This patch adds basic UBI (Unsorted Block Image) support to U-Boot. It's based on the Linux UBI version and basically has a "OS" translation wrapper that defines most Linux specific calls (spin_lock() etc.) into no-ops. Some source code parts have been uncommented by "#ifdef UBI_LINUX". This makes it easier to compare this version with the Linux version and simplifies future UBI ports/bug-fixes from the Linux version. Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Stefan Roese <sr@denx.de>master
parent
e29c22f5ab
commit
f399d4a281
@ -0,0 +1,51 @@ |
||||
#
|
||||
# (C) Copyright 2006
|
||||
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
||||
#
|
||||
# See file CREDITS for list of people who contributed to this
|
||||
# project.
|
||||
#
|
||||
# This program is free software; you can redistribute it and/or
|
||||
# modify it under the terms of the GNU General Public License as
|
||||
# published by the Free Software Foundation; either version 2 of
|
||||
# the License, or (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program; if not, write to the Free Software
|
||||
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
# MA 02111-1307 USA
|
||||
#
|
||||
|
||||
include $(TOPDIR)/config.mk |
||||
|
||||
LIB := $(obj)libubi.a
|
||||
|
||||
ifdef CONFIG_CMD_UBI |
||||
COBJS-y += build.o vtbl.o vmt.o upd.o kapi.o eba.o io.o wl.o scan.o crc32.o
|
||||
|
||||
COBJS-y += misc.o
|
||||
COBJS-y += debug.o
|
||||
endif |
||||
|
||||
COBJS := $(COBJS-y)
|
||||
SRCS := $(COBJS:.o=.c)
|
||||
OBJS := $(addprefix $(obj),$(COBJS))
|
||||
|
||||
all: $(LIB) |
||||
|
||||
$(LIB): $(obj).depend $(OBJS) |
||||
$(AR) $(ARFLAGS) $@ $(OBJS)
|
||||
|
||||
#########################################################################
|
||||
|
||||
# defines $(obj).depend target
|
||||
include $(SRCTREE)/rules.mk |
||||
|
||||
sinclude $(obj).depend |
||||
|
||||
#########################################################################
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,518 @@ |
||||
/*
|
||||
* Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> |
||||
* Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks! |
||||
* Code was from the public domain, copyright abandoned. Code was |
||||
* subsequently included in the kernel, thus was re-licensed under the |
||||
* GNU GPL v2. |
||||
* |
||||
* Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> |
||||
* Same crc32 function was used in 5 other places in the kernel. |
||||
* I made one version, and deleted the others. |
||||
* There are various incantations of crc32(). Some use a seed of 0 or ~0. |
||||
* Some xor at the end with ~0. The generic crc32() function takes |
||||
* seed as an argument, and doesn't xor at the end. Then individual |
||||
* users can do whatever they need. |
||||
* drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. |
||||
* fs/jffs2 uses seed 0, doesn't xor with ~0. |
||||
* fs/partitions/efi.c uses seed ~0, xor's with ~0. |
||||
* |
||||
* This source code is licensed under the GNU General Public License, |
||||
* Version 2. See the file COPYING for more details. |
||||
*/ |
||||
|
||||
#ifdef UBI_LINUX |
||||
#include <linux/crc32.h> |
||||
#include <linux/kernel.h> |
||||
#include <linux/module.h> |
||||
#include <linux/compiler.h> |
||||
#endif |
||||
#include <linux/types.h> |
||||
|
||||
#include <asm/byteorder.h> |
||||
|
||||
#ifdef UBI_LINUX |
||||
#include <linux/slab.h> |
||||
#include <linux/init.h> |
||||
#include <asm/atomic.h> |
||||
#endif |
||||
#include "crc32defs.h" |
||||
#define CRC_LE_BITS 8 |
||||
|
||||
# define __force |
||||
#ifndef __constant_cpu_to_le32 |
||||
#define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x)) |
||||
#endif |
||||
#ifndef __constant_le32_to_cpu |
||||
#define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x)) |
||||
#endif |
||||
|
||||
#if CRC_LE_BITS == 8 |
||||
#define tole(x) __constant_cpu_to_le32(x) |
||||
#define tobe(x) __constant_cpu_to_be32(x) |
||||
#else |
||||
#define tole(x) (x) |
||||
#define tobe(x) (x) |
||||
#endif |
||||
#include "crc32table.h" |
||||
#ifdef UBI_LINUX |
||||
MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); |
||||
MODULE_DESCRIPTION("Ethernet CRC32 calculations"); |
||||
MODULE_LICENSE("GPL"); |
||||
#endif |
||||
/**
|
||||
* crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 |
||||
* @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for |
||||
* other uses, or the previous crc32 value if computing incrementally. |
||||
* @p: pointer to buffer over which CRC is run |
||||
* @len: length of buffer @p |
||||
*/ |
||||
u32 crc32_le(u32 crc, unsigned char const *p, size_t len); |
||||
|
||||
#if CRC_LE_BITS == 1 |
||||
/*
|
||||
* In fact, the table-based code will work in this case, but it can be |
||||
* simplified by inlining the table in ?: form. |
||||
*/ |
||||
|
||||
u32 crc32_le(u32 crc, unsigned char const *p, size_t len) |
||||
{ |
||||
int i; |
||||
while (len--) { |
||||
crc ^= *p++; |
||||
for (i = 0; i < 8; i++) |
||||
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); |
||||
} |
||||
return crc; |
||||
} |
||||
#else /* Table-based approach */ |
||||
|
||||
u32 crc32_le(u32 crc, unsigned char const *p, size_t len) |
||||
{ |
||||
# if CRC_LE_BITS == 8 |
||||
const u32 *b =(u32 *)p; |
||||
const u32 *tab = crc32table_le; |
||||
|
||||
# ifdef __LITTLE_ENDIAN |
||||
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) |
||||
# else |
||||
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) |
||||
# endif |
||||
//printf("Crc32_le crc=%x\n",crc);
|
||||
crc = __cpu_to_le32(crc); |
||||
/* Align it */ |
||||
if((((long)b)&3 && len)){ |
||||
do { |
||||
u8 *p = (u8 *)b; |
||||
DO_CRC(*p++); |
||||
b = (void *)p; |
||||
} while ((--len) && ((long)b)&3 ); |
||||
} |
||||
if((len >= 4)){ |
||||
/* load data 32 bits wide, xor data 32 bits wide. */ |
||||
size_t save_len = len & 3; |
||||
len = len >> 2; |
||||
--b; /* use pre increment below(*++b) for speed */ |
||||
do { |
||||
crc ^= *++b; |
||||
DO_CRC(0); |
||||
DO_CRC(0); |
||||
DO_CRC(0); |
||||
DO_CRC(0); |
||||
} while (--len); |
||||
b++; /* point to next byte(s) */ |
||||
len = save_len; |
||||
} |
||||
/* And the last few bytes */ |
||||
if(len){ |
||||
do { |
||||
u8 *p = (u8 *)b; |
||||
DO_CRC(*p++); |
||||
b = (void *)p; |
||||
} while (--len); |
||||
} |
||||
|
||||
return __le32_to_cpu(crc); |
||||
#undef ENDIAN_SHIFT |
||||
#undef DO_CRC |
||||
|
||||
# elif CRC_LE_BITS == 4 |
||||
while (len--) { |
||||
crc ^= *p++; |
||||
crc = (crc >> 4) ^ crc32table_le[crc & 15]; |
||||
crc = (crc >> 4) ^ crc32table_le[crc & 15]; |
||||
} |
||||
return crc; |
||||
# elif CRC_LE_BITS == 2 |
||||
while (len--) { |
||||
crc ^= *p++; |
||||
crc = (crc >> 2) ^ crc32table_le[crc & 3]; |
||||
crc = (crc >> 2) ^ crc32table_le[crc & 3]; |
||||
crc = (crc >> 2) ^ crc32table_le[crc & 3]; |
||||
crc = (crc >> 2) ^ crc32table_le[crc & 3]; |
||||
} |
||||
return crc; |
||||
# endif |
||||
} |
||||
#endif |
||||
#ifdef UBI_LINUX |
||||
/**
|
||||
* crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 |
||||
* @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for |
||||
* other uses, or the previous crc32 value if computing incrementally. |
||||
* @p: pointer to buffer over which CRC is run |
||||
* @len: length of buffer @p |
||||
*/ |
||||
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len); |
||||
|
||||
#if CRC_BE_BITS == 1 |
||||
/*
|
||||
* In fact, the table-based code will work in this case, but it can be |
||||
* simplified by inlining the table in ?: form. |
||||
*/ |
||||
|
||||
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) |
||||
{ |
||||
int i; |
||||
while (len--) { |
||||
crc ^= *p++ << 24; |
||||
for (i = 0; i < 8; i++) |
||||
crc = |
||||
(crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : |
||||
0); |
||||
} |
||||
return crc; |
||||
} |
||||
|
||||
#else /* Table-based approach */ |
||||
u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) |
||||
{ |
||||
# if CRC_BE_BITS == 8 |
||||
const u32 *b =(u32 *)p; |
||||
const u32 *tab = crc32table_be; |
||||
|
||||
# ifdef __LITTLE_ENDIAN |
||||
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) |
||||
# else |
||||
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) |
||||
# endif |
||||
|
||||
crc = __cpu_to_be32(crc); |
||||
/* Align it */ |
||||
if(unlikely(((long)b)&3 && len)){ |
||||
do { |
||||
u8 *p = (u8 *)b; |
||||
DO_CRC(*p++); |
||||
b = (u32 *)p; |
||||
} while ((--len) && ((long)b)&3 ); |
||||
} |
||||
if(likely(len >= 4)){ |
||||
/* load data 32 bits wide, xor data 32 bits wide. */ |
||||
size_t save_len = len & 3; |
||||
len = len >> 2; |
||||
--b; /* use pre increment below(*++b) for speed */ |
||||
do { |
||||
crc ^= *++b; |
||||
DO_CRC(0); |
||||
DO_CRC(0); |
||||
DO_CRC(0); |
||||
DO_CRC(0); |
||||
} while (--len); |
||||
b++; /* point to next byte(s) */ |
||||
len = save_len; |
||||
} |
||||
/* And the last few bytes */ |
||||
if(len){ |
||||
do { |
||||
u8 *p = (u8 *)b; |
||||
DO_CRC(*p++); |
||||
b = (void *)p; |
||||
} while (--len); |
||||
} |
||||
return __be32_to_cpu(crc); |
||||
#undef ENDIAN_SHIFT |
||||
#undef DO_CRC |
||||
|
||||
# elif CRC_BE_BITS == 4 |
||||
while (len--) { |
||||
crc ^= *p++ << 24; |
||||
crc = (crc << 4) ^ crc32table_be[crc >> 28]; |
||||
crc = (crc << 4) ^ crc32table_be[crc >> 28]; |
||||
} |
||||
return crc; |
||||
# elif CRC_BE_BITS == 2 |
||||
while (len--) { |
||||
crc ^= *p++ << 24; |
||||
crc = (crc << 2) ^ crc32table_be[crc >> 30]; |
||||
crc = (crc << 2) ^ crc32table_be[crc >> 30]; |
||||
crc = (crc << 2) ^ crc32table_be[crc >> 30]; |
||||
crc = (crc << 2) ^ crc32table_be[crc >> 30]; |
||||
} |
||||
return crc; |
||||
# endif |
||||
} |
||||
#endif |
||||
|
||||
EXPORT_SYMBOL(crc32_le); |
||||
EXPORT_SYMBOL(crc32_be); |
||||
#endif |
||||
/*
|
||||
* A brief CRC tutorial. |
||||
* |
||||
* A CRC is a long-division remainder. You add the CRC to the message, |
||||
* and the whole thing (message+CRC) is a multiple of the given |
||||
* CRC polynomial. To check the CRC, you can either check that the |
||||
* CRC matches the recomputed value, *or* you can check that the |
||||
* remainder computed on the message+CRC is 0. This latter approach |
||||
* is used by a lot of hardware implementations, and is why so many |
||||
* protocols put the end-of-frame flag after the CRC. |
||||
* |
||||
* It's actually the same long division you learned in school, except that |
||||
* - We're working in binary, so the digits are only 0 and 1, and |
||||
* - When dividing polynomials, there are no carries. Rather than add and |
||||
* subtract, we just xor. Thus, we tend to get a bit sloppy about |
||||
* the difference between adding and subtracting. |
||||
* |
||||
* A 32-bit CRC polynomial is actually 33 bits long. But since it's |
||||
* 33 bits long, bit 32 is always going to be set, so usually the CRC |
||||
* is written in hex with the most significant bit omitted. (If you're |
||||
* familiar with the IEEE 754 floating-point format, it's the same idea.) |
||||
* |
||||
* Note that a CRC is computed over a string of *bits*, so you have |
||||
* to decide on the endianness of the bits within each byte. To get |
||||
* the best error-detecting properties, this should correspond to the |
||||
* order they're actually sent. For example, standard RS-232 serial is |
||||
* little-endian; the most significant bit (sometimes used for parity) |
||||
* is sent last. And when appending a CRC word to a message, you should |
||||
* do it in the right order, matching the endianness. |
||||
* |
||||
* Just like with ordinary division, the remainder is always smaller than |
||||
* the divisor (the CRC polynomial) you're dividing by. Each step of the |
||||
* division, you take one more digit (bit) of the dividend and append it |
||||
* to the current remainder. Then you figure out the appropriate multiple |
||||
* of the divisor to subtract to being the remainder back into range. |
||||
* In binary, it's easy - it has to be either 0 or 1, and to make the |
||||
* XOR cancel, it's just a copy of bit 32 of the remainder. |
||||
* |
||||
* When computing a CRC, we don't care about the quotient, so we can |
||||
* throw the quotient bit away, but subtract the appropriate multiple of |
||||
* the polynomial from the remainder and we're back to where we started, |
||||
* ready to process the next bit. |
||||
* |
||||
* A big-endian CRC written this way would be coded like: |
||||
* for (i = 0; i < input_bits; i++) { |
||||
* multiple = remainder & 0x80000000 ? CRCPOLY : 0; |
||||
* remainder = (remainder << 1 | next_input_bit()) ^ multiple; |
||||
* } |
||||
* Notice how, to get at bit 32 of the shifted remainder, we look |
||||
* at bit 31 of the remainder *before* shifting it. |
||||
* |
||||
* But also notice how the next_input_bit() bits we're shifting into |
||||
* the remainder don't actually affect any decision-making until |
||||
* 32 bits later. Thus, the first 32 cycles of this are pretty boring. |
||||
* Also, to add the CRC to a message, we need a 32-bit-long hole for it at |
||||
* the end, so we have to add 32 extra cycles shifting in zeros at the |
||||
* end of every message, |
||||
* |
||||
* So the standard trick is to rearrage merging in the next_input_bit() |
||||
* until the moment it's needed. Then the first 32 cycles can be precomputed, |
||||
* and merging in the final 32 zero bits to make room for the CRC can be |
||||
* skipped entirely. |
||||
* This changes the code to: |
||||
* for (i = 0; i < input_bits; i++) { |
||||
* remainder ^= next_input_bit() << 31; |
||||
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0; |
||||
* remainder = (remainder << 1) ^ multiple; |
||||
* } |
||||
* With this optimization, the little-endian code is simpler: |
||||
* for (i = 0; i < input_bits; i++) { |
||||
* remainder ^= next_input_bit(); |
||||
* multiple = (remainder & 1) ? CRCPOLY : 0; |
||||
* remainder = (remainder >> 1) ^ multiple; |
||||
* } |
||||
* |
||||
* Note that the other details of endianness have been hidden in CRCPOLY |
||||
* (which must be bit-reversed) and next_input_bit(). |
||||
* |
||||
* However, as long as next_input_bit is returning the bits in a sensible |
||||
* order, we can actually do the merging 8 or more bits at a time rather |
||||
* than one bit at a time: |
||||
* for (i = 0; i < input_bytes; i++) { |
||||
* remainder ^= next_input_byte() << 24; |
||||
* for (j = 0; j < 8; j++) { |
||||
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0; |
||||
* remainder = (remainder << 1) ^ multiple; |
||||
* } |
||||
* } |
||||
* Or in little-endian: |
||||
* for (i = 0; i < input_bytes; i++) { |
||||
* remainder ^= next_input_byte(); |
||||
* for (j = 0; j < 8; j++) { |
||||
* multiple = (remainder & 1) ? CRCPOLY : 0; |
||||
* remainder = (remainder << 1) ^ multiple; |
||||
* } |
||||
* } |
||||
* If the input is a multiple of 32 bits, you can even XOR in a 32-bit |
||||
* word at a time and increase the inner loop count to 32. |
||||
* |
||||
* You can also mix and match the two loop styles, for example doing the |
||||
* bulk of a message byte-at-a-time and adding bit-at-a-time processing |
||||
* for any fractional bytes at the end. |
||||
* |
||||
* The only remaining optimization is to the byte-at-a-time table method. |
||||
* Here, rather than just shifting one bit of the remainder to decide |
||||
* in the correct multiple to subtract, we can shift a byte at a time. |
||||
* This produces a 40-bit (rather than a 33-bit) intermediate remainder, |
||||
* but again the multiple of the polynomial to subtract depends only on |
||||
* the high bits, the high 8 bits in this case. |
||||
* |
||||
* The multile we need in that case is the low 32 bits of a 40-bit |
||||
* value whose high 8 bits are given, and which is a multiple of the |
||||
* generator polynomial. This is simply the CRC-32 of the given |
||||
* one-byte message. |
||||
* |
||||
* Two more details: normally, appending zero bits to a message which |
||||
* is already a multiple of a polynomial produces a larger multiple of that |
||||
* polynomial. To enable a CRC to detect this condition, it's common to |
||||
* invert the CRC before appending it. This makes the remainder of the |
||||
* message+crc come out not as zero, but some fixed non-zero value. |
||||
* |
||||
* The same problem applies to zero bits prepended to the message, and |
||||
* a similar solution is used. Instead of starting with a remainder of |
||||
* 0, an initial remainder of all ones is used. As long as you start |
||||
* the same way on decoding, it doesn't make a difference. |
||||
*/ |
||||
|
||||
#ifdef UNITTEST |
||||
|
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
|
||||
#ifdef UBI_LINUX /*Not used at present */ |
||||
static void |
||||
buf_dump(char const *prefix, unsigned char const *buf, size_t len) |
||||
{ |
||||
fputs(prefix, stdout); |
||||
while (len--) |
||||
printf(" %02x", *buf++); |
||||
putchar('\n'); |
||||
|
||||
} |
||||
#endif |
||||
|
||||
static void bytereverse(unsigned char *buf, size_t len) |
||||
{ |
||||
while (len--) { |
||||
unsigned char x = bitrev8(*buf); |
||||
*buf++ = x; |
||||
} |
||||
} |
||||
|
||||
static void random_garbage(unsigned char *buf, size_t len) |
||||
{ |
||||
while (len--) |
||||
*buf++ = (unsigned char) random(); |
||||
} |
||||
|
||||
#ifdef UBI_LINUX /* Not used at present */ |
||||
static void store_le(u32 x, unsigned char *buf) |
||||
{ |
||||
buf[0] = (unsigned char) x; |
||||
buf[1] = (unsigned char) (x >> 8); |
||||
buf[2] = (unsigned char) (x >> 16); |
||||
buf[3] = (unsigned char) (x >> 24); |
||||
} |
||||
#endif |
||||
|
||||
static void store_be(u32 x, unsigned char *buf) |
||||
{ |
||||
buf[0] = (unsigned char) (x >> 24); |
||||
buf[1] = (unsigned char) (x >> 16); |
||||
buf[2] = (unsigned char) (x >> 8); |
||||
buf[3] = (unsigned char) x; |
||||
} |
||||
|
||||
/*
|
||||
* This checks that CRC(buf + CRC(buf)) = 0, and that |
||||
* CRC commutes with bit-reversal. This has the side effect |
||||
* of bytewise bit-reversing the input buffer, and returns |
||||
* the CRC of the reversed buffer. |
||||
*/ |
||||
static u32 test_step(u32 init, unsigned char *buf, size_t len) |
||||
{ |
||||
u32 crc1, crc2; |
||||
size_t i; |
||||
|
||||
crc1 = crc32_be(init, buf, len); |
||||
store_be(crc1, buf + len); |
||||
crc2 = crc32_be(init, buf, len + 4); |
||||
if (crc2) |
||||
printf("\nCRC cancellation fail: 0x%08x should be 0\n", |
||||
crc2); |
||||
|
||||
for (i = 0; i <= len + 4; i++) { |
||||
crc2 = crc32_be(init, buf, i); |
||||
crc2 = crc32_be(crc2, buf + i, len + 4 - i); |
||||
if (crc2) |
||||
printf("\nCRC split fail: 0x%08x\n", crc2); |
||||
} |
||||
|
||||
/* Now swap it around for the other test */ |
||||
|
||||
bytereverse(buf, len + 4); |
||||
init = bitrev32(init); |
||||
crc2 = bitrev32(crc1); |
||||
if (crc1 != bitrev32(crc2)) |
||||
printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", |
||||
crc1, crc2, bitrev32(crc2)); |
||||
crc1 = crc32_le(init, buf, len); |
||||
if (crc1 != crc2) |
||||
printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, |
||||
crc2); |
||||
crc2 = crc32_le(init, buf, len + 4); |
||||
if (crc2) |
||||
printf("\nCRC cancellation fail: 0x%08x should be 0\n", |
||||
crc2); |
||||
|
||||
for (i = 0; i <= len + 4; i++) { |
||||
crc2 = crc32_le(init, buf, i); |
||||
crc2 = crc32_le(crc2, buf + i, len + 4 - i); |
||||
if (crc2) |
||||
printf("\nCRC split fail: 0x%08x\n", crc2); |
||||
} |
||||
|
||||
return crc1; |
||||
} |
||||
|
||||
#define SIZE 64 |
||||
#define INIT1 0 |
||||
#define INIT2 0 |
||||
|
||||
int main(void) |
||||
{ |
||||
unsigned char buf1[SIZE + 4]; |
||||
unsigned char buf2[SIZE + 4]; |
||||
unsigned char buf3[SIZE + 4]; |
||||
int i, j; |
||||
u32 crc1, crc2, crc3; |
||||
|
||||
for (i = 0; i <= SIZE; i++) { |
||||
printf("\rTesting length %d...", i); |
||||
fflush(stdout); |
||||
random_garbage(buf1, i); |
||||
random_garbage(buf2, i); |
||||
for (j = 0; j < i; j++) |
||||
buf3[j] = buf1[j] ^ buf2[j]; |
||||
|
||||
crc1 = test_step(INIT1, buf1, i); |
||||
crc2 = test_step(INIT2, buf2, i); |
||||
/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ |
||||
crc3 = test_step(INIT1 ^ INIT2, buf3, i); |
||||
if (crc3 != (crc1 ^ crc2)) |
||||
printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", |
||||
crc3, crc1, crc2); |
||||
} |
||||
printf("\nAll test complete. No failures expected.\n"); |
||||
return 0; |
||||
} |
||||
|
||||
#endif /* UNITTEST */ |
Loading…
Reference in new issue