We currently assume that the global data pointer is at the start of
struct global_data. We want to remove this restriction, and it is
easiest to do this in C.
Remove the asm code and add equivalent code in C.
This idea was proposed by Graeme Russ here:
http://patchwork.ozlabs.org/patch/199741/
Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Apply Graeme Russ' comments
http://patchwork.ozlabs.org/patch/206305/ here, re-order]
Signed-off-by: Tom Rini <trini@ti.com>
These were removed, but actually are useful.
Cold means that we started from a reset/power on.
Warm means that we started from another U-Boot.
We determine whether u-boot on x86 was warm or cold booted (really if
it started at the beginning of the text segment or at the ELF entry point).
We plumb the result through to the global data structure.
Signed-off-by: Simon Glass <sjg@chromium.org>
Putting global data on the stack simplifies the init process (and makes it
slightly quicker). During the 'flash' stage of the init sequence, global
data is in the CAR stack. After SDRAM is initialised, global data is copied
from CAR to the SDRAM stack
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
Use the base address of the 'F' segment as a pointer to the global data
structure. By adding the linear address (i.e. the 'D' segment address) as
the first word of the global data structure, the address of the global data
relative to the 'D' segment can be found simply, for example, by:
fs movl 0, %eax
This makes the gd 'pointer' writable prior to relocation (by reloading the
Global Desctriptor Table) which brings x86 into line with all other arches
NOTE: Writing to the gd 'pointer' is expensive (but we only do it
twice) but using it to access global data members (read and write) is
still fairly cheap
--
Changes for v2:
- Rebased against changes made to patch #3
- Removed extra indent
- Tweaked commit message
Move the relocation offset calculation out of assembler and into C. This
also paves the way for the upcoming init sequence simplification by adding
the board_init_f_r flash to RAM transitional function
--
Changes for v2:
- Added commit message
- Minor adjustment to new stack address comment
By adding a multiboot header, U-Boot can be loaded by GRUB2. Using GRUB2 to
bootstrap U-Boot is useful for using an existing BIOS to get an initial
U-Boot port up and running before implementing the low-level reset vector
code, SDRAM init, etc. and overwriting the BIOS
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
There was a mix of UTF-8 and ISO-8859 files in the U-Boot source
tree, which could cause issues with the patchwork review system.
This commit converts all ISO-8859 files to UTF-8.
Signed-off-by: Albert ARIBAUD <albert.u.boot@aribaud.net>
Recieve/Receive
recieve/receive
Interupt/Interrupt
interupt/interrupt
Addres/Address
addres/address
Signed-off-by: Mike Williams <mike@mikebwilliams.com>
Make the copyright notices in the x86 files consistent and update them with
proper attributions for recent updates
Also fix a few comment style/accuracy and whitespace/blank line issues
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
early_board_init has been skipped to avoid SDRAM corruption in the case
that a fully relocatable image has been loaded into SDRAM and is being
executed from SDRAM. x86 is being aligned with other architectures (ARM
and PPC in particlar) and will be using Cache-As-RAM to run a C
environment from Flash (or SRAM if you have some). early_board_init may
be needed to assist in the setup of Cache-As-RAM and the early C
environment
u-boot.bin can be loaded at any 4-byte aligned memory location and directly
'jumped' to using the 'go' command using the load address as the start
address. Doing so performs a 'warm boot' which skips memory initialisation
and other low-level initialisations, relocates U-Boot to upper memory and
starts U-Boot in RAM as per normal 'cold boot'
By reserving space for the Global Data immediately below the stack during
assembly level initialisation, the C declaration of the static global data
can be removed, along with the 'RAM Bootstrap' function. This results in
cleaner code, and the ability to pass boot-up flags from assembler into C
Change to:
- reparam=3
- no-from-pointer
- no-stack-protector
- preferred-stack-boundary=2
- no-top-level-reorder
These options make the code a little smaller and faster
Currently, the GDT is either located in FLASH or in the non-relocated
U-Boot image in RAM. Both of these locations are unsafe as those
locations can be erased during a U-Boot update. Move the GDT into the
highest available memory location and relocate U-Boot to just below it
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
Add a parameter to the 32-bit entry to indicate if entry is from Real
Mode or not. If entry is from Real Mode, execute the destructive 'sizer'
routine to determine memory size as we are booting cold and running in
Flash. If not entering from Real Mode, we are executing a U-Boot image
from RAM and therefore the memory size is already known (and running
'sizer' will destroy the running image)
There are now two 32-bit entry points. The first is the 'in RAM' entry
point which exists at the start of the U-Boot binary image. As such,
you can load u-boot.bin in RAM and jump directly to the load address
without needing to calculate any offsets. The second entry point is
used by the real-to-protected mode switch
This patch also changes TEXT_BASE to 0x6000000 (in RAM). You can load
the resulting image at 0x6000000 and simple go 0x6000000 from the u-boot
prompt
Hopefully a later patch will completely elliminate any dependency on
TEXT_BASE like a relocatable linux kernel (perfect world)
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
This patch allows the low-level assembler boot-strap to obtain the RAM
size without calling the destructive 'sizer' routine. This allows
boot-strapping from a U-Boot image loaded in RAM
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
Renamed show_boot_progress in assembler init phase to
show_boot_progress_asm to avoid link conflicts with C version
Signed-off-by: Graeme Russ <graeme.russ@gmail.com>
This commit gets rid of a huge amount of silly white-space issues.
Especially, all sequences of SPACEs followed by TAB characters get
removed (unless they appear in print statements).
Also remove all embedded "vim:" and "vi:" statements which hide
indentation problems.
Signed-off-by: Wolfgang Denk <wd@denx.de>
Hi,
There is a bug in the code of clearing the bss section for processor
i386.(File: cpu/i386/start.S)
In the code, bss_start addr (starting addr of bss section) is put into
the register %eax, but the code which clears the bss section refers to
the addr pointed by %edi.
This patch fixes this bug by putting bss_start into %edi register.
Signed-off-by: Mushtaq Khan <mushtaq_k@procsys.com>
- remove trailing white space, trailing empty lines, C++ comments, etc.
- split cmd_boot.c (separate cmd_bdinfo.c and cmd_load.c)
* Patches by Kenneth Johansson, 25 Jun 2003:
- major rework of command structure
(work done mostly by Michal Cendrowski and Joakim Kristiansen)
Add support for i386 architecture and AMD SC520 board
* Patch by Pierre Aubert, 12 Nov 2002:
Add support for DOS filesystem and booting from DOS floppy disk