/* * (C) Copyright 2002-2004 * Brad Kemp, Seranoa Networks, Brad.Kemp@seranoa.com * * Copyright (C) 2003 Arabella Software Ltd. * Yuli Barcohen <yuli@arabellasw.com> * Modified to work with AMD flashes * * Copyright (C) 2004 * Ed Okerson * Modified to work with little-endian systems. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * History * 01/20/2004 - combined variants of original driver. * 01/22/2004 - Write performance enhancements for parallel chips (Tolunay) * 01/23/2004 - Support for x8/x16 chips (Rune Raknerud) * 01/27/2004 - Little endian support Ed Okerson * * Tested Architectures * Port Width Chip Width # of banks Flash Chip Board * 32 16 1 28F128J3 seranoa/eagle * 64 16 1 28F128J3 seranoa/falcon * */ /* The DEBUG define must be before common to enable debugging */ /* #define DEBUG */ #include <common.h> #include <asm/processor.h> #include <asm/byteorder.h> #include <environment.h> #ifdef CFG_FLASH_CFI_DRIVER /* * This file implements a Common Flash Interface (CFI) driver for U-Boot. * The width of the port and the width of the chips are determined at initialization. * These widths are used to calculate the address for access CFI data structures. * It has been tested on an Intel Strataflash implementation and AMD 29F016D. * * References * JEDEC Standard JESD68 - Common Flash Interface (CFI) * JEDEC Standard JEP137-A Common Flash Interface (CFI) ID Codes * Intel Application Note 646 Common Flash Interface (CFI) and Command Sets * Intel 290667-008 3 Volt Intel StrataFlash Memory datasheet * * TODO * * Use Primary Extended Query table (PRI) and Alternate Algorithm Query * Table (ALT) to determine if protection is available * * Add support for other command sets Use the PRI and ALT to determine command set * Verify erase and program timeouts. */ #ifndef CFG_FLASH_BANKS_LIST #define CFG_FLASH_BANKS_LIST { CFG_FLASH_BASE } #endif #define FLASH_CMD_CFI 0x98 #define FLASH_CMD_READ_ID 0x90 #define FLASH_CMD_RESET 0xff #define FLASH_CMD_BLOCK_ERASE 0x20 #define FLASH_CMD_ERASE_CONFIRM 0xD0 #define FLASH_CMD_WRITE 0x40 #define FLASH_CMD_PROTECT 0x60 #define FLASH_CMD_PROTECT_SET 0x01 #define FLASH_CMD_PROTECT_CLEAR 0xD0 #define FLASH_CMD_CLEAR_STATUS 0x50 #define FLASH_CMD_WRITE_TO_BUFFER 0xE8 #define FLASH_CMD_WRITE_BUFFER_CONFIRM 0xD0 #define FLASH_STATUS_DONE 0x80 #define FLASH_STATUS_ESS 0x40 #define FLASH_STATUS_ECLBS 0x20 #define FLASH_STATUS_PSLBS 0x10 #define FLASH_STATUS_VPENS 0x08 #define FLASH_STATUS_PSS 0x04 #define FLASH_STATUS_DPS 0x02 #define FLASH_STATUS_R 0x01 #define FLASH_STATUS_PROTECT 0x01 #define AMD_CMD_RESET 0xF0 #define AMD_CMD_WRITE 0xA0 #define AMD_CMD_ERASE_START 0x80 #define AMD_CMD_ERASE_SECTOR 0x30 #define AMD_CMD_UNLOCK_START 0xAA #define AMD_CMD_UNLOCK_ACK 0x55 #define AMD_CMD_WRITE_TO_BUFFER 0x25 #define AMD_CMD_WRITE_BUFFER_CONFIRM 0x29 #define AMD_STATUS_TOGGLE 0x40 #define AMD_STATUS_ERROR 0x20 #define AMD_ADDR_ERASE_START ((info->portwidth == FLASH_CFI_8BIT) ? 0xAAA : 0x555) #define AMD_ADDR_START ((info->portwidth == FLASH_CFI_8BIT) ? 0xAAA : 0x555) #define AMD_ADDR_ACK ((info->portwidth == FLASH_CFI_8BIT) ? 0x555 : 0x2AA) #define FLASH_OFFSET_CFI 0x55 #define FLASH_OFFSET_CFI_RESP 0x10 #define FLASH_OFFSET_PRIMARY_VENDOR 0x13 #define FLASH_OFFSET_EXT_QUERY_T_P_ADDR 0x15 /* extended query table primary addr */ #define FLASH_OFFSET_WTOUT 0x1F #define FLASH_OFFSET_WBTOUT 0x20 #define FLASH_OFFSET_ETOUT 0x21 #define FLASH_OFFSET_CETOUT 0x22 #define FLASH_OFFSET_WMAX_TOUT 0x23 #define FLASH_OFFSET_WBMAX_TOUT 0x24 #define FLASH_OFFSET_EMAX_TOUT 0x25 #define FLASH_OFFSET_CEMAX_TOUT 0x26 #define FLASH_OFFSET_SIZE 0x27 #define FLASH_OFFSET_INTERFACE 0x28 #define FLASH_OFFSET_BUFFER_SIZE 0x2A #define FLASH_OFFSET_NUM_ERASE_REGIONS 0x2C #define FLASH_OFFSET_ERASE_REGIONS 0x2D #define FLASH_OFFSET_PROTECT 0x02 #define FLASH_OFFSET_USER_PROTECTION 0x85 #define FLASH_OFFSET_INTEL_PROTECTION 0x81 #define FLASH_MAN_CFI 0x01000000 #define CFI_CMDSET_NONE 0 #define CFI_CMDSET_INTEL_EXTENDED 1 #define CFI_CMDSET_AMD_STANDARD 2 #define CFI_CMDSET_INTEL_STANDARD 3 #define CFI_CMDSET_AMD_EXTENDED 4 #define CFI_CMDSET_MITSU_STANDARD 256 #define CFI_CMDSET_MITSU_EXTENDED 257 #define CFI_CMDSET_SST 258 #ifdef CFG_FLASH_CFI_AMD_RESET /* needed for STM_ID_29W320DB on UC100 */ # undef FLASH_CMD_RESET # define FLASH_CMD_RESET AMD_CMD_RESET /* use AMD-Reset instead */ #endif typedef union { unsigned char c; unsigned short w; unsigned long l; unsigned long long ll; } cfiword_t; typedef union { volatile unsigned char *cp; volatile unsigned short *wp; volatile unsigned long *lp; volatile unsigned long long *llp; } cfiptr_t; #define NUM_ERASE_REGIONS 4 /* use CFG_MAX_FLASH_BANKS_DETECT if defined */ #ifdef CFG_MAX_FLASH_BANKS_DETECT static ulong bank_base[CFG_MAX_FLASH_BANKS_DETECT] = CFG_FLASH_BANKS_LIST; flash_info_t flash_info[CFG_MAX_FLASH_BANKS_DETECT]; /* FLASH chips info */ #else static ulong bank_base[CFG_MAX_FLASH_BANKS] = CFG_FLASH_BANKS_LIST; flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* FLASH chips info */ #endif /* * Check if chip width is defined. If not, start detecting with 8bit. */ #ifndef CFG_FLASH_CFI_WIDTH #define CFG_FLASH_CFI_WIDTH FLASH_CFI_8BIT #endif /*----------------------------------------------------------------------- * Functions */ typedef unsigned long flash_sect_t; static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c); static void flash_make_cmd (flash_info_t * info, uchar cmd, void *cmdbuf); static void flash_write_cmd (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd); static void flash_unlock_seq (flash_info_t * info, flash_sect_t sect); static int flash_isequal (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd); static int flash_isset (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd); static int flash_toggle (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd); static int flash_detect_cfi (flash_info_t * info); static int flash_write_cfiword (flash_info_t * info, ulong dest, cfiword_t cword); static int flash_full_status_check (flash_info_t * info, flash_sect_t sector, ulong tout, char *prompt); ulong flash_get_size (ulong base, int banknum); #if defined(CFG_ENV_IS_IN_FLASH) || defined(CFG_ENV_ADDR_REDUND) || (CFG_MONITOR_BASE >= CFG_FLASH_BASE) static flash_info_t *flash_get_info(ulong base); #endif #ifdef CFG_FLASH_USE_BUFFER_WRITE static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp, int len); #endif /*----------------------------------------------------------------------- * create an address based on the offset and the port width */ inline uchar *flash_make_addr (flash_info_t * info, flash_sect_t sect, uint offset) { return ((uchar *) (info->start[sect] + (offset * info->portwidth))); } #ifdef DEBUG /*----------------------------------------------------------------------- * Debug support */ void print_longlong (char *str, unsigned long long data) { int i; char *cp; cp = (unsigned char *) &data; for (i = 0; i < 8; i++) sprintf (&str[i * 2], "%2.2x", *cp++); } static void flash_printqry (flash_info_t * info, flash_sect_t sect) { cfiptr_t cptr; int x, y; for (x = 0; x < 0x40; x += 16U / info->portwidth) { cptr.cp = flash_make_addr (info, sect, x + FLASH_OFFSET_CFI_RESP); debug ("%p : ", cptr.cp); for (y = 0; y < 16; y++) { debug ("%2.2x ", cptr.cp[y]); } debug (" "); for (y = 0; y < 16; y++) { if (cptr.cp[y] >= 0x20 && cptr.cp[y] <= 0x7e) { debug ("%c", cptr.cp[y]); } else { debug ("."); } } debug ("\n"); } } #endif /*----------------------------------------------------------------------- * read a character at a port width address */ inline uchar flash_read_uchar (flash_info_t * info, uint offset) { uchar *cp; cp = flash_make_addr (info, 0, offset); #if defined(__LITTLE_ENDIAN) return (cp[0]); #else return (cp[info->portwidth - 1]); #endif } /*----------------------------------------------------------------------- * read a short word by swapping for ppc format. */ ushort flash_read_ushort (flash_info_t * info, flash_sect_t sect, uint offset) { uchar *addr; ushort retval; #ifdef DEBUG int x; #endif addr = flash_make_addr (info, sect, offset); #ifdef DEBUG debug ("ushort addr is at %p info->portwidth = %d\n", addr, info->portwidth); for (x = 0; x < 2 * info->portwidth; x++) { debug ("addr[%x] = 0x%x\n", x, addr[x]); } #endif #if defined(__LITTLE_ENDIAN) retval = ((addr[(info->portwidth)] << 8) | addr[0]); #else retval = ((addr[(2 * info->portwidth) - 1] << 8) | addr[info->portwidth - 1]); #endif debug ("retval = 0x%x\n", retval); return retval; } /*----------------------------------------------------------------------- * read a long word by picking the least significant byte of each maiximum * port size word. Swap for ppc format. */ ulong flash_read_long (flash_info_t * info, flash_sect_t sect, uint offset) { uchar *addr; ulong retval; #ifdef DEBUG int x; #endif addr = flash_make_addr (info, sect, offset); #ifdef DEBUG debug ("long addr is at %p info->portwidth = %d\n", addr, info->portwidth); for (x = 0; x < 4 * info->portwidth; x++) { debug ("addr[%x] = 0x%x\n", x, addr[x]); } #endif #if defined(__LITTLE_ENDIAN) retval = (addr[0] << 16) | (addr[(info->portwidth)] << 24) | (addr[(2 * info->portwidth)]) | (addr[(3 * info->portwidth)] << 8); #else retval = (addr[(2 * info->portwidth) - 1] << 24) | (addr[(info->portwidth) - 1] << 16) | (addr[(4 * info->portwidth) - 1] << 8) | addr[(3 * info->portwidth) - 1]; #endif return retval; } /*----------------------------------------------------------------------- */ unsigned long flash_init (void) { unsigned long size = 0; int i; #ifdef CFG_FLASH_PROTECTION char *s = getenv("unlock"); #endif /* Init: no FLASHes known */ for (i = 0; i < CFG_MAX_FLASH_BANKS; ++i) { flash_info[i].flash_id = FLASH_UNKNOWN; size += flash_info[i].size = flash_get_size (bank_base[i], i); if (flash_info[i].flash_id == FLASH_UNKNOWN) { #ifndef CFG_FLASH_QUIET_TEST printf ("## Unknown FLASH on Bank %d - Size = 0x%08lx = %ld MB\n", i, flash_info[i].size, flash_info[i].size << 20); #endif /* CFG_FLASH_QUIET_TEST */ } #ifdef CFG_FLASH_PROTECTION else if ((s != NULL) && (strcmp(s, "yes") == 0)) { /* * Only the U-Boot image and it's environment is protected, * all other sectors are unprotected (unlocked) if flash * hardware protection is used (CFG_FLASH_PROTECTION) and * the environment variable "unlock" is set to "yes". */ if (flash_info[i].legacy_unlock) { int k; /* * Disable legacy_unlock temporarily, since * flash_real_protect would relock all other sectors * again otherwise. */ flash_info[i].legacy_unlock = 0; /* * Legacy unlocking (e.g. Intel J3) -> unlock only one * sector. This will unlock all sectors. */ flash_real_protect (&flash_info[i], 0, 0); flash_info[i].legacy_unlock = 1; /* * Manually mark other sectors as unlocked (unprotected) */ for (k = 1; k < flash_info[i].sector_count; k++) flash_info[i].protect[k] = 0; } else { /* * No legancy unlocking -> unlock all sectors */ flash_protect (FLAG_PROTECT_CLEAR, flash_info[i].start[0], flash_info[i].start[0] + flash_info[i].size - 1, &flash_info[i]); } } #endif /* CFG_FLASH_PROTECTION */ } /* Monitor protection ON by default */ #if (CFG_MONITOR_BASE >= CFG_FLASH_BASE) flash_protect (FLAG_PROTECT_SET, CFG_MONITOR_BASE, CFG_MONITOR_BASE + monitor_flash_len - 1, flash_get_info(CFG_MONITOR_BASE)); #endif /* Environment protection ON by default */ #ifdef CFG_ENV_IS_IN_FLASH flash_protect (FLAG_PROTECT_SET, CFG_ENV_ADDR, CFG_ENV_ADDR + CFG_ENV_SECT_SIZE - 1, flash_get_info(CFG_ENV_ADDR)); #endif /* Redundant environment protection ON by default */ #ifdef CFG_ENV_ADDR_REDUND flash_protect (FLAG_PROTECT_SET, CFG_ENV_ADDR_REDUND, CFG_ENV_ADDR_REDUND + CFG_ENV_SIZE_REDUND - 1, flash_get_info(CFG_ENV_ADDR_REDUND)); #endif return (size); } /*----------------------------------------------------------------------- */ #if defined(CFG_ENV_IS_IN_FLASH) || defined(CFG_ENV_ADDR_REDUND) || (CFG_MONITOR_BASE >= CFG_FLASH_BASE) static flash_info_t *flash_get_info(ulong base) { int i; flash_info_t * info = 0; for (i = 0; i < CFG_MAX_FLASH_BANKS; i ++) { info = & flash_info[i]; if (info->size && info->start[0] <= base && base <= info->start[0] + info->size - 1) break; } return i == CFG_MAX_FLASH_BANKS ? 0 : info; } #endif /*----------------------------------------------------------------------- */ int flash_erase (flash_info_t * info, int s_first, int s_last) { int rcode = 0; int prot; flash_sect_t sect; if (info->flash_id != FLASH_MAN_CFI) { puts ("Can't erase unknown flash type - aborted\n"); return 1; } if ((s_first < 0) || (s_first > s_last)) { puts ("- no sectors to erase\n"); return 1; } prot = 0; for (sect = s_first; sect <= s_last; ++sect) { if (info->protect[sect]) { prot++; } } if (prot) { printf ("- Warning: %d protected sectors will not be erased!\n", prot); } else { putc ('\n'); } for (sect = s_first; sect <= s_last; sect++) { if (info->protect[sect] == 0) { /* not protected */ switch (info->vendor) { case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: flash_write_cmd (info, sect, 0, FLASH_CMD_CLEAR_STATUS); flash_write_cmd (info, sect, 0, FLASH_CMD_BLOCK_ERASE); flash_write_cmd (info, sect, 0, FLASH_CMD_ERASE_CONFIRM); break; case CFI_CMDSET_AMD_STANDARD: case CFI_CMDSET_AMD_EXTENDED: flash_unlock_seq (info, sect); flash_write_cmd (info, sect, AMD_ADDR_ERASE_START, AMD_CMD_ERASE_START); flash_unlock_seq (info, sect); flash_write_cmd (info, sect, 0, AMD_CMD_ERASE_SECTOR); break; default: debug ("Unkown flash vendor %d\n", info->vendor); break; } if (flash_full_status_check (info, sect, info->erase_blk_tout, "erase")) { rcode = 1; } else putc ('.'); } } puts (" done\n"); return rcode; } /*----------------------------------------------------------------------- */ void flash_print_info (flash_info_t * info) { int i; if (info->flash_id != FLASH_MAN_CFI) { puts ("missing or unknown FLASH type\n"); return; } printf ("CFI conformant FLASH (%d x %d)", (info->portwidth << 3), (info->chipwidth << 3)); printf (" Size: %ld MB in %d Sectors\n", info->size >> 20, info->sector_count); printf (" Erase timeout %ld ms, write timeout %ld ms, buffer write timeout %ld ms, buffer size %d\n", info->erase_blk_tout, info->write_tout, info->buffer_write_tout, info->buffer_size); puts (" Sector Start Addresses:"); for (i = 0; i < info->sector_count; ++i) { #ifdef CFG_FLASH_EMPTY_INFO int k; int size; int erased; volatile unsigned long *flash; /* * Check if whole sector is erased */ if (i != (info->sector_count - 1)) size = info->start[i + 1] - info->start[i]; else size = info->start[0] + info->size - info->start[i]; erased = 1; flash = (volatile unsigned long *) info->start[i]; size = size >> 2; /* divide by 4 for longword access */ for (k = 0; k < size; k++) { if (*flash++ != 0xffffffff) { erased = 0; break; } } if ((i % 5) == 0) printf ("\n"); /* print empty and read-only info */ printf (" %08lX%s%s", info->start[i], erased ? " E" : " ", info->protect[i] ? "RO " : " "); #else /* ! CFG_FLASH_EMPTY_INFO */ if ((i % 5) == 0) printf ("\n "); printf (" %08lX%s", info->start[i], info->protect[i] ? " (RO)" : " "); #endif } putc ('\n'); return; } /*----------------------------------------------------------------------- * Copy memory to flash, returns: * 0 - OK * 1 - write timeout * 2 - Flash not erased */ int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt) { ulong wp; ulong cp; int aln; cfiword_t cword; int i, rc; #ifdef CFG_FLASH_USE_BUFFER_WRITE int buffered_size; #endif /* get lower aligned address */ /* get lower aligned address */ wp = (addr & ~(info->portwidth - 1)); /* handle unaligned start */ if ((aln = addr - wp) != 0) { cword.l = 0; cp = wp; for (i = 0; i < aln; ++i, ++cp) flash_add_byte (info, &cword, (*(uchar *) cp)); for (; (i < info->portwidth) && (cnt > 0); i++) { flash_add_byte (info, &cword, *src++); cnt--; cp++; } for (; (cnt == 0) && (i < info->portwidth); ++i, ++cp) flash_add_byte (info, &cword, (*(uchar *) cp)); if ((rc = flash_write_cfiword (info, wp, cword)) != 0) return rc; wp = cp; } /* handle the aligned part */ #ifdef CFG_FLASH_USE_BUFFER_WRITE buffered_size = (info->portwidth / info->chipwidth); buffered_size *= info->buffer_size; while (cnt >= info->portwidth) { /* prohibit buffer write when buffer_size is 1 */ if (info->buffer_size == 1) { cword.l = 0; for (i = 0; i < info->portwidth; i++) flash_add_byte (info, &cword, *src++); if ((rc = flash_write_cfiword (info, wp, cword)) != 0) return rc; wp += info->portwidth; cnt -= info->portwidth; continue; } /* write buffer until next buffered_size aligned boundary */ i = buffered_size - (wp % buffered_size); if (i > cnt) i = cnt; if ((rc = flash_write_cfibuffer (info, wp, src, i)) != ERR_OK) return rc; i -= i & (info->portwidth - 1); wp += i; src += i; cnt -= i; } #else while (cnt >= info->portwidth) { cword.l = 0; for (i = 0; i < info->portwidth; i++) { flash_add_byte (info, &cword, *src++); } if ((rc = flash_write_cfiword (info, wp, cword)) != 0) return rc; wp += info->portwidth; cnt -= info->portwidth; } #endif /* CFG_FLASH_USE_BUFFER_WRITE */ if (cnt == 0) { return (0); } /* * handle unaligned tail bytes */ cword.l = 0; for (i = 0, cp = wp; (i < info->portwidth) && (cnt > 0); ++i, ++cp) { flash_add_byte (info, &cword, *src++); --cnt; } for (; i < info->portwidth; ++i, ++cp) { flash_add_byte (info, &cword, (*(uchar *) cp)); } return flash_write_cfiword (info, wp, cword); } /*----------------------------------------------------------------------- */ #ifdef CFG_FLASH_PROTECTION int flash_real_protect (flash_info_t * info, long sector, int prot) { int retcode = 0; flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS); flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT); if (prot) flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_SET); else flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_CLEAR); if ((retcode = flash_full_status_check (info, sector, info->erase_blk_tout, prot ? "protect" : "unprotect")) == 0) { info->protect[sector] = prot; /* * On some of Intel's flash chips (marked via legacy_unlock) * unprotect unprotects all locking. */ if ((prot == 0) && (info->legacy_unlock)) { flash_sect_t i; for (i = 0; i < info->sector_count; i++) { if (info->protect[i]) flash_real_protect (info, i, 1); } } } return retcode; } /*----------------------------------------------------------------------- * flash_read_user_serial - read the OneTimeProgramming cells */ void flash_read_user_serial (flash_info_t * info, void *buffer, int offset, int len) { uchar *src; uchar *dst; dst = buffer; src = flash_make_addr (info, 0, FLASH_OFFSET_USER_PROTECTION); flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID); memcpy (dst, src + offset, len); flash_write_cmd (info, 0, 0, info->cmd_reset); } /* * flash_read_factory_serial - read the device Id from the protection area */ void flash_read_factory_serial (flash_info_t * info, void *buffer, int offset, int len) { uchar *src; src = flash_make_addr (info, 0, FLASH_OFFSET_INTEL_PROTECTION); flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID); memcpy (buffer, src + offset, len); flash_write_cmd (info, 0, 0, info->cmd_reset); } #endif /* CFG_FLASH_PROTECTION */ /* * flash_is_busy - check to see if the flash is busy * This routine checks the status of the chip and returns true if the chip is busy */ static int flash_is_busy (flash_info_t * info, flash_sect_t sect) { int retval; switch (info->vendor) { case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: retval = !flash_isset (info, sect, 0, FLASH_STATUS_DONE); break; case CFI_CMDSET_AMD_STANDARD: case CFI_CMDSET_AMD_EXTENDED: retval = flash_toggle (info, sect, 0, AMD_STATUS_TOGGLE); break; default: retval = 0; } debug ("flash_is_busy: %d\n", retval); return retval; } /*----------------------------------------------------------------------- * wait for XSR.7 to be set. Time out with an error if it does not. * This routine does not set the flash to read-array mode. */ static int flash_status_check (flash_info_t * info, flash_sect_t sector, ulong tout, char *prompt) { ulong start; #if CFG_HZ != 1000 tout *= CFG_HZ/1000; #endif /* Wait for command completion */ start = get_timer (0); while (flash_is_busy (info, sector)) { if (get_timer (start) > tout) { printf ("Flash %s timeout at address %lx data %lx\n", prompt, info->start[sector], flash_read_long (info, sector, 0)); flash_write_cmd (info, sector, 0, info->cmd_reset); return ERR_TIMOUT; } udelay (1); /* also triggers watchdog */ } return ERR_OK; } /*----------------------------------------------------------------------- * Wait for XSR.7 to be set, if it times out print an error, otherwise do a full status check. * This routine sets the flash to read-array mode. */ static int flash_full_status_check (flash_info_t * info, flash_sect_t sector, ulong tout, char *prompt) { int retcode; retcode = flash_status_check (info, sector, tout, prompt); switch (info->vendor) { case CFI_CMDSET_INTEL_EXTENDED: case CFI_CMDSET_INTEL_STANDARD: if ((retcode == ERR_OK) && !flash_isequal (info, sector, 0, FLASH_STATUS_DONE)) { retcode = ERR_INVAL; printf ("Flash %s error at address %lx\n", prompt, info->start[sector]); if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS | FLASH_STATUS_PSLBS)) { puts ("Command Sequence Error.\n"); } else if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS)) { puts ("Block Erase Error.\n"); retcode = ERR_NOT_ERASED; } else if (flash_isset (info, sector, 0, FLASH_STATUS_PSLBS)) { puts ("Locking Error\n"); } if (flash_isset (info, sector, 0, FLASH_STATUS_DPS)) { puts ("Block locked.\n"); retcode = ERR_PROTECTED; } if (flash_isset (info, sector, 0, FLASH_STATUS_VPENS)) puts ("Vpp Low Error.\n"); } flash_write_cmd (info, sector, 0, info->cmd_reset); break; default: break; } return retcode; } /*----------------------------------------------------------------------- */ static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c) { #if defined(__LITTLE_ENDIAN) unsigned short w; unsigned int l; unsigned long long ll; #endif switch (info->portwidth) { case FLASH_CFI_8BIT: cword->c = c; break; case FLASH_CFI_16BIT: #if defined(__LITTLE_ENDIAN) w = c; w <<= 8; cword->w = (cword->w >> 8) | w; #else cword->w = (cword->w << 8) | c; #endif break; case FLASH_CFI_32BIT: #if defined(__LITTLE_ENDIAN) l = c; l <<= 24; cword->l = (cword->l >> 8) | l; #else cword->l = (cword->l << 8) | c; #endif break; case FLASH_CFI_64BIT: #if defined(__LITTLE_ENDIAN) ll = c; ll <<= 56; cword->ll = (cword->ll >> 8) | ll; #else cword->ll = (cword->ll << 8) | c; #endif break; } } /*----------------------------------------------------------------------- * make a proper sized command based on the port and chip widths */ static void flash_make_cmd (flash_info_t * info, uchar cmd, void *cmdbuf) { int i; uchar *cp = (uchar *) cmdbuf; #if defined(__LITTLE_ENDIAN) for (i = info->portwidth; i > 0; i--) #else for (i = 1; i <= info->portwidth; i++) #endif *cp++ = (i & (info->chipwidth - 1)) ? '\0' : cmd; } /* * Write a proper sized command to the correct address */ static void flash_write_cmd (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd) { volatile cfiptr_t addr; cfiword_t cword; addr.cp = flash_make_addr (info, sect, offset); flash_make_cmd (info, cmd, &cword); switch (info->portwidth) { case FLASH_CFI_8BIT: debug ("fwc addr %p cmd %x %x 8bit x %d bit\n", addr.cp, cmd, cword.c, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); *addr.cp = cword.c; #ifdef CONFIG_BLACKFIN asm("ssync;"); #endif break; case FLASH_CFI_16BIT: debug ("fwc addr %p cmd %x %4.4x 16bit x %d bit\n", addr.wp, cmd, cword.w, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); *addr.wp = cword.w; #ifdef CONFIG_BLACKFIN asm("ssync;"); #endif break; case FLASH_CFI_32BIT: debug ("fwc addr %p cmd %x %8.8lx 32bit x %d bit\n", addr.lp, cmd, cword.l, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); *addr.lp = cword.l; #ifdef CONFIG_BLACKFIN asm("ssync;"); #endif break; case FLASH_CFI_64BIT: #ifdef DEBUG { char str[20]; print_longlong (str, cword.ll); debug ("fwrite addr %p cmd %x %s 64 bit x %d bit\n", addr.llp, cmd, str, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); } #endif *addr.llp = cword.ll; #ifdef CONFIG_BLACKFIN asm("ssync;"); #endif break; } } static void flash_unlock_seq (flash_info_t * info, flash_sect_t sect) { flash_write_cmd (info, sect, AMD_ADDR_START, AMD_CMD_UNLOCK_START); flash_write_cmd (info, sect, AMD_ADDR_ACK, AMD_CMD_UNLOCK_ACK); } /*----------------------------------------------------------------------- */ static int flash_isequal (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd) { cfiptr_t cptr; cfiword_t cword; int retval; cptr.cp = flash_make_addr (info, sect, offset); flash_make_cmd (info, cmd, &cword); debug ("is= cmd %x(%c) addr %p ", cmd, cmd, cptr.cp); switch (info->portwidth) { case FLASH_CFI_8BIT: debug ("is= %x %x\n", cptr.cp[0], cword.c); retval = (cptr.cp[0] == cword.c); break; case FLASH_CFI_16BIT: debug ("is= %4.4x %4.4x\n", cptr.wp[0], cword.w); retval = (cptr.wp[0] == cword.w); break; case FLASH_CFI_32BIT: debug ("is= %8.8lx %8.8lx\n", cptr.lp[0], cword.l); retval = (cptr.lp[0] == cword.l); break; case FLASH_CFI_64BIT: #ifdef DEBUG { char str1[20]; char str2[20]; print_longlong (str1, cptr.llp[0]); print_longlong (str2, cword.ll); debug ("is= %s %s\n", str1, str2); } #endif retval = (cptr.llp[0] == cword.ll); break; default: retval = 0; break; } return retval; } /*----------------------------------------------------------------------- */ static int flash_isset (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd) { cfiptr_t cptr; cfiword_t cword; int retval; cptr.cp = flash_make_addr (info, sect, offset); flash_make_cmd (info, cmd, &cword); switch (info->portwidth) { case FLASH_CFI_8BIT: retval = ((cptr.cp[0] & cword.c) == cword.c); break; case FLASH_CFI_16BIT: retval = ((cptr.wp[0] & cword.w) == cword.w); break; case FLASH_CFI_32BIT: retval = ((cptr.lp[0] & cword.l) == cword.l); break; case FLASH_CFI_64BIT: retval = ((cptr.llp[0] & cword.ll) == cword.ll); break; default: retval = 0; break; } return retval; } /*----------------------------------------------------------------------- */ static int flash_toggle (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd) { cfiptr_t cptr; cfiword_t cword; int retval; cptr.cp = flash_make_addr (info, sect, offset); flash_make_cmd (info, cmd, &cword); switch (info->portwidth) { case FLASH_CFI_8BIT: retval = ((cptr.cp[0] & cword.c) != (cptr.cp[0] & cword.c)); break; case FLASH_CFI_16BIT: retval = ((cptr.wp[0] & cword.w) != (cptr.wp[0] & cword.w)); break; case FLASH_CFI_32BIT: retval = ((cptr.lp[0] & cword.l) != (cptr.lp[0] & cword.l)); break; case FLASH_CFI_64BIT: retval = ((cptr.llp[0] & cword.ll) != (cptr.llp[0] & cword.ll)); break; default: retval = 0; break; } return retval; } /*----------------------------------------------------------------------- * detect if flash is compatible with the Common Flash Interface (CFI) * http://www.jedec.org/download/search/jesd68.pdf * */ static int flash_detect_cfi (flash_info_t * info) { debug ("flash detect cfi\n"); for (info->portwidth = CFG_FLASH_CFI_WIDTH; info->portwidth <= FLASH_CFI_64BIT; info->portwidth <<= 1) { for (info->chipwidth = FLASH_CFI_BY8; info->chipwidth <= info->portwidth; info->chipwidth <<= 1) { flash_write_cmd (info, 0, 0, info->cmd_reset); flash_write_cmd (info, 0, FLASH_OFFSET_CFI, FLASH_CMD_CFI); if (flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP, 'Q') && flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 1, 'R') && flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 2, 'Y')) { info->interface = flash_read_ushort (info, 0, FLASH_OFFSET_INTERFACE); debug ("device interface is %d\n", info->interface); debug ("found port %d chip %d ", info->portwidth, info->chipwidth); debug ("port %d bits chip %d bits\n", info->portwidth << CFI_FLASH_SHIFT_WIDTH, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); return 1; } } } debug ("not found\n"); return 0; } /* * The following code cannot be run from FLASH! * */ ulong flash_get_size (ulong base, int banknum) { flash_info_t *info = &flash_info[banknum]; int i, j; flash_sect_t sect_cnt; unsigned long sector; unsigned long tmp; int size_ratio; uchar num_erase_regions; int erase_region_size; int erase_region_count; #ifdef CFG_FLASH_PROTECTION int ext_addr; info->legacy_unlock = 0; #endif info->start[0] = base; if (flash_detect_cfi (info)) { info->vendor = flash_read_ushort (info, 0, FLASH_OFFSET_PRIMARY_VENDOR); #ifdef DEBUG flash_printqry (info, 0); #endif switch (info->vendor) { case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: default: info->cmd_reset = FLASH_CMD_RESET; #ifdef CFG_FLASH_PROTECTION /* read legacy lock/unlock bit from intel flash */ ext_addr = flash_read_ushort (info, 0, FLASH_OFFSET_EXT_QUERY_T_P_ADDR); info->legacy_unlock = flash_read_uchar (info, ext_addr + 5) & 0x08; #endif break; case CFI_CMDSET_AMD_STANDARD: case CFI_CMDSET_AMD_EXTENDED: info->cmd_reset = AMD_CMD_RESET; break; } debug ("manufacturer is %d\n", info->vendor); size_ratio = info->portwidth / info->chipwidth; /* if the chip is x8/x16 reduce the ratio by half */ if ((info->interface == FLASH_CFI_X8X16) && (info->chipwidth == FLASH_CFI_BY8)) { size_ratio >>= 1; } num_erase_regions = flash_read_uchar (info, FLASH_OFFSET_NUM_ERASE_REGIONS); debug ("size_ratio %d port %d bits chip %d bits\n", size_ratio, info->portwidth << CFI_FLASH_SHIFT_WIDTH, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); debug ("found %d erase regions\n", num_erase_regions); sect_cnt = 0; sector = base; for (i = 0; i < num_erase_regions; i++) { if (i > NUM_ERASE_REGIONS) { printf ("%d erase regions found, only %d used\n", num_erase_regions, NUM_ERASE_REGIONS); break; } tmp = flash_read_long (info, 0, FLASH_OFFSET_ERASE_REGIONS + i * 4); erase_region_size = (tmp & 0xffff) ? ((tmp & 0xffff) * 256) : 128; tmp >>= 16; erase_region_count = (tmp & 0xffff) + 1; debug ("erase_region_count = %d erase_region_size = %d\n", erase_region_count, erase_region_size); for (j = 0; j < erase_region_count; j++) { info->start[sect_cnt] = sector; sector += (erase_region_size * size_ratio); /* * Only read protection status from supported devices (intel...) */ switch (info->vendor) { case CFI_CMDSET_INTEL_EXTENDED: case CFI_CMDSET_INTEL_STANDARD: info->protect[sect_cnt] = flash_isset (info, sect_cnt, FLASH_OFFSET_PROTECT, FLASH_STATUS_PROTECT); break; default: info->protect[sect_cnt] = 0; /* default: not protected */ } sect_cnt++; } } info->sector_count = sect_cnt; /* multiply the size by the number of chips */ info->size = (1 << flash_read_uchar (info, FLASH_OFFSET_SIZE)) * size_ratio; info->buffer_size = (1 << flash_read_ushort (info, 0, FLASH_OFFSET_BUFFER_SIZE)); tmp = 1 << flash_read_uchar (info, FLASH_OFFSET_ETOUT); info->erase_blk_tout = (tmp * (1 << flash_read_uchar (info, FLASH_OFFSET_EMAX_TOUT))); tmp = (1 << flash_read_uchar (info, FLASH_OFFSET_WBTOUT)) * (1 << flash_read_uchar (info, FLASH_OFFSET_WBMAX_TOUT)); info->buffer_write_tout = tmp / 1000 + (tmp % 1000 ? 1 : 0); /* round up when converting to ms */ tmp = (1 << flash_read_uchar (info, FLASH_OFFSET_WTOUT)) * (1 << flash_read_uchar (info, FLASH_OFFSET_WMAX_TOUT)); info->write_tout = tmp / 1000 + (tmp % 1000 ? 1 : 0); /* round up when converting to ms */ info->flash_id = FLASH_MAN_CFI; if ((info->interface == FLASH_CFI_X8X16) && (info->chipwidth == FLASH_CFI_BY8)) { info->portwidth >>= 1; /* XXX - Need to test on x8/x16 in parallel. */ } } flash_write_cmd (info, 0, 0, info->cmd_reset); return (info->size); } /* loop through the sectors from the highest address * when the passed address is greater or equal to the sector address * we have a match */ static flash_sect_t find_sector (flash_info_t * info, ulong addr) { flash_sect_t sector; for (sector = info->sector_count - 1; sector >= 0; sector--) { if (addr >= info->start[sector]) break; } return sector; } /*----------------------------------------------------------------------- */ static int flash_write_cfiword (flash_info_t * info, ulong dest, cfiword_t cword) { cfiptr_t ctladdr; cfiptr_t cptr; int flag; ctladdr.cp = flash_make_addr (info, 0, 0); cptr.cp = (uchar *) dest; /* Check if Flash is (sufficiently) erased */ switch (info->portwidth) { case FLASH_CFI_8BIT: flag = ((cptr.cp[0] & cword.c) == cword.c); break; case FLASH_CFI_16BIT: flag = ((cptr.wp[0] & cword.w) == cword.w); break; case FLASH_CFI_32BIT: flag = ((cptr.lp[0] & cword.l) == cword.l); break; case FLASH_CFI_64BIT: flag = ((cptr.llp[0] & cword.ll) == cword.ll); break; default: return 2; } if (!flag) return 2; /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts (); switch (info->vendor) { case CFI_CMDSET_INTEL_EXTENDED: case CFI_CMDSET_INTEL_STANDARD: flash_write_cmd (info, 0, 0, FLASH_CMD_CLEAR_STATUS); flash_write_cmd (info, 0, 0, FLASH_CMD_WRITE); break; case CFI_CMDSET_AMD_EXTENDED: case CFI_CMDSET_AMD_STANDARD: flash_unlock_seq (info, 0); flash_write_cmd (info, 0, AMD_ADDR_START, AMD_CMD_WRITE); break; } switch (info->portwidth) { case FLASH_CFI_8BIT: cptr.cp[0] = cword.c; break; case FLASH_CFI_16BIT: cptr.wp[0] = cword.w; break; case FLASH_CFI_32BIT: cptr.lp[0] = cword.l; break; case FLASH_CFI_64BIT: cptr.llp[0] = cword.ll; break; } /* re-enable interrupts if necessary */ if (flag) enable_interrupts (); return flash_full_status_check (info, find_sector (info, dest), info->write_tout, "write"); } #ifdef CFG_FLASH_USE_BUFFER_WRITE static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp, int len) { flash_sect_t sector; int cnt; int retcode; volatile cfiptr_t src; volatile cfiptr_t dst; switch (info->vendor) { case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: src.cp = cp; dst.cp = (uchar *) dest; sector = find_sector (info, dest); flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS); flash_write_cmd (info, sector, 0, FLASH_CMD_WRITE_TO_BUFFER); if ((retcode = flash_status_check (info, sector, info->buffer_write_tout, "write to buffer")) == ERR_OK) { /* reduce the number of loops by the width of the port */ switch (info->portwidth) { case FLASH_CFI_8BIT: cnt = len; break; case FLASH_CFI_16BIT: cnt = len >> 1; break; case FLASH_CFI_32BIT: cnt = len >> 2; break; case FLASH_CFI_64BIT: cnt = len >> 3; break; default: return ERR_INVAL; break; } flash_write_cmd (info, sector, 0, (uchar) cnt - 1); while (cnt-- > 0) { switch (info->portwidth) { case FLASH_CFI_8BIT: *dst.cp++ = *src.cp++; break; case FLASH_CFI_16BIT: *dst.wp++ = *src.wp++; break; case FLASH_CFI_32BIT: *dst.lp++ = *src.lp++; break; case FLASH_CFI_64BIT: *dst.llp++ = *src.llp++; break; default: return ERR_INVAL; break; } } flash_write_cmd (info, sector, 0, FLASH_CMD_WRITE_BUFFER_CONFIRM); retcode = flash_full_status_check (info, sector, info->buffer_write_tout, "buffer write"); } return retcode; case CFI_CMDSET_AMD_STANDARD: case CFI_CMDSET_AMD_EXTENDED: src.cp = cp; dst.cp = (uchar *) dest; sector = find_sector (info, dest); flash_unlock_seq(info,0); flash_write_cmd (info, sector, 0, AMD_CMD_WRITE_TO_BUFFER); switch (info->portwidth) { case FLASH_CFI_8BIT: cnt = len; flash_write_cmd (info, sector, 0, (uchar) cnt - 1); while (cnt-- > 0) *dst.cp++ = *src.cp++; break; case FLASH_CFI_16BIT: cnt = len >> 1; flash_write_cmd (info, sector, 0, (uchar) cnt - 1); while (cnt-- > 0) *dst.wp++ = *src.wp++; break; case FLASH_CFI_32BIT: cnt = len >> 2; flash_write_cmd (info, sector, 0, (uchar) cnt - 1); while (cnt-- > 0) *dst.lp++ = *src.lp++; break; case FLASH_CFI_64BIT: cnt = len >> 3; flash_write_cmd (info, sector, 0, (uchar) cnt - 1); while (cnt-- > 0) *dst.llp++ = *src.llp++; break; default: return ERR_INVAL; } flash_write_cmd (info, sector, 0, AMD_CMD_WRITE_BUFFER_CONFIRM); retcode = flash_full_status_check (info, sector, info->buffer_write_tout, "buffer write"); return retcode; default: debug ("Unknown Command Set\n"); return ERR_INVAL; } } #endif /* CFG_FLASH_USE_BUFFER_WRITE */ #endif /* CFG_FLASH_CFI */