mtd: nand: omap: enable BCH ECC scheme using ELM for generic platform

BCH8_ECC scheme implemented in omap_gpmc.c driver has following favours
+-----------------------------------+-----------------+-----------------+
|ECC Scheme                         | ECC Calculation | Error Detection |
+-----------------------------------+-----------------+-----------------+
|OMAP_ECC_BCH8_CODE_HW              |GPMC             |ELM H/W engine   |
|OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |GPMC             |S/W BCH library  |
+-----------------------------------+-----------------+-----------------+

Current implementation limits the BCH8_CODE_HW only for AM33xx device family.
(using CONFIG_AM33XX). However, other SoC families (like TI81xx) also have
ELM hardware module, and can support ECC error detection using ELM.

This patch
- removes CONFIG_AM33xx
	Thus this driver can be reused by all devices having ELM h/w engine.
- adds omap_select_ecc_scheme()
	A common function to handle ecc-scheme related configurations. This
	can be used both during device-probe and via user-space u-boot commads
	to change ecc-scheme. During device probe ecc-scheme is selected based
	on CONFIG_NAND_OMAP_ELM or CONFIG_NAND_OMAP_BCH8
- enables CONFIG_BCH
	S/W library (lib/bch.c) required by OMAP_ECC_BCHx_CODE_HW_DETECTION_SW
  	is enabled by CONFIG_BCH.
- enables CONFIG_SYS_NAND_ONFI_DETECTION
	for auto-detection of ONFI compliant NAND devices
- updates following README doc
	doc/README.nand
	board/ti/am335x/README
	doc/README.omap3

Signed-off-by: Pekon Gupta <pekon@ti.com>
[scottwood@freescale.com: fixed unused variable warning]
Signed-off-by: Scott Wood <scottwood@freescale.com>
master
pekon gupta 11 years ago committed by Scott Wood
parent beba5f04f2
commit d016dc42ce
  1. 16
      arch/arm/include/asm/omap_gpmc.h
  2. 11
      doc/README.nand
  3. 326
      drivers/mtd/nand/omap_gpmc.c

@ -68,4 +68,20 @@
}
#endif
enum omap_ecc {
/* 1-bit ECC calculation by Software, Error detection by Software */
OMAP_ECC_HAM1_CODE_SW = 1, /* avoid un-initialized int can be 0x0 */
/* 1-bit ECC calculation by GPMC, Error detection by Software */
/* ECC layout compatible to legacy ROMCODE. */
OMAP_ECC_HAM1_CODE_HW,
/* 4-bit ECC calculation by GPMC, Error detection by Software */
OMAP_ECC_BCH4_CODE_HW_DETECTION_SW,
/* 4-bit ECC calculation by GPMC, Error detection by ELM */
OMAP_ECC_BCH4_CODE_HW,
/* 8-bit ECC calculation by GPMC, Error detection by Software */
OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
/* 8-bit ECC calculation by GPMC, Error detection by ELM */
OMAP_ECC_BCH8_CODE_HW,
};
#endif /* __ASM_OMAP_GPMC_H */

@ -180,6 +180,17 @@ Configuration Options:
flexibility, so that one day we can eliminate the old mechanism.
CONFIG_SYS_NAND_ONFI_DETECTION
Enables detection of ONFI compliant devices during probe.
And fetching device parameters flashed on device, by parsing
ONFI parameter page.
CONFIG_BCH
Enables software based BCH ECC algorithm present in lib/bch.c
This is used by SoC platforms which do not have built-in ELM
hardware engine required for BCH ECC correction.
Platform specific options
=========================
CONFIG_NAND_OMAP_GPMC

@ -15,15 +15,13 @@
#include <linux/bch.h>
#include <linux/compiler.h>
#include <nand.h>
#ifdef CONFIG_AM33XX
#include <asm/omap_elm.h>
#endif
#define BADBLOCK_MARKER_LENGTH 2
#define SECTOR_BYTES 512
static uint8_t cs;
static __maybe_unused struct nand_ecclayout hw_nand_oob =
GPMC_NAND_HW_ECC_LAYOUT;
static __maybe_unused struct nand_ecclayout hw_bch8_nand_oob =
GPMC_NAND_HW_BCH8_ECC_LAYOUT;
static __maybe_unused struct nand_ecclayout omap_ecclayout;
/*
* omap_nand_hwcontrol - Set the address pointers corretly for the
@ -233,6 +231,7 @@ struct nand_bch_priv {
uint8_t type;
uint8_t nibbles;
struct bch_control *control;
enum omap_ecc ecc_scheme;
};
/* bch types */
@ -274,17 +273,15 @@ static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
{
uint32_t val;
uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
#ifdef CONFIG_AM33XX
uint32_t unused_length = 0;
#endif
uint32_t wr_mode = BCH_WRAPMODE_6;
struct nand_bch_priv *bch = chip->priv;
/* Clear the ecc result registers, select ecc reg as 1 */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
#ifdef CONFIG_AM33XX
wr_mode = BCH_WRAPMODE_1;
if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
wr_mode = BCH_WRAPMODE_1;
switch (bch->nibbles) {
case ECC_BCH4_NIBBLES:
@ -320,7 +317,7 @@ static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
val |= (unused_length << 22);
break;
}
#else
} else {
/*
* This ecc_size_config setting is for BCH sw library.
*
@ -333,7 +330,7 @@ static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
val = (32 << 22) | (0 << 12);
#endif
}
/* ecc size configuration */
writel(val, &gpmc_cfg->ecc_size_config);
@ -376,9 +373,9 @@ static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
}
/*
* BCH8 support (needs ELM and thus AM33xx-only)
* BCH support using ELM module
*/
#ifdef CONFIG_AM33XX
#ifdef CONFIG_NAND_OMAP_ELM
/*
* omap_read_bch8_result - Read BCH result for BCH8 level
*
@ -631,20 +628,20 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
}
return 0;
}
#endif /* CONFIG_AM33XX */
#endif /* CONFIG_NAND_OMAP_ELM */
/*
* OMAP3 BCH8 support (with BCH library)
*/
#ifdef CONFIG_NAND_OMAP_BCH8
#ifdef CONFIG_BCH
/*
* omap_calculate_ecc_bch - Read BCH ECC result
* omap_calculate_ecc_bch_sw - Read BCH ECC result
*
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed (unused here)
* @ecc: The ECC output buffer
*/
static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc)
{
int ret = 0;
@ -689,13 +686,13 @@ static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
}
/**
* omap_correct_data_bch - Decode received data and correct errors
* omap_correct_data_bch_sw - Decode received data and correct errors
* @mtd: MTD device structure
* @data: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*/
static int omap_correct_data_bch(struct mtd_info *mtd, u_char *data,
static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
u_char *read_ecc, u_char *calc_ecc)
{
int i, count;
@ -752,7 +749,150 @@ static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
chip_priv->control = NULL;
}
}
#endif /* CONFIG_NAND_OMAP_BCH8 */
#endif /* CONFIG_BCH */
/**
* omap_select_ecc_scheme - configures driver for particular ecc-scheme
* @nand: NAND chip device structure
* @ecc_scheme: ecc scheme to configure
* @pagesize: number of main-area bytes per page of NAND device
* @oobsize: number of OOB/spare bytes per page of NAND device
*/
static int omap_select_ecc_scheme(struct nand_chip *nand,
enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
struct nand_bch_priv *bch = nand->priv;
struct nand_ecclayout *ecclayout = nand->ecc.layout;
int eccsteps = pagesize / SECTOR_BYTES;
int i;
switch (ecc_scheme) {
case OMAP_ECC_HAM1_CODE_SW:
debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
* initialized in nand_scan_tail(), so just set ecc.mode */
bch_priv.control = NULL;
bch_priv.type = 0;
nand->ecc.mode = NAND_ECC_SOFT;
nand->ecc.layout = NULL;
nand->ecc.size = pagesize;
bch->ecc_scheme = OMAP_ECC_HAM1_CODE_SW;
break;
case OMAP_ECC_HAM1_CODE_HW:
debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
/* check ecc-scheme requirements before updating ecc info */
if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
printf("nand: error: insufficient OOB: require=%d\n", (
(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
return -EINVAL;
}
bch_priv.control = NULL;
bch_priv.type = 0;
/* populate ecc specific fields */
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.strength = 1;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 3;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.correct = omap_correct_data;
nand->ecc.calculate = omap_calculate_ecc;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
for (i = 0; i < ecclayout->eccbytes; i++)
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
bch->ecc_scheme = OMAP_ECC_HAM1_CODE_HW;
break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_BCH
debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
/* check ecc-scheme requirements before updating ecc info */
if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
printf("nand: error: insufficient OOB: require=%d\n", (
(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
return -EINVAL;
}
/* check if BCH S/W library can be used for error detection */
bch_priv.control = init_bch(13, 8, 0x201b);
if (!bch_priv.control) {
printf("nand: error: could not init_bch()\n");
return -ENODEV;
}
bch_priv.type = ECC_BCH8;
/* populate ecc specific fields */
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 13;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch_sw;
nand->ecc.calculate = omap_calculate_ecc_bch_sw;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
for (i = 1; i < ecclayout->eccbytes; i++) {
if (i % nand->ecc.bytes)
ecclayout->eccpos[i] =
ecclayout->eccpos[i - 1] + 1;
else
ecclayout->eccpos[i] =
ecclayout->eccpos[i - 1] + 2;
}
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
omap_hwecc_init_bch(nand, NAND_ECC_READ);
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
break;
#else
printf("nand: error: CONFIG_BCH required for ECC\n");
return -EINVAL;
#endif
case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_NAND_OMAP_ELM
debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
/* check ecc-scheme requirements before updating ecc info */
if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
printf("nand: error: insufficient OOB: require=%d\n", (
(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
return -EINVAL;
}
/* intialize ELM for ECC error detection */
elm_init();
bch_priv.type = ECC_BCH8;
/* populate ecc specific fields */
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 14;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc_bch;
nand->ecc.read_page = omap_read_page_bch;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
for (i = 0; i < ecclayout->eccbytes; i++)
ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW;
break;
#else
printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
return -EINVAL;
#endif
default:
debug("nand: error: ecc scheme not enabled or supported\n");
return -EINVAL;
}
return 0;
}
#ifndef CONFIG_SPL_BUILD
/*
@ -763,77 +903,45 @@ static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
* @eccstrength - the number of bits that could be corrected
* (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
*/
void omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
{
struct nand_chip *nand;
struct mtd_info *mtd;
int err = 0;
if (nand_curr_device < 0 ||
nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
!nand_info[nand_curr_device].name) {
printf("Error: Can't switch ecc, no devices available\n");
return;
printf("nand: error: no NAND devices found\n");
return -ENODEV;
}
mtd = &nand_info[nand_curr_device];
nand = mtd->priv;
nand->options |= NAND_OWN_BUFFERS;
/* Reset ecc interface */
nand->ecc.mode = NAND_ECC_NONE;
nand->ecc.read_page = NULL;
nand->ecc.write_page = NULL;
nand->ecc.read_oob = NULL;
nand->ecc.write_oob = NULL;
nand->ecc.hwctl = NULL;
nand->ecc.correct = NULL;
nand->ecc.calculate = NULL;
nand->ecc.strength = eccstrength;
/* Setup the ecc configurations again */
if (hardware) {
if (eccstrength == 1) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_nand_oob;
nand->ecc.size = 512;
nand->ecc.bytes = 3;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.correct = omap_correct_data;
nand->ecc.calculate = omap_calculate_ecc;
omap_hwecc_init(nand);
printf("1-bit hamming HW ECC selected\n");
}
#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
else if (eccstrength == 8) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_bch8_nand_oob;
nand->ecc.size = 512;
#ifdef CONFIG_AM33XX
nand->ecc.bytes = 14;
nand->ecc.read_page = omap_read_page_bch;
#else
nand->ecc.bytes = 13;
#endif
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc_bch;
omap_hwecc_init_bch(nand, NAND_ECC_READ);
printf("8-bit BCH HW ECC selected\n");
err = omap_select_ecc_scheme(nand,
OMAP_ECC_HAM1_CODE_HW,
mtd->writesize, mtd->oobsize);
} else if (eccstrength == 8) {
err = omap_select_ecc_scheme(nand,
OMAP_ECC_BCH8_CODE_HW,
mtd->writesize, mtd->oobsize);
} else {
printf("nand: error: unsupported ECC scheme\n");
return -EINVAL;
}
#endif
} else {
nand->ecc.mode = NAND_ECC_SOFT;
/* Use mtd default settings */
nand->ecc.layout = NULL;
nand->ecc.size = 0;
printf("SW ECC selected\n");
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
mtd->writesize, mtd->oobsize);
}
/* Update NAND handling after ECC mode switch */
nand_scan_tail(mtd);
nand->options &= ~NAND_OWN_BUFFERS;
if (!err)
err = nand_scan_tail(mtd);
return err;
}
#endif /* CONFIG_SPL_BUILD */
@ -856,7 +964,7 @@ int board_nand_init(struct nand_chip *nand)
{
int32_t gpmc_config = 0;
cs = 0;
int err = 0;
/*
* xloader/Uboot's gpmc configuration would have configured GPMC for
* nand type of memory. The following logic scans and latches on to the
@ -873,7 +981,7 @@ int board_nand_init(struct nand_chip *nand)
cs++;
}
if (cs >= GPMC_MAX_CS) {
printf("NAND: Unable to find NAND settings in "
printf("nand: error: Unable to find NAND settings in "
"GPMC Configuration - quitting\n");
return -ENODEV;
}
@ -885,64 +993,32 @@ int board_nand_init(struct nand_chip *nand)
nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
nand->cmd_ctrl = omap_nand_hwcontrol;
nand->options = NAND_NO_PADDING | NAND_CACHEPRG;
nand->priv = &bch_priv;
nand->cmd_ctrl = omap_nand_hwcontrol;
nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
/* If we are 16 bit dev, our gpmc config tells us that */
if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
nand->options |= NAND_BUSWIDTH_16;
nand->chip_delay = 100;
#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
#ifdef CONFIG_AM33XX
/* AM33xx uses the ELM */
/* required in case of BCH */
elm_init();
#else
/*
* Whereas other OMAP based SoC do not have the ELM, they use the BCH
* SW library.
*/
bch_priv.control = init_bch(13, 8, 0x201b /* hw polynominal */);
if (!bch_priv.control) {
puts("Could not init_bch()\n");
return -ENODEV;
}
#endif
/* BCH info that will be correct for SPL or overridden otherwise. */
nand->priv = &bch_priv;
#endif
/* Default ECC mode */
#if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_bch8_nand_oob;
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
nand->ecc.strength = 8;
nand->ecc.hwctl = omap_enable_ecc_bch;
nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc_bch;
#ifdef CONFIG_AM33XX
nand->ecc.read_page = omap_read_page_bch;
#endif
omap_hwecc_init_bch(nand, NAND_ECC_READ);
#else
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
nand->ecc.mode = NAND_ECC_SOFT;
nand->ecc.layout = &omap_ecclayout;
/* select ECC scheme */
#if defined(CONFIG_NAND_OMAP_ELM)
err = omap_select_ecc_scheme(nand, OMAP_ECC_BCH8_CODE_HW,
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
#elif defined(CONFIG_NAND_OMAP_BCH8)
err = omap_select_ecc_scheme(nand, OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
#elif !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
0, 0);
#else
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &hw_nand_oob;
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.correct = omap_correct_data;
nand->ecc.calculate = omap_calculate_ecc;
nand->ecc.strength = 1;
omap_hwecc_init(nand);
#endif
err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_HW,
CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
#endif
if (err)
return err;
#ifdef CONFIG_SPL_BUILD
if (nand->options & NAND_BUSWIDTH_16)

Loading…
Cancel
Save