ARM: keystone2: Cleanup PLL init code

There are two types of PLL for all keystone platforms:
Main PLL, Secondary PLL. Instead of duplicating the same definition
for each secondary PLL, have a common function which does
initialization for both PLLs. And also add proper register
definitions.

Reviewed-by: Tom Rini <trini@konsulko.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
master
Lokesh Vutla 10 years ago committed by Tom Rini
parent aeabe652bb
commit c321a23624
  1. 301
      arch/arm/mach-keystone/clock.c
  2. 1
      arch/arm/mach-keystone/include/mach/clock-k2e.h
  3. 2
      arch/arm/mach-keystone/include/mach/clock.h
  4. 68
      arch/arm/mach-keystone/include/mach/clock_defs.h
  5. 1
      board/ti/ks2_evm/board.c
  6. 4
      board/ti/ks2_evm/board_k2e.c
  7. 4
      board/ti/ks2_evm/board_k2hk.c
  8. 4
      board/ti/ks2_evm/board_k2l.c

@ -18,189 +18,171 @@ static void wait_for_completion(const struct pll_init_data *data)
int i;
for (i = 0; i < 100; i++) {
sdelay(450);
if ((pllctl_reg_read(data->pll, stat) & PLLSTAT_GO) == 0)
if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
break;
}
}
void init_pll(const struct pll_init_data *data)
static inline void bypass_main_pll(const struct pll_init_data *data)
{
u32 tmp, tmp_ctl, pllm, plld, pllod, bwadj;
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
PLLCTL_PLLEN_MASK);
/* 4 cycles of reference clock CLKIN*/
sdelay(340);
}
static void configure_mult_div(const struct pll_init_data *data)
{
u32 pllm, plld, bwadj;
pllm = data->pll_m - 1;
plld = (data->pll_d - 1) & PLL_DIV_MASK;
pllod = (data->pll_od - 1) & PLL_CLKOD_MASK;
plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
if (data->pll == MAIN_PLL) {
/* The requered delay before main PLL configuration */
sdelay(210000);
/* Program Multiplier */
if (data->pll == MAIN_PLL)
pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
tmp = pllctl_reg_read(data->pll, secctl);
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_PLLM_MASK,
pllm << CFG_PLLCTL0_PLLM_SHIFT);
/* Program BWADJ */
bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_BWADJ_MASK,
(bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
CFG_PLLCTL0_BWADJ_MASK);
bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
CFG_PLLCTL1_BWADJ_MASK, bwadj);
/* Program Divider */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_PLLD_MASK, plld);
}
if (tmp & (PLLCTL_BYPASS)) {
setbits_le32(keystone_pll_regs[data->pll].reg1,
BIT(MAIN_ENSAT_OFFSET));
void configure_main_pll(const struct pll_init_data *data)
{
u32 tmp, pllod, i, alnctl_val = 0;
u32 *offset;
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
PLLCTL_PLLENSRC);
sdelay(340);
pllod = data->pll_od - 1;
pllctl_reg_setbits(data->pll, secctl, PLLCTL_BYPASS);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN);
sdelay(21000);
/* 100 micro sec for stabilization */
sdelay(210000);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN);
} else {
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
PLLCTL_PLLENSRC);
sdelay(340);
}
tmp = pllctl_reg_read(data->pll, secctl);
pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
/* Check for Bypass */
if (tmp & SECCTL_BYPASS_MASK) {
setbits_le32(keystone_pll_regs[data->pll].reg1,
CFG_PLLCTL1_ENSAT_MASK);
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
PLLM_MULT_HI_SMASK, (pllm << 6));
bypass_main_pll(data);
/* Set the BWADJ (12 bit field) */
tmp_ctl = pllm >> 1; /* Divide the pllm by 2 */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
PLL_BWADJ_LO_SMASK,
(tmp_ctl << PLL_BWADJ_LO_SHIFT));
clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
PLL_BWADJ_HI_MASK,
(tmp_ctl >> 8));
/* Powerdown and powerup Main Pll */
pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
/* 5 micro sec */
sdelay(21000);
/*
* Set the pll divider (6 bit field) *
* PLLD[5:0] is located in MAINPLLCTL0
*/
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
PLL_DIV_MASK, plld);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
} else {
bypass_main_pll(data);
}
/* Set the OUTPUT DIVIDE (4 bit field) in SECCTL */
pllctl_reg_rmw(data->pll, secctl, PLL_CLKOD_SMASK,
(pllod << PLL_CLKOD_SHIFT));
wait_for_completion(data);
configure_mult_div(data);
pllctl_reg_write(data->pll, div1, PLLM_RATIO_DIV1);
pllctl_reg_write(data->pll, div2, PLLM_RATIO_DIV2);
pllctl_reg_write(data->pll, div3, PLLM_RATIO_DIV3);
pllctl_reg_write(data->pll, div4, PLLM_RATIO_DIV4);
pllctl_reg_write(data->pll, div5, PLLM_RATIO_DIV5);
/* Program Output Divider */
pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
pllctl_reg_setbits(data->pll, alnctl, 0x1f);
/* Program PLLDIVn */
wait_for_completion(data);
for (i = 0; i < PLLDIV_MAX; i++) {
if (i < 3)
offset = pllctl_reg(data->pll, div1) + i;
else
offset = pllctl_reg(data->pll, div4) + (i - 3);
if (divn_val[i] != -1) {
__raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
alnctl_val |= BIT(i);
}
}
if (alnctl_val) {
pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
/*
* Set GOSET bit in PLLCMD to initiate the GO operation
* to change the divide
*/
pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GO);
sdelay(1500); /* wait for the phase adj */
pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
wait_for_completion(data);
}
/* Reset PLL */
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST);
sdelay(21000); /* Wait for a minimum of 7 us*/
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST);
sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
pllctl_reg_clrbits(data->pll, secctl, PLLCTL_BYPASS);
tmp = pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN);
/* Reset PLL */
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
sdelay(21000); /* Wait for a minimum of 7 us*/
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
#ifndef CONFIG_SOC_K2E
} else if (data->pll == TETRIS_PLL) {
bwadj = pllm >> 1;
/* 1.5 Set PLLCTL0[BYPASS] =1 (enable bypass), */
setbits_le32(keystone_pll_regs[data->pll].reg0, PLLCTL_BYPASS);
/*
* Set CHIPMISCCTL1[13] = 0 (enable glitchfree bypass)
* only applicable for Kepler
*/
clrbits_le32(KS2_MISC_CTRL, KS2_ARM_PLL_EN);
/* 2 In PLLCTL1, write PLLRST = 1 (PLL is reset) */
setbits_le32(keystone_pll_regs[data->pll].reg1 ,
PLL_PLLRST | PLLCTL_ENSAT);
/*
* 3 Program PLLM and PLLD in PLLCTL0 register
* 4 Program BWADJ[7:0] in PLLCTL0 and BWADJ[11:8] in
* PLLCTL1 register. BWADJ value must be set
* to ((PLLM + 1) >> 1) 1)
*/
tmp = ((bwadj & PLL_BWADJ_LO_MASK) << PLL_BWADJ_LO_SHIFT) |
(pllm << 6) |
(plld & PLL_DIV_MASK) |
(pllod << PLL_CLKOD_SHIFT) | PLLCTL_BYPASS;
__raw_writel(tmp, keystone_pll_regs[data->pll].reg0);
/* Set BWADJ[11:8] bits */
tmp = __raw_readl(keystone_pll_regs[data->pll].reg1);
tmp &= ~(PLL_BWADJ_HI_MASK);
tmp |= ((bwadj>>8) & PLL_BWADJ_HI_MASK);
__raw_writel(tmp, keystone_pll_regs[data->pll].reg1);
/*
* 5 Wait for at least 5 us based on the reference
* clock (PLL reset time)
*/
sdelay(21000); /* Wait for a minimum of 7 us*/
/* 6 In PLLCTL1, write PLLRST = 0 (PLL reset is released) */
clrbits_le32(keystone_pll_regs[data->pll].reg1, PLL_PLLRST);
/*
* 7 Wait for at least 500 * REFCLK cycles * (PLLD + 1)
* (PLL lock time)
*/
sdelay(105000);
/* 8 disable bypass */
clrbits_le32(keystone_pll_regs[data->pll].reg0, PLLCTL_BYPASS);
/*
* 9 Set CHIPMISCCTL1[13] = 1 (disable glitchfree bypass)
* only applicable for Kepler
*/
setbits_le32(KS2_MISC_CTRL, KS2_ARM_PLL_EN);
#endif
} else {
setbits_le32(keystone_pll_regs[data->pll].reg1, PLLCTL_ENSAT);
/*
* process keeps state of Bypass bit while programming
* all other DDR PLL settings
*/
tmp = __raw_readl(keystone_pll_regs[data->pll].reg0);
tmp &= PLLCTL_BYPASS; /* clear everything except Bypass */
/* Enable PLL */
pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
}
/*
* Set the BWADJ[7:0], PLLD[5:0] and PLLM to PLLCTL0,
* bypass disabled
*/
bwadj = pllm >> 1;
tmp |= ((bwadj & PLL_BWADJ_LO_MASK) << PLL_BWADJ_LO_SHIFT) |
(pllm << PLL_MULT_SHIFT) |
(plld & PLL_DIV_MASK) |
(pllod << PLL_CLKOD_SHIFT);
__raw_writel(tmp, keystone_pll_regs[data->pll].reg0);
/* Set BWADJ[11:8] bits */
tmp = __raw_readl(keystone_pll_regs[data->pll].reg1);
tmp &= ~(PLL_BWADJ_HI_MASK);
tmp |= ((bwadj >> 8) & PLL_BWADJ_HI_MASK);
__raw_writel(tmp, keystone_pll_regs[data->pll].reg1);
/* Reset bit: bit 14 for both DDR3 & PASS PLL */
tmp = PLL_PLLRST;
/* Set RESET bit = 1 */
setbits_le32(keystone_pll_regs[data->pll].reg1, tmp);
/* Wait for a minimum of 7 us*/
sdelay(21000);
/* Clear RESET bit */
clrbits_le32(keystone_pll_regs[data->pll].reg1, tmp);
sdelay(105000);
void configure_secondary_pll(const struct pll_init_data *data)
{
int pllod = data->pll_od - 1;
/* Enable Bypass mode */
setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
setbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_BYPASS_MASK);
/* Enable Glitch free bypass for ARM PLL */
if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
configure_mult_div(data);
/* Program Output Divider */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_CLKOD_MASK,
(pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
CFG_PLLCTL0_CLKOD_MASK);
/* Reset PLL */
setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
/* Wait for 5 micro seconds */
sdelay(21000);
/* Select the Output of PASS PLL as input to PASS */
if (data->pll == PASS_PLL)
setbits_le32(keystone_pll_regs[data->pll].reg1,
CFG_PLLCTL1_PAPLL_MASK);
/* Select the Output of ARM PLL as input to ARM */
if (data->pll == TETRIS_PLL)
setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
/* Wait for 500 * REFCLK cucles * (PLLD + 1) */
sdelay(105000);
/* Switch to PLL mode */
clrbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_BYPASS_MASK);
}
/* clear BYPASS (Enable PLL Mode) */
clrbits_le32(keystone_pll_regs[data->pll].reg0, PLLCTL_BYPASS);
sdelay(21000); /* Wait for a minimum of 7 us*/
}
void init_pll(const struct pll_init_data *data)
{
if (data->pll == MAIN_PLL)
configure_main_pll(data);
else
configure_secondary_pll(data);
/*
* This is required to provide a delay between multiple
@ -257,16 +239,3 @@ inline int get_max_dev_speed(void)
{
return get_max_speed((read_efuse_bootrom() >> 16) & 0xffff, dev_speeds);
}
void pass_pll_pa_clk_enable(void)
{
u32 reg;
reg = readl(keystone_pll_regs[PASS_PLL].reg1);
reg |= PLLCTL_PAPLL;
writel(reg, keystone_pll_regs[PASS_PLL].reg1);
/* wait till clock is enabled */
sdelay(15000);
}

@ -55,6 +55,7 @@ enum pll_type_e {
CORE_PLL,
PASS_PLL,
DDR3_PLL,
TETRIS_PLL,
};
enum {

@ -52,13 +52,13 @@ struct pll_init_data {
extern const struct keystone_pll_regs keystone_pll_regs[];
extern int dev_speeds[];
extern int arm_speeds[];
extern s16 divn_val[];
void init_plls(int num_pll, struct pll_init_data *config);
void init_pll(const struct pll_init_data *data);
unsigned long clk_get_rate(unsigned int clk);
unsigned long clk_round_rate(unsigned int clk, unsigned long hz);
int clk_set_rate(unsigned int clk, unsigned long hz);
void pass_pll_pa_clk_enable(void);
int get_max_dev_speed(void);
int get_max_arm_speed(void);

@ -69,7 +69,6 @@ static struct pllctl_regs *pllctl_regs[] = {
#define pll0div_read(N) ((pllctl_reg_read(CORE_PLL, div##N) & 0xff) + 1)
/* PLLCTL Bits */
#define PLLCTL_BYPASS BIT(23)
#define PLL_PLLRST BIT(14)
#define PLLCTL_PAPLL BIT(13)
@ -102,10 +101,67 @@ static struct pllctl_regs *pllctl_regs[] = {
#define PLL_BWADJ_LO_SMASK (PLL_BWADJ_LO_MASK << PLL_BWADJ_LO_SHIFT)
#define PLL_BWADJ_HI_MASK 0xf
#define PLLM_RATIO_DIV1 (PLLDIV_ENABLE | 0x0)
#define PLLM_RATIO_DIV2 (PLLDIV_ENABLE | 0x0)
#define PLLM_RATIO_DIV3 (PLLDIV_ENABLE | 0x1)
#define PLLM_RATIO_DIV4 (PLLDIV_ENABLE | 0x4)
#define PLLM_RATIO_DIV5 (PLLDIV_ENABLE | 0x17)
/* PLLCTL Bits */
#define PLLCTL_PLLENSRC_SHIF 5
#define PLLCTL_PLLENSRC_MASK BIT(5)
#define PLLCTL_PLLRST_SHIFT 3
#define PLLCTL_PLLRST_MASK BIT(3)
#define PLLCTL_PLLPWRDN_SHIFT 1
#define PLLCTL_PLLPWRDN_MASK BIT(1)
#define PLLCTL_PLLEN_SHIFT 0
#define PLLCTL_PLLEN_MASK BIT(0)
/* SECCTL Bits */
#define SECCTL_BYPASS_SHIFT 23
#define SECCTL_BYPASS_MASK BIT(23)
#define SECCTL_OP_DIV_SHIFT 19
#define SECCTL_OP_DIV_MASK (0xf << 19)
/* PLLM Bits */
#define PLLM_MULT_LO_SHIFT 0
#define PLLM_MULT_LO_MASK 0x3f
#define PLLM_MULT_LO_BITS 6
/* PLLDIVn Bits */
#define PLLDIV_ENABLE_SHIFT 15
#define PLLDIV_ENABLE_MASK BIT(15)
#define PLLDIV_RATIO_SHIFT 0x0
#define PLLDIV_RATIO_MASK 0xff
#define PLLDIV_MAX 16
/* PLLCMD Bits */
#define PLLCMD_GOSET_SHIFT 0
#define PLLCMD_GOSET_MASK BIT(0)
/* PLLSTAT Bits */
#define PLLSTAT_GOSTAT_SHIFT 0
#define PLLSTAT_GOSTAT_MASK BIT(0)
/* Device Config PLLCTL0 */
#define CFG_PLLCTL0_BWADJ_SHIFT 24
#define CFG_PLLCTL0_BWADJ_MASK (0xff << 24)
#define CFG_PLLCTL0_BWADJ_BITS 8
#define CFG_PLLCTL0_BYPASS_SHIFT 23
#define CFG_PLLCTL0_BYPASS_MASK BIT(23)
#define CFG_PLLCTL0_CLKOD_SHIFT 19
#define CFG_PLLCTL0_CLKOD_MASK (0xf << 19)
#define CFG_PLLCTL0_PLLM_HI_SHIFT 12
#define CFG_PLLCTL0_PLLM_HI_MASK (0x7f << 12)
#define CFG_PLLCTL0_PLLM_SHIFT 6
#define CFG_PLLCTL0_PLLM_MASK (0x1fff << 6)
#define CFG_PLLCTL0_PLLD_SHIFT 0
#define CFG_PLLCTL0_PLLD_MASK 0x3f
/* Device Config PLLCTL1 */
#define CFG_PLLCTL1_RST_SHIFT 14
#define CFG_PLLCTL1_RST_MASK BIT(14)
#define CFG_PLLCTL1_PAPLL_SHIFT 13
#define CFG_PLLCTL1_PAPLL_MASK BIT(13)
#define CFG_PLLCTL1_ENSAT_SHIFT 6
#define CFG_PLLCTL1_ENSAT_MASK BIT(6)
#define CFG_PLLCTL1_BWADJ_SHIFT 0
#define CFG_PLLCTL1_BWADJ_MASK 0xf
#define MISC_CTL1_ARM_PLL_EN BIT(13)
#endif /* _CLOCK_DEFS_H_ */

@ -80,7 +80,6 @@ int board_eth_init(bd_t *bis)
return -1;
if (psc_enable_module(KS2_LPSC_CRYPTO))
return -1;
pass_pll_pa_clk_enable();
port_num = get_num_eth_ports();

@ -36,6 +36,10 @@ static struct pll_init_data core_pll_config[] = {
CORE_PLL_1500,
};
s16 divn_val[16] = {
0, 0, 1, 4, 23, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static struct pll_init_data pa_pll_config =
PASS_PLL_1000;

@ -35,6 +35,10 @@ static struct pll_init_data core_pll_config[] = {
CORE_PLL_1200,
};
s16 divn_val[16] = {
0, 0, 1, 4, 23, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static struct pll_init_data tetris_pll_config[] = {
TETRIS_PLL_800,
TETRIS_PLL_1000,

@ -31,6 +31,10 @@ static struct pll_init_data core_pll_config[] = {
CORE_PLL_1198,
};
s16 divn_val[16] = {
0, 0, 1, 4, 23, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static struct pll_init_data tetris_pll_config[] = {
TETRIS_PLL_799,
TETRIS_PLL_1000,

Loading…
Cancel
Save