Public exponentiation which is required in rsa verify functionality is tightly integrated with verification code in rsa_verify.c. The patch splits the file into twp separating the modular exponentiation. 1. rsa-verify.c - The file parses device tree keys node to fill a keyprop structure. The keyprop structure can then be converted to implementation specific format. (struct rsa_pub_key for sw implementation) - The parsed device tree node is then passed to a generic rsa_mod_exp function. 2. rsa-mod-exp.c Move the software specific functions related to modular exponentiation from rsa-verify.c to this file. Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com> CC: Simon Glass <sjg@chromium.org> Acked-by: Simon Glass <sjg@chromium.org>master
parent
49cad54788
commit
fc2f4246b4
@ -0,0 +1,43 @@ |
||||
/*
|
||||
* Copyright (c) 2014, Ruchika Gupta. |
||||
* |
||||
* SPDX-License-Identifier: GPL-2.0+ |
||||
*/ |
||||
|
||||
#ifndef _RSA_MOD_EXP_H |
||||
#define _RSA_MOD_EXP_H |
||||
|
||||
#include <errno.h> |
||||
#include <image.h> |
||||
|
||||
/**
|
||||
* struct key_prop - holder for a public key properties |
||||
* |
||||
* The struct has pointers to modulus (Typically called N), |
||||
* The inverse, R^2, exponent. These can be typecasted and |
||||
* used as byte arrays or converted to the required format |
||||
* as per requirement of RSA implementation. |
||||
*/ |
||||
struct key_prop { |
||||
const void *rr; /* R^2 can be treated as byte array */ |
||||
const void *modulus; /* modulus as byte array */ |
||||
const void *public_exponent; /* public exponent as byte array */ |
||||
uint32_t n0inv; /* -1 / modulus[0] mod 2^32 */ |
||||
int num_bits; /* Key length in bits */ |
||||
uint32_t exp_len; /* Exponent length in number of uint8_t */ |
||||
}; |
||||
|
||||
/**
|
||||
* rsa_mod_exp_sw() - Perform RSA Modular Exponentiation in sw |
||||
* |
||||
* Operation: out[] = sig ^ exponent % modulus |
||||
* |
||||
* @sig: RSA PKCS1.5 signature |
||||
* @sig_len: Length of signature in number of bytes |
||||
* @node: Node with RSA key elements like modulus, exponent, R^2, n0inv |
||||
* @out: Result in form of byte array |
||||
*/ |
||||
int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, |
||||
struct key_prop *node, uint8_t *out); |
||||
|
||||
#endif |
@ -0,0 +1,303 @@ |
||||
/*
|
||||
* Copyright (c) 2013, Google Inc. |
||||
* |
||||
* SPDX-License-Identifier: GPL-2.0+ |
||||
*/ |
||||
|
||||
#ifndef USE_HOSTCC |
||||
#include <common.h> |
||||
#include <fdtdec.h> |
||||
#include <asm/types.h> |
||||
#include <asm/byteorder.h> |
||||
#include <asm/errno.h> |
||||
#include <asm/types.h> |
||||
#include <asm/unaligned.h> |
||||
#else |
||||
#include "fdt_host.h" |
||||
#include "mkimage.h" |
||||
#include <fdt_support.h> |
||||
#endif |
||||
#include <u-boot/rsa.h> |
||||
#include <u-boot/rsa-mod-exp.h> |
||||
|
||||
#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) |
||||
|
||||
#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) |
||||
#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) |
||||
|
||||
/* Default public exponent for backward compatibility */ |
||||
#define RSA_DEFAULT_PUBEXP 65537 |
||||
|
||||
/**
|
||||
* subtract_modulus() - subtract modulus from the given value |
||||
* |
||||
* @key: Key containing modulus to subtract |
||||
* @num: Number to subtract modulus from, as little endian word array |
||||
*/ |
||||
static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) |
||||
{ |
||||
int64_t acc = 0; |
||||
uint i; |
||||
|
||||
for (i = 0; i < key->len; i++) { |
||||
acc += (uint64_t)num[i] - key->modulus[i]; |
||||
num[i] = (uint32_t)acc; |
||||
acc >>= 32; |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* greater_equal_modulus() - check if a value is >= modulus |
||||
* |
||||
* @key: Key containing modulus to check |
||||
* @num: Number to check against modulus, as little endian word array |
||||
* @return 0 if num < modulus, 1 if num >= modulus |
||||
*/ |
||||
static int greater_equal_modulus(const struct rsa_public_key *key, |
||||
uint32_t num[]) |
||||
{ |
||||
int i; |
||||
|
||||
for (i = (int)key->len - 1; i >= 0; i--) { |
||||
if (num[i] < key->modulus[i]) |
||||
return 0; |
||||
if (num[i] > key->modulus[i]) |
||||
return 1; |
||||
} |
||||
|
||||
return 1; /* equal */ |
||||
} |
||||
|
||||
/**
|
||||
* montgomery_mul_add_step() - Perform montgomery multiply-add step |
||||
* |
||||
* Operation: montgomery result[] += a * b[] / n0inv % modulus |
||||
* |
||||
* @key: RSA key |
||||
* @result: Place to put result, as little endian word array |
||||
* @a: Multiplier |
||||
* @b: Multiplicand, as little endian word array |
||||
*/ |
||||
static void montgomery_mul_add_step(const struct rsa_public_key *key, |
||||
uint32_t result[], const uint32_t a, const uint32_t b[]) |
||||
{ |
||||
uint64_t acc_a, acc_b; |
||||
uint32_t d0; |
||||
uint i; |
||||
|
||||
acc_a = (uint64_t)a * b[0] + result[0]; |
||||
d0 = (uint32_t)acc_a * key->n0inv; |
||||
acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; |
||||
for (i = 1; i < key->len; i++) { |
||||
acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; |
||||
acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + |
||||
(uint32_t)acc_a; |
||||
result[i - 1] = (uint32_t)acc_b; |
||||
} |
||||
|
||||
acc_a = (acc_a >> 32) + (acc_b >> 32); |
||||
|
||||
result[i - 1] = (uint32_t)acc_a; |
||||
|
||||
if (acc_a >> 32) |
||||
subtract_modulus(key, result); |
||||
} |
||||
|
||||
/**
|
||||
* montgomery_mul() - Perform montgomery mutitply |
||||
* |
||||
* Operation: montgomery result[] = a[] * b[] / n0inv % modulus |
||||
* |
||||
* @key: RSA key |
||||
* @result: Place to put result, as little endian word array |
||||
* @a: Multiplier, as little endian word array |
||||
* @b: Multiplicand, as little endian word array |
||||
*/ |
||||
static void montgomery_mul(const struct rsa_public_key *key, |
||||
uint32_t result[], uint32_t a[], const uint32_t b[]) |
||||
{ |
||||
uint i; |
||||
|
||||
for (i = 0; i < key->len; ++i) |
||||
result[i] = 0; |
||||
for (i = 0; i < key->len; ++i) |
||||
montgomery_mul_add_step(key, result, a[i], b); |
||||
} |
||||
|
||||
/**
|
||||
* num_pub_exponent_bits() - Number of bits in the public exponent |
||||
* |
||||
* @key: RSA key |
||||
* @num_bits: Storage for the number of public exponent bits |
||||
*/ |
||||
static int num_public_exponent_bits(const struct rsa_public_key *key, |
||||
int *num_bits) |
||||
{ |
||||
uint64_t exponent; |
||||
int exponent_bits; |
||||
const uint max_bits = (sizeof(exponent) * 8); |
||||
|
||||
exponent = key->exponent; |
||||
exponent_bits = 0; |
||||
|
||||
if (!exponent) { |
||||
*num_bits = exponent_bits; |
||||
return 0; |
||||
} |
||||
|
||||
for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) |
||||
if (!(exponent >>= 1)) { |
||||
*num_bits = exponent_bits; |
||||
return 0; |
||||
} |
||||
|
||||
return -EINVAL; |
||||
} |
||||
|
||||
/**
|
||||
* is_public_exponent_bit_set() - Check if a bit in the public exponent is set |
||||
* |
||||
* @key: RSA key |
||||
* @pos: The bit position to check |
||||
*/ |
||||
static int is_public_exponent_bit_set(const struct rsa_public_key *key, |
||||
int pos) |
||||
{ |
||||
return key->exponent & (1ULL << pos); |
||||
} |
||||
|
||||
/**
|
||||
* pow_mod() - in-place public exponentiation |
||||
* |
||||
* @key: RSA key |
||||
* @inout: Big-endian word array containing value and result |
||||
*/ |
||||
static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) |
||||
{ |
||||
uint32_t *result, *ptr; |
||||
uint i; |
||||
int j, k; |
||||
|
||||
/* Sanity check for stack size - key->len is in 32-bit words */ |
||||
if (key->len > RSA_MAX_KEY_BITS / 32) { |
||||
debug("RSA key words %u exceeds maximum %d\n", key->len, |
||||
RSA_MAX_KEY_BITS / 32); |
||||
return -EINVAL; |
||||
} |
||||
|
||||
uint32_t val[key->len], acc[key->len], tmp[key->len]; |
||||
uint32_t a_scaled[key->len]; |
||||
result = tmp; /* Re-use location. */ |
||||
|
||||
/* Convert from big endian byte array to little endian word array. */ |
||||
for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) |
||||
val[i] = get_unaligned_be32(ptr); |
||||
|
||||
if (0 != num_public_exponent_bits(key, &k)) |
||||
return -EINVAL; |
||||
|
||||
if (k < 2) { |
||||
debug("Public exponent is too short (%d bits, minimum 2)\n", |
||||
k); |
||||
return -EINVAL; |
||||
} |
||||
|
||||
if (!is_public_exponent_bit_set(key, 0)) { |
||||
debug("LSB of RSA public exponent must be set.\n"); |
||||
return -EINVAL; |
||||
} |
||||
|
||||
/* the bit at e[k-1] is 1 by definition, so start with: C := M */ |
||||
montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ |
||||
/* retain scaled version for intermediate use */ |
||||
memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); |
||||
|
||||
for (j = k - 2; j > 0; --j) { |
||||
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
||||
|
||||
if (is_public_exponent_bit_set(key, j)) { |
||||
/* acc = tmp * val / R mod n */ |
||||
montgomery_mul(key, acc, tmp, a_scaled); |
||||
} else { |
||||
/* e[j] == 0, copy tmp back to acc for next operation */ |
||||
memcpy(acc, tmp, key->len * sizeof(acc[0])); |
||||
} |
||||
} |
||||
|
||||
/* the bit at e[0] is always 1 */ |
||||
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
||||
montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ |
||||
memcpy(result, acc, key->len * sizeof(result[0])); |
||||
|
||||
/* Make sure result < mod; result is at most 1x mod too large. */ |
||||
if (greater_equal_modulus(key, result)) |
||||
subtract_modulus(key, result); |
||||
|
||||
/* Convert to bigendian byte array */ |
||||
for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) |
||||
put_unaligned_be32(result[i], ptr); |
||||
return 0; |
||||
} |
||||
|
||||
static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) |
||||
{ |
||||
int i; |
||||
|
||||
for (i = 0; i < len; i++) |
||||
dst[i] = fdt32_to_cpu(src[len - 1 - i]); |
||||
} |
||||
|
||||
int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, |
||||
struct key_prop *prop, uint8_t *out) |
||||
{ |
||||
struct rsa_public_key key; |
||||
int ret; |
||||
|
||||
if (!prop) { |
||||
debug("%s: Skipping invalid prop", __func__); |
||||
return -EBADF; |
||||
} |
||||
key.n0inv = prop->n0inv; |
||||
key.len = prop->num_bits; |
||||
|
||||
if (!prop->public_exponent) |
||||
key.exponent = RSA_DEFAULT_PUBEXP; |
||||
else |
||||
key.exponent = |
||||
fdt64_to_cpu(*((uint64_t *)(prop->public_exponent))); |
||||
|
||||
if (!key.len || !prop->modulus || !prop->rr) { |
||||
debug("%s: Missing RSA key info", __func__); |
||||
return -EFAULT; |
||||
} |
||||
|
||||
/* Sanity check for stack size */ |
||||
if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { |
||||
debug("RSA key bits %u outside allowed range %d..%d\n", |
||||
key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); |
||||
return -EFAULT; |
||||
} |
||||
key.len /= sizeof(uint32_t) * 8; |
||||
uint32_t key1[key.len], key2[key.len]; |
||||
|
||||
key.modulus = key1; |
||||
key.rr = key2; |
||||
rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); |
||||
rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); |
||||
if (!key.modulus || !key.rr) { |
||||
debug("%s: Out of memory", __func__); |
||||
return -ENOMEM; |
||||
} |
||||
|
||||
uint32_t buf[sig_len / sizeof(uint32_t)]; |
||||
|
||||
memcpy(buf, sig, sig_len); |
||||
|
||||
ret = pow_mod(&key, buf); |
||||
if (ret) |
||||
return ret; |
||||
|
||||
memcpy(out, buf, sig_len); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue