DATA_OFFSET (CONFIG_SYS_INIT_RAM_SIZE - GENERATED_GBL_DATA_SIZE)
#define CONFIG_SYS_INIT_SP_OFFSET CONFIG_SYS_GBL_DATA_OFFSET
/*-----------------------------------------------------------------------
* Definitions for Serial Presence Detect EEPROM address
* (to get SDRAM settings)
*/
#define SPD_EEPROM_ADDRESS 0x50
#if defined(CONFIG_CMD_KGDB)
#define CONFIG_KGDB_BAUDRATE 230400 /* speed to run kgdb serial port */
#define CONFIG_KGDB_SER_INDEX 2 /* which serial port to use */
#endif
/* JFFS2 stuff */
#define CONFIG_SYS_JFFS2_FIRST_BANK 0
#define CONFIG_SYS_JFFS2_NUM_BANKS 1
#define CONFIG_SYS_JFFS2_FIRST_SECTOR 1
#define CONFIG_E1000
#define CONFIG_SYS_ETH_DEV_FN 0x0800
#define CONFIG_SYS_ETH_IOBASE 0x31000000
#define CONFIG_SYS_ETH_MEMBASE 0x32000000
#endif /* __CONFIG_H */
Loading…
Cancel
Save