Some controllers are exposing high-level interfaces to access various kind of SPI memories. Unfortunately they do not fit in the current spi_controller model and usually have drivers placed in drivers/mtd/spi-nor which are only supporting SPI NORs and not SPI memories in general. This is an attempt at defining a SPI memory interface which works for all kinds of SPI memories (NORs, NANDs, SRAMs). Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Acked-by: Jagan Teki <jagan@openedev.com>lime2-spi
parent
f86787280b
commit
d13f5b254a
@ -0,0 +1,501 @@ |
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
/*
|
||||
* Copyright (C) 2018 Exceet Electronics GmbH |
||||
* Copyright (C) 2018 Bootlin |
||||
* |
||||
* Author: Boris Brezillon <boris.brezillon@bootlin.com> |
||||
*/ |
||||
|
||||
#ifndef __UBOOT__ |
||||
#include <linux/dmaengine.h> |
||||
#include <linux/pm_runtime.h> |
||||
#include "internals.h" |
||||
#else |
||||
#include <spi.h> |
||||
#include <spi-mem.h> |
||||
#endif |
||||
|
||||
#ifndef __UBOOT__ |
||||
/**
|
||||
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a |
||||
* memory operation |
||||
* @ctlr: the SPI controller requesting this dma_map() |
||||
* @op: the memory operation containing the buffer to map |
||||
* @sgt: a pointer to a non-initialized sg_table that will be filled by this |
||||
* function |
||||
* |
||||
* Some controllers might want to do DMA on the data buffer embedded in @op. |
||||
* This helper prepares everything for you and provides a ready-to-use |
||||
* sg_table. This function is not intended to be called from spi drivers. |
||||
* Only SPI controller drivers should use it. |
||||
* Note that the caller must ensure the memory region pointed by |
||||
* op->data.buf.{in,out} is DMA-able before calling this function. |
||||
* |
||||
* Return: 0 in case of success, a negative error code otherwise. |
||||
*/ |
||||
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, |
||||
const struct spi_mem_op *op, |
||||
struct sg_table *sgt) |
||||
{ |
||||
struct device *dmadev; |
||||
|
||||
if (!op->data.nbytes) |
||||
return -EINVAL; |
||||
|
||||
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
||||
dmadev = ctlr->dma_tx->device->dev; |
||||
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
||||
dmadev = ctlr->dma_rx->device->dev; |
||||
else |
||||
dmadev = ctlr->dev.parent; |
||||
|
||||
if (!dmadev) |
||||
return -EINVAL; |
||||
|
||||
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, |
||||
op->data.dir == SPI_MEM_DATA_IN ? |
||||
DMA_FROM_DEVICE : DMA_TO_DEVICE); |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); |
||||
|
||||
/**
|
||||
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a |
||||
* memory operation |
||||
* @ctlr: the SPI controller requesting this dma_unmap() |
||||
* @op: the memory operation containing the buffer to unmap |
||||
* @sgt: a pointer to an sg_table previously initialized by |
||||
* spi_controller_dma_map_mem_op_data() |
||||
* |
||||
* Some controllers might want to do DMA on the data buffer embedded in @op. |
||||
* This helper prepares things so that the CPU can access the |
||||
* op->data.buf.{in,out} buffer again. |
||||
* |
||||
* This function is not intended to be called from SPI drivers. Only SPI |
||||
* controller drivers should use it. |
||||
* |
||||
* This function should be called after the DMA operation has finished and is |
||||
* only valid if the previous spi_controller_dma_map_mem_op_data() call |
||||
* returned 0. |
||||
* |
||||
* Return: 0 in case of success, a negative error code otherwise. |
||||
*/ |
||||
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, |
||||
const struct spi_mem_op *op, |
||||
struct sg_table *sgt) |
||||
{ |
||||
struct device *dmadev; |
||||
|
||||
if (!op->data.nbytes) |
||||
return; |
||||
|
||||
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
||||
dmadev = ctlr->dma_tx->device->dev; |
||||
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
||||
dmadev = ctlr->dma_rx->device->dev; |
||||
else |
||||
dmadev = ctlr->dev.parent; |
||||
|
||||
spi_unmap_buf(ctlr, dmadev, sgt, |
||||
op->data.dir == SPI_MEM_DATA_IN ? |
||||
DMA_FROM_DEVICE : DMA_TO_DEVICE); |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); |
||||
#endif /* __UBOOT__ */ |
||||
|
||||
static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx) |
||||
{ |
||||
u32 mode = slave->mode; |
||||
|
||||
switch (buswidth) { |
||||
case 1: |
||||
return 0; |
||||
|
||||
case 2: |
||||
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) || |
||||
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD)))) |
||||
return 0; |
||||
|
||||
break; |
||||
|
||||
case 4: |
||||
if ((tx && (mode & SPI_TX_QUAD)) || |
||||
(!tx && (mode & SPI_RX_QUAD))) |
||||
return 0; |
||||
|
||||
break; |
||||
|
||||
default: |
||||
break; |
||||
} |
||||
|
||||
return -ENOTSUPP; |
||||
} |
||||
|
||||
bool spi_mem_default_supports_op(struct spi_slave *slave, |
||||
const struct spi_mem_op *op) |
||||
{ |
||||
if (spi_check_buswidth_req(slave, op->cmd.buswidth, true)) |
||||
return false; |
||||
|
||||
if (op->addr.nbytes && |
||||
spi_check_buswidth_req(slave, op->addr.buswidth, true)) |
||||
return false; |
||||
|
||||
if (op->dummy.nbytes && |
||||
spi_check_buswidth_req(slave, op->dummy.buswidth, true)) |
||||
return false; |
||||
|
||||
if (op->data.nbytes && |
||||
spi_check_buswidth_req(slave, op->data.buswidth, |
||||
op->data.dir == SPI_MEM_DATA_OUT)) |
||||
return false; |
||||
|
||||
return true; |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); |
||||
|
||||
/**
|
||||
* spi_mem_supports_op() - Check if a memory device and the controller it is |
||||
* connected to support a specific memory operation |
||||
* @slave: the SPI device |
||||
* @op: the memory operation to check |
||||
* |
||||
* Some controllers are only supporting Single or Dual IOs, others might only |
||||
* support specific opcodes, or it can even be that the controller and device |
||||
* both support Quad IOs but the hardware prevents you from using it because |
||||
* only 2 IO lines are connected. |
||||
* |
||||
* This function checks whether a specific operation is supported. |
||||
* |
||||
* Return: true if @op is supported, false otherwise. |
||||
*/ |
||||
bool spi_mem_supports_op(struct spi_slave *slave, |
||||
const struct spi_mem_op *op) |
||||
{ |
||||
struct udevice *bus = slave->dev->parent; |
||||
struct dm_spi_ops *ops = spi_get_ops(bus); |
||||
|
||||
if (ops->mem_ops && ops->mem_ops->supports_op) |
||||
return ops->mem_ops->supports_op(slave, op); |
||||
|
||||
return spi_mem_default_supports_op(slave, op); |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_mem_supports_op); |
||||
|
||||
/**
|
||||
* spi_mem_exec_op() - Execute a memory operation |
||||
* @slave: the SPI device |
||||
* @op: the memory operation to execute |
||||
* |
||||
* Executes a memory operation. |
||||
* |
||||
* This function first checks that @op is supported and then tries to execute |
||||
* it. |
||||
* |
||||
* Return: 0 in case of success, a negative error code otherwise. |
||||
*/ |
||||
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) |
||||
{ |
||||
struct udevice *bus = slave->dev->parent; |
||||
struct dm_spi_ops *ops = spi_get_ops(bus); |
||||
unsigned int pos = 0; |
||||
const u8 *tx_buf = NULL; |
||||
u8 *rx_buf = NULL; |
||||
u8 *op_buf; |
||||
int op_len; |
||||
u32 flag; |
||||
int ret; |
||||
int i; |
||||
|
||||
if (!spi_mem_supports_op(slave, op)) |
||||
return -ENOTSUPP; |
||||
|
||||
if (ops->mem_ops) { |
||||
#ifndef __UBOOT__ |
||||
/*
|
||||
* Flush the message queue before executing our SPI memory |
||||
* operation to prevent preemption of regular SPI transfers. |
||||
*/ |
||||
spi_flush_queue(ctlr); |
||||
|
||||
if (ctlr->auto_runtime_pm) { |
||||
ret = pm_runtime_get_sync(ctlr->dev.parent); |
||||
if (ret < 0) { |
||||
dev_err(&ctlr->dev, |
||||
"Failed to power device: %d\n", |
||||
ret); |
||||
return ret; |
||||
} |
||||
} |
||||
|
||||
mutex_lock(&ctlr->bus_lock_mutex); |
||||
mutex_lock(&ctlr->io_mutex); |
||||
#endif |
||||
ret = ops->mem_ops->exec_op(slave, op); |
||||
#ifndef __UBOOT__ |
||||
mutex_unlock(&ctlr->io_mutex); |
||||
mutex_unlock(&ctlr->bus_lock_mutex); |
||||
|
||||
if (ctlr->auto_runtime_pm) |
||||
pm_runtime_put(ctlr->dev.parent); |
||||
#endif |
||||
|
||||
/*
|
||||
* Some controllers only optimize specific paths (typically the |
||||
* read path) and expect the core to use the regular SPI |
||||
* interface in other cases. |
||||
*/ |
||||
if (!ret || ret != -ENOTSUPP) |
||||
return ret; |
||||
} |
||||
|
||||
#ifndef __UBOOT__ |
||||
tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes + |
||||
op->dummy.nbytes; |
||||
|
||||
/*
|
||||
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so |
||||
* we're guaranteed that this buffer is DMA-able, as required by the |
||||
* SPI layer. |
||||
*/ |
||||
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); |
||||
if (!tmpbuf) |
||||
return -ENOMEM; |
||||
|
||||
spi_message_init(&msg); |
||||
|
||||
tmpbuf[0] = op->cmd.opcode; |
||||
xfers[xferpos].tx_buf = tmpbuf; |
||||
xfers[xferpos].len = sizeof(op->cmd.opcode); |
||||
xfers[xferpos].tx_nbits = op->cmd.buswidth; |
||||
spi_message_add_tail(&xfers[xferpos], &msg); |
||||
xferpos++; |
||||
totalxferlen++; |
||||
|
||||
if (op->addr.nbytes) { |
||||
int i; |
||||
|
||||
for (i = 0; i < op->addr.nbytes; i++) |
||||
tmpbuf[i + 1] = op->addr.val >> |
||||
(8 * (op->addr.nbytes - i - 1)); |
||||
|
||||
xfers[xferpos].tx_buf = tmpbuf + 1; |
||||
xfers[xferpos].len = op->addr.nbytes; |
||||
xfers[xferpos].tx_nbits = op->addr.buswidth; |
||||
spi_message_add_tail(&xfers[xferpos], &msg); |
||||
xferpos++; |
||||
totalxferlen += op->addr.nbytes; |
||||
} |
||||
|
||||
if (op->dummy.nbytes) { |
||||
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); |
||||
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; |
||||
xfers[xferpos].len = op->dummy.nbytes; |
||||
xfers[xferpos].tx_nbits = op->dummy.buswidth; |
||||
spi_message_add_tail(&xfers[xferpos], &msg); |
||||
xferpos++; |
||||
totalxferlen += op->dummy.nbytes; |
||||
} |
||||
|
||||
if (op->data.nbytes) { |
||||
if (op->data.dir == SPI_MEM_DATA_IN) { |
||||
xfers[xferpos].rx_buf = op->data.buf.in; |
||||
xfers[xferpos].rx_nbits = op->data.buswidth; |
||||
} else { |
||||
xfers[xferpos].tx_buf = op->data.buf.out; |
||||
xfers[xferpos].tx_nbits = op->data.buswidth; |
||||
} |
||||
|
||||
xfers[xferpos].len = op->data.nbytes; |
||||
spi_message_add_tail(&xfers[xferpos], &msg); |
||||
xferpos++; |
||||
totalxferlen += op->data.nbytes; |
||||
} |
||||
|
||||
ret = spi_sync(slave, &msg); |
||||
|
||||
kfree(tmpbuf); |
||||
|
||||
if (ret) |
||||
return ret; |
||||
|
||||
if (msg.actual_length != totalxferlen) |
||||
return -EIO; |
||||
#else |
||||
|
||||
/* U-Boot does not support parallel SPI data lanes */ |
||||
if ((op->cmd.buswidth != 1) || |
||||
(op->addr.nbytes && op->addr.buswidth != 1) || |
||||
(op->dummy.nbytes && op->dummy.buswidth != 1) || |
||||
(op->data.nbytes && op->data.buswidth != 1)) { |
||||
printf("Dual/Quad raw SPI transfers not supported\n"); |
||||
return -ENOTSUPP; |
||||
} |
||||
|
||||
if (op->data.nbytes) { |
||||
if (op->data.dir == SPI_MEM_DATA_IN) |
||||
rx_buf = op->data.buf.in; |
||||
else |
||||
tx_buf = op->data.buf.out; |
||||
} |
||||
|
||||
op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes; |
||||
op_buf = calloc(1, op_len); |
||||
|
||||
ret = spi_claim_bus(slave); |
||||
if (ret < 0) |
||||
return ret; |
||||
|
||||
op_buf[pos++] = op->cmd.opcode; |
||||
|
||||
if (op->addr.nbytes) { |
||||
for (i = 0; i < op->addr.nbytes; i++) |
||||
op_buf[pos + i] = op->addr.val >> |
||||
(8 * (op->addr.nbytes - i - 1)); |
||||
|
||||
pos += op->addr.nbytes; |
||||
} |
||||
|
||||
if (op->dummy.nbytes) |
||||
memset(op_buf + pos, 0xff, op->dummy.nbytes); |
||||
|
||||
/* 1st transfer: opcode + address + dummy cycles */ |
||||
flag = SPI_XFER_BEGIN; |
||||
/* Make sure to set END bit if no tx or rx data messages follow */ |
||||
if (!tx_buf && !rx_buf) |
||||
flag |= SPI_XFER_END; |
||||
|
||||
ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag); |
||||
if (ret) |
||||
return ret; |
||||
|
||||
/* 2nd transfer: rx or tx data path */ |
||||
if (tx_buf || rx_buf) { |
||||
ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf, |
||||
rx_buf, SPI_XFER_END); |
||||
if (ret) |
||||
return ret; |
||||
} |
||||
|
||||
spi_release_bus(slave); |
||||
|
||||
for (i = 0; i < pos; i++) |
||||
debug("%02x ", op_buf[i]); |
||||
debug("| [%dB %s] ", |
||||
tx_buf || rx_buf ? op->data.nbytes : 0, |
||||
tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-"); |
||||
for (i = 0; i < op->data.nbytes; i++) |
||||
debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]); |
||||
debug("[ret %d]\n", ret); |
||||
|
||||
free(op_buf); |
||||
|
||||
if (ret < 0) |
||||
return ret; |
||||
#endif /* __UBOOT__ */ |
||||
|
||||
return 0; |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_mem_exec_op); |
||||
|
||||
/**
|
||||
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to |
||||
* match controller limitations |
||||
* @slave: the SPI device |
||||
* @op: the operation to adjust |
||||
* |
||||
* Some controllers have FIFO limitations and must split a data transfer |
||||
* operation into multiple ones, others require a specific alignment for |
||||
* optimized accesses. This function allows SPI mem drivers to split a single |
||||
* operation into multiple sub-operations when required. |
||||
* |
||||
* Return: a negative error code if the controller can't properly adjust @op, |
||||
* 0 otherwise. Note that @op->data.nbytes will be updated if @op |
||||
* can't be handled in a single step. |
||||
*/ |
||||
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) |
||||
{ |
||||
struct udevice *bus = slave->dev->parent; |
||||
struct dm_spi_ops *ops = spi_get_ops(bus); |
||||
|
||||
if (ops->mem_ops && ops->mem_ops->adjust_op_size) |
||||
return ops->mem_ops->adjust_op_size(slave, op); |
||||
|
||||
return 0; |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); |
||||
|
||||
#ifndef __UBOOT__ |
||||
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) |
||||
{ |
||||
return container_of(drv, struct spi_mem_driver, spidrv.driver); |
||||
} |
||||
|
||||
static int spi_mem_probe(struct spi_device *spi) |
||||
{ |
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
||||
struct spi_mem *mem; |
||||
|
||||
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); |
||||
if (!mem) |
||||
return -ENOMEM; |
||||
|
||||
mem->spi = spi; |
||||
spi_set_drvdata(spi, mem); |
||||
|
||||
return memdrv->probe(mem); |
||||
} |
||||
|
||||
static int spi_mem_remove(struct spi_device *spi) |
||||
{ |
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
||||
struct spi_mem *mem = spi_get_drvdata(spi); |
||||
|
||||
if (memdrv->remove) |
||||
return memdrv->remove(mem); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static void spi_mem_shutdown(struct spi_device *spi) |
||||
{ |
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
||||
struct spi_mem *mem = spi_get_drvdata(spi); |
||||
|
||||
if (memdrv->shutdown) |
||||
memdrv->shutdown(mem); |
||||
} |
||||
|
||||
/**
|
||||
* spi_mem_driver_register_with_owner() - Register a SPI memory driver |
||||
* @memdrv: the SPI memory driver to register |
||||
* @owner: the owner of this driver |
||||
* |
||||
* Registers a SPI memory driver. |
||||
* |
||||
* Return: 0 in case of success, a negative error core otherwise. |
||||
*/ |
||||
|
||||
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, |
||||
struct module *owner) |
||||
{ |
||||
memdrv->spidrv.probe = spi_mem_probe; |
||||
memdrv->spidrv.remove = spi_mem_remove; |
||||
memdrv->spidrv.shutdown = spi_mem_shutdown; |
||||
|
||||
return __spi_register_driver(owner, &memdrv->spidrv); |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); |
||||
|
||||
/**
|
||||
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver |
||||
* @memdrv: the SPI memory driver to unregister |
||||
* |
||||
* Unregisters a SPI memory driver. |
||||
*/ |
||||
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) |
||||
{ |
||||
spi_unregister_driver(&memdrv->spidrv); |
||||
} |
||||
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); |
||||
#endif /* __UBOOT__ */ |
@ -0,0 +1,258 @@ |
||||
/* SPDX-License-Identifier: GPL-2.0+ */ |
||||
/*
|
||||
* Copyright (C) 2018 Exceet Electronics GmbH |
||||
* Copyright (C) 2018 Bootlin |
||||
* |
||||
* Author: |
||||
* Peter Pan <peterpandong@micron.com> |
||||
* Boris Brezillon <boris.brezillon@bootlin.com> |
||||
*/ |
||||
|
||||
#ifndef __UBOOT_SPI_MEM_H |
||||
#define __UBOOT_SPI_MEM_H |
||||
|
||||
#include <common.h> |
||||
#include <dm.h> |
||||
#include <errno.h> |
||||
#include <spi.h> |
||||
|
||||
#define SPI_MEM_OP_CMD(__opcode, __buswidth) \ |
||||
{ \
|
||||
.buswidth = __buswidth, \
|
||||
.opcode = __opcode, \
|
||||
} |
||||
|
||||
#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \ |
||||
{ \
|
||||
.nbytes = __nbytes, \
|
||||
.val = __val, \
|
||||
.buswidth = __buswidth, \
|
||||
} |
||||
|
||||
#define SPI_MEM_OP_NO_ADDR { } |
||||
|
||||
#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \ |
||||
{ \
|
||||
.nbytes = __nbytes, \
|
||||
.buswidth = __buswidth, \
|
||||
} |
||||
|
||||
#define SPI_MEM_OP_NO_DUMMY { } |
||||
|
||||
#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \ |
||||
{ \
|
||||
.dir = SPI_MEM_DATA_IN, \
|
||||
.nbytes = __nbytes, \
|
||||
.buf.in = __buf, \
|
||||
.buswidth = __buswidth, \
|
||||
} |
||||
|
||||
#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \ |
||||
{ \
|
||||
.dir = SPI_MEM_DATA_OUT, \
|
||||
.nbytes = __nbytes, \
|
||||
.buf.out = __buf, \
|
||||
.buswidth = __buswidth, \
|
||||
} |
||||
|
||||
#define SPI_MEM_OP_NO_DATA { } |
||||
|
||||
/**
|
||||
* enum spi_mem_data_dir - describes the direction of a SPI memory data |
||||
* transfer from the controller perspective |
||||
* @SPI_MEM_DATA_IN: data coming from the SPI memory |
||||
* @SPI_MEM_DATA_OUT: data sent the SPI memory |
||||
*/ |
||||
enum spi_mem_data_dir { |
||||
SPI_MEM_DATA_IN, |
||||
SPI_MEM_DATA_OUT, |
||||
}; |
||||
|
||||
/**
|
||||
* struct spi_mem_op - describes a SPI memory operation |
||||
* @cmd.buswidth: number of IO lines used to transmit the command |
||||
* @cmd.opcode: operation opcode |
||||
* @addr.nbytes: number of address bytes to send. Can be zero if the operation |
||||
* does not need to send an address |
||||
* @addr.buswidth: number of IO lines used to transmit the address cycles |
||||
* @addr.val: address value. This value is always sent MSB first on the bus. |
||||
* Note that only @addr.nbytes are taken into account in this |
||||
* address value, so users should make sure the value fits in the |
||||
* assigned number of bytes. |
||||
* @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can |
||||
* be zero if the operation does not require dummy bytes |
||||
* @dummy.buswidth: number of IO lanes used to transmit the dummy bytes |
||||
* @data.buswidth: number of IO lanes used to send/receive the data |
||||
* @data.dir: direction of the transfer |
||||
* @data.buf.in: input buffer |
||||
* @data.buf.out: output buffer |
||||
*/ |
||||
struct spi_mem_op { |
||||
struct { |
||||
u8 buswidth; |
||||
u8 opcode; |
||||
} cmd; |
||||
|
||||
struct { |
||||
u8 nbytes; |
||||
u8 buswidth; |
||||
u64 val; |
||||
} addr; |
||||
|
||||
struct { |
||||
u8 nbytes; |
||||
u8 buswidth; |
||||
} dummy; |
||||
|
||||
struct { |
||||
u8 buswidth; |
||||
enum spi_mem_data_dir dir; |
||||
unsigned int nbytes; |
||||
/* buf.{in,out} must be DMA-able. */ |
||||
union { |
||||
void *in; |
||||
const void *out; |
||||
} buf; |
||||
} data; |
||||
}; |
||||
|
||||
#define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \ |
||||
{ \
|
||||
.cmd = __cmd, \
|
||||
.addr = __addr, \
|
||||
.dummy = __dummy, \
|
||||
.data = __data, \
|
||||
} |
||||
|
||||
#ifndef __UBOOT__ |
||||
/**
|
||||
* struct spi_mem - describes a SPI memory device |
||||
* @spi: the underlying SPI device |
||||
* @drvpriv: spi_mem_driver private data |
||||
* |
||||
* Extra information that describe the SPI memory device and may be needed by |
||||
* the controller to properly handle this device should be placed here. |
||||
* |
||||
* One example would be the device size since some controller expose their SPI |
||||
* mem devices through a io-mapped region. |
||||
*/ |
||||
struct spi_mem { |
||||
struct udevice *dev; |
||||
void *drvpriv; |
||||
}; |
||||
|
||||
/**
|
||||
* struct spi_mem_set_drvdata() - attach driver private data to a SPI mem |
||||
* device |
||||
* @mem: memory device |
||||
* @data: data to attach to the memory device |
||||
*/ |
||||
static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data) |
||||
{ |
||||
mem->drvpriv = data; |
||||
} |
||||
|
||||
/**
|
||||
* struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem |
||||
* device |
||||
* @mem: memory device |
||||
* |
||||
* Return: the data attached to the mem device. |
||||
*/ |
||||
static inline void *spi_mem_get_drvdata(struct spi_mem *mem) |
||||
{ |
||||
return mem->drvpriv; |
||||
} |
||||
#endif /* __UBOOT__ */ |
||||
|
||||
/**
|
||||
* struct spi_controller_mem_ops - SPI memory operations |
||||
* @adjust_op_size: shrink the data xfer of an operation to match controller's |
||||
* limitations (can be alignment of max RX/TX size |
||||
* limitations) |
||||
* @supports_op: check if an operation is supported by the controller |
||||
* @exec_op: execute a SPI memory operation |
||||
* |
||||
* This interface should be implemented by SPI controllers providing an |
||||
* high-level interface to execute SPI memory operation, which is usually the |
||||
* case for QSPI controllers. |
||||
*/ |
||||
struct spi_controller_mem_ops { |
||||
int (*adjust_op_size)(struct spi_slave *slave, struct spi_mem_op *op); |
||||
bool (*supports_op)(struct spi_slave *slave, |
||||
const struct spi_mem_op *op); |
||||
int (*exec_op)(struct spi_slave *slave, |
||||
const struct spi_mem_op *op); |
||||
}; |
||||
|
||||
#ifndef __UBOOT__ |
||||
/**
|
||||
* struct spi_mem_driver - SPI memory driver |
||||
* @spidrv: inherit from a SPI driver |
||||
* @probe: probe a SPI memory. Usually where detection/initialization takes |
||||
* place |
||||
* @remove: remove a SPI memory |
||||
* @shutdown: take appropriate action when the system is shutdown |
||||
* |
||||
* This is just a thin wrapper around a spi_driver. The core takes care of |
||||
* allocating the spi_mem object and forwarding the probe/remove/shutdown |
||||
* request to the spi_mem_driver. The reason we use this wrapper is because |
||||
* we might have to stuff more information into the spi_mem struct to let |
||||
* SPI controllers know more about the SPI memory they interact with, and |
||||
* having this intermediate layer allows us to do that without adding more |
||||
* useless fields to the spi_device object. |
||||
*/ |
||||
struct spi_mem_driver { |
||||
struct spi_driver spidrv; |
||||
int (*probe)(struct spi_mem *mem); |
||||
int (*remove)(struct spi_mem *mem); |
||||
void (*shutdown)(struct spi_mem *mem); |
||||
}; |
||||
|
||||
#if IS_ENABLED(CONFIG_SPI_MEM) |
||||
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, |
||||
const struct spi_mem_op *op, |
||||
struct sg_table *sg); |
||||
|
||||
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, |
||||
const struct spi_mem_op *op, |
||||
struct sg_table *sg); |
||||
#else |
||||
static inline int |
||||
spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, |
||||
const struct spi_mem_op *op, |
||||
struct sg_table *sg) |
||||
{ |
||||
return -ENOTSUPP; |
||||
} |
||||
|
||||
static inline void |
||||
spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, |
||||
const struct spi_mem_op *op, |
||||
struct sg_table *sg) |
||||
{ |
||||
} |
||||
#endif /* CONFIG_SPI_MEM */ |
||||
#endif /* __UBOOT__ */ |
||||
|
||||
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op); |
||||
|
||||
bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op); |
||||
|
||||
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op); |
||||
|
||||
#ifndef __UBOOT__ |
||||
int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv, |
||||
struct module *owner); |
||||
|
||||
void spi_mem_driver_unregister(struct spi_mem_driver *drv); |
||||
|
||||
#define spi_mem_driver_register(__drv) \ |
||||
spi_mem_driver_register_with_owner(__drv, THIS_MODULE) |
||||
|
||||
#define module_spi_mem_driver(__drv) \ |
||||
module_driver(__drv, spi_mem_driver_register, \
|
||||
spi_mem_driver_unregister) |
||||
#endif |
||||
|
||||
#endif /* __LINUX_SPI_MEM_H */ |
Loading…
Reference in new issue