/* * Allwinner sun4i USB PHY driver * * Copyright (C) 2017 Jagan Teki * Copyright (C) 2015 Hans de Goede * Copyright (C) 2014 Roman Byshko * * Modelled arch/arm/mach-sunxi/usb_phy.c to compatible with generic-phy. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #define REG_ISCR 0x00 #define REG_PHYCTL_A10 0x04 #define REG_PHYBIST 0x08 #define REG_PHYTUNE 0x0c #define REG_PHYCTL_A33 0x10 #define REG_PHY_OTGCTL 0x20 #define REG_PMU_UNK1 0x10 /* Common Control Bits for Both PHYs */ #define PHY_PLL_BW 0x03 #define PHY_RES45_CAL_EN 0x0c /* Private Control Bits for Each PHY */ #define PHY_TX_AMPLITUDE_TUNE 0x20 #define PHY_TX_SLEWRATE_TUNE 0x22 #define PHY_DISCON_TH_SEL 0x2a #define PHY_SQUELCH_DETECT 0x3c #define PHYCTL_DATA BIT(7) #define OTGCTL_ROUTE_MUSB BIT(0) #define PHY_TX_RATE BIT(4) #define PHY_TX_MAGNITUDE BIT(2) #define PHY_TX_AMPLITUDE_LEN 5 #define PHY_RES45_CAL_DATA BIT(0) #define PHY_RES45_CAL_LEN 1 #define PHY_DISCON_TH_LEN 2 #define SUNXI_AHB_ICHR8_EN BIT(10) #define SUNXI_AHB_INCR4_BURST_EN BIT(9) #define SUNXI_AHB_INCRX_ALIGN_EN BIT(8) #define SUNXI_ULPI_BYPASS_EN BIT(0) /* A83T specific control bits for PHY0 */ #define PHY_CTL_VBUSVLDEXT BIT(5) #define PHY_CTL_SIDDQ BIT(3) /* A83T specific control bits for PHY2 HSIC */ #define SUNXI_EHCI_HS_FORCE BIT(20) #define SUNXI_HSIC_CONNECT_INT BIT(16) #define SUNXI_HSIC BIT(1) #define MAX_PHYS 4 enum sun4i_usb_phy_type { sun4i_a10_phy, sun6i_a31_phy, sun8i_a33_phy, sun8i_a83t_phy, sun8i_h3_phy, sun8i_v3s_phy, sun50i_a64_phy, }; struct sun4i_usb_phy_cfg { int num_phys; enum sun4i_usb_phy_type type; u32 disc_thresh; u8 phyctl_offset; bool enable_pmu_unk1; bool phy0_dual_route; }; struct sun4i_usb_phy_info { const char *gpio_vbus; const char *gpio_vbus_det; const char *gpio_id_det; int rst_mask; } phy_info[] = { { .gpio_vbus = CONFIG_USB0_VBUS_PIN, .gpio_vbus_det = CONFIG_USB0_VBUS_DET, .gpio_id_det = CONFIG_USB0_ID_DET, .rst_mask = (CCM_USB_CTRL_PHY0_RST | CCM_USB_CTRL_PHY0_CLK), }, { .gpio_vbus = CONFIG_USB1_VBUS_PIN, .gpio_vbus_det = NULL, .gpio_id_det = NULL, .rst_mask = (CCM_USB_CTRL_PHY1_RST | CCM_USB_CTRL_PHY1_CLK), }, { .gpio_vbus = CONFIG_USB2_VBUS_PIN, .gpio_vbus_det = NULL, .gpio_id_det = NULL, #ifdef CONFIG_MACH_SUN8I_A83T .rst_mask = (CCM_USB_CTRL_HSIC_RST | CCM_USB_CTRL_HSIC_CLK | CCM_USB_CTRL_12M_CLK), #else .rst_mask = (CCM_USB_CTRL_PHY2_RST | CCM_USB_CTRL_PHY2_CLK), #endif }, { .gpio_vbus = CONFIG_USB3_VBUS_PIN, .gpio_vbus_det = NULL, .gpio_id_det = NULL, #ifdef CONFIG_MACH_SUN6I .rst_mask = (CCM_USB_CTRL_PHY3_RST | CCM_USB_CTRL_PHY3_CLK), #endif }, }; struct sun4i_usb_phy_plat { void __iomem *pmu; int power_on_count; int gpio_vbus; int gpio_vbus_det; int gpio_id_det; int rst_mask; int id; }; struct sun4i_usb_phy_data { void __iomem *base; struct sunxi_ccm_reg *ccm; const struct sun4i_usb_phy_cfg *cfg; struct sun4i_usb_phy_plat *usb_phy; }; static int initial_usb_scan_delay = CONFIG_INITIAL_USB_SCAN_DELAY; static void sun4i_usb_phy_write(struct phy *phy, u32 addr, u32 data, int len) { struct sun4i_usb_phy_data *phy_data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &phy_data->usb_phy[phy->id]; u32 temp, usbc_bit = BIT(usb_phy->id * 2); void __iomem *phyctl = phy_data->base + phy_data->cfg->phyctl_offset; int i; if (phy_data->cfg->phyctl_offset == REG_PHYCTL_A33) { /* SoCs newer than A33 need us to set phyctl to 0 explicitly */ writel(0, phyctl); } for (i = 0; i < len; i++) { temp = readl(phyctl); /* clear the address portion */ temp &= ~(0xff << 8); /* set the address */ temp |= ((addr + i) << 8); writel(temp, phyctl); /* set the data bit and clear usbc bit*/ temp = readb(phyctl); if (data & 0x1) temp |= PHYCTL_DATA; else temp &= ~PHYCTL_DATA; temp &= ~usbc_bit; writeb(temp, phyctl); /* pulse usbc_bit */ temp = readb(phyctl); temp |= usbc_bit; writeb(temp, phyctl); temp = readb(phyctl); temp &= ~usbc_bit; writeb(temp, phyctl); data >>= 1; } } static void sun4i_usb_phy_passby(struct phy *phy, bool enable) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; u32 bits, reg_value; if (!usb_phy->pmu) return; bits = SUNXI_AHB_ICHR8_EN | SUNXI_AHB_INCR4_BURST_EN | SUNXI_AHB_INCRX_ALIGN_EN | SUNXI_ULPI_BYPASS_EN; /* A83T USB2 is HSIC */ if (data->cfg->type == sun8i_a83t_phy && usb_phy->id == 2) bits |= SUNXI_EHCI_HS_FORCE | SUNXI_HSIC_CONNECT_INT | SUNXI_HSIC; reg_value = readl(usb_phy->pmu); if (enable) reg_value |= bits; else reg_value &= ~bits; writel(reg_value, usb_phy->pmu); } static int sun4i_usb_phy_power_on(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; if (initial_usb_scan_delay) { mdelay(initial_usb_scan_delay); initial_usb_scan_delay = 0; } usb_phy->power_on_count++; if (usb_phy->power_on_count != 1) return 0; if (usb_phy->gpio_vbus >= 0) gpio_set_value(usb_phy->gpio_vbus, SUNXI_GPIO_PULL_UP); return 0; } static int sun4i_usb_phy_power_off(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; usb_phy->power_on_count--; if (usb_phy->power_on_count != 0) return 0; if (usb_phy->gpio_vbus >= 0) gpio_set_value(usb_phy->gpio_vbus, SUNXI_GPIO_PULL_DISABLE); return 0; } static void sun4i_usb_phy0_reroute(struct sun4i_usb_phy_data *data, bool id_det) { u32 regval; regval = readl(data->base + REG_PHY_OTGCTL); if (!id_det) { /* Host mode. Route phy0 to EHCI/OHCI */ regval &= ~OTGCTL_ROUTE_MUSB; } else { /* Peripheral mode. Route phy0 to MUSB */ regval |= OTGCTL_ROUTE_MUSB; } writel(regval, data->base + REG_PHY_OTGCTL); } static int sun4i_usb_phy_init(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; u32 val; setbits_le32(&data->ccm->usb_clk_cfg, usb_phy->rst_mask); if (data->cfg->type == sun8i_a83t_phy) { if (phy->id == 0) { val = readl(data->base + data->cfg->phyctl_offset); val |= PHY_CTL_VBUSVLDEXT; val &= ~PHY_CTL_SIDDQ; writel(val, data->base + data->cfg->phyctl_offset); } } else { if (usb_phy->pmu && data->cfg->enable_pmu_unk1) { val = readl(usb_phy->pmu + REG_PMU_UNK1); writel(val & ~2, usb_phy->pmu + REG_PMU_UNK1); } if (usb_phy->id == 0) sun4i_usb_phy_write(phy, PHY_RES45_CAL_EN, PHY_RES45_CAL_DATA, PHY_RES45_CAL_LEN); /* Adjust PHY's magnitude and rate */ sun4i_usb_phy_write(phy, PHY_TX_AMPLITUDE_TUNE, PHY_TX_MAGNITUDE | PHY_TX_RATE, PHY_TX_AMPLITUDE_LEN); /* Disconnect threshold adjustment */ sun4i_usb_phy_write(phy, PHY_DISCON_TH_SEL, data->cfg->disc_thresh, PHY_DISCON_TH_LEN); } if (usb_phy->id != 0) sun4i_usb_phy_passby(phy, true); sun4i_usb_phy0_reroute(data, true); return 0; } static int sun4i_usb_phy_exit(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; if (phy->id == 0) { if (data->cfg->type == sun8i_a83t_phy) { void __iomem *phyctl = data->base + data->cfg->phyctl_offset; writel(readl(phyctl) | PHY_CTL_SIDDQ, phyctl); } } sun4i_usb_phy_passby(phy, false); clrbits_le32(&data->ccm->usb_clk_cfg, usb_phy->rst_mask); return 0; } static int sun4i_usb_phy_xlate(struct phy *phy, struct ofnode_phandle_args *args) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); if (args->args_count >= data->cfg->num_phys) return -EINVAL; if (args->args_count) phy->id = args->args[0]; else phy->id = 0; debug("%s: phy_id = %ld\n", __func__, phy->id); return 0; } int sun4i_usb_phy_vbus_detect(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; int err, retries = 3; debug("%s: id_det = %d\n", __func__, usb_phy->gpio_id_det); if (usb_phy->gpio_vbus_det < 0) return usb_phy->gpio_vbus_det; err = gpio_get_value(usb_phy->gpio_vbus_det); /* * Vbus may have been provided by the board and just been turned of * some milliseconds ago on reset, what we're measuring then is a * residual charge on Vbus, sleep a bit and try again. */ while (err > 0 && retries--) { mdelay(100); err = gpio_get_value(usb_phy->gpio_vbus_det); } return err; } int sun4i_usb_phy_id_detect(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; debug("%s: id_det = %d\n", __func__, usb_phy->gpio_id_det); if (usb_phy->gpio_id_det < 0) return usb_phy->gpio_id_det; return gpio_get_value(usb_phy->gpio_id_det); } void sun4i_usb_phy_set_squelch_detect(struct phy *phy, bool enabled) { sun4i_usb_phy_write(phy, PHY_SQUELCH_DETECT, enabled ? 0 : 2, 2); } static struct phy_ops sun4i_usb_phy_ops = { .of_xlate = sun4i_usb_phy_xlate, .init = sun4i_usb_phy_init, .power_on = sun4i_usb_phy_power_on, .power_off = sun4i_usb_phy_power_off, .exit = sun4i_usb_phy_exit, }; static int sun4i_usb_phy_probe(struct udevice *dev) { struct sun4i_usb_phy_plat *plat = dev_get_platdata(dev); struct sun4i_usb_phy_data *data = dev_get_priv(dev); int i, ret; data->cfg = (const struct sun4i_usb_phy_cfg *)dev_get_driver_data(dev); if (!data->cfg) return -EINVAL; data->base = (void __iomem *)devfdt_get_addr_name(dev, "phy_ctrl"); if (IS_ERR(data->base)) return PTR_ERR(data->base); data->ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; if (IS_ERR(data->ccm)) return PTR_ERR(data->ccm); data->usb_phy = plat; for (i = 0; i < data->cfg->num_phys; i++) { struct sun4i_usb_phy_plat *phy = &plat[i]; struct sun4i_usb_phy_info *info = &phy_info[i]; char name[16]; phy->gpio_vbus = sunxi_name_to_gpio(info->gpio_vbus); if (phy->gpio_vbus >= 0) { ret = gpio_request(phy->gpio_vbus, "usb_vbus"); if (ret) return ret; ret = gpio_direction_output(phy->gpio_vbus, 0); if (ret) return ret; } phy->gpio_vbus_det = sunxi_name_to_gpio(info->gpio_vbus_det); if (phy->gpio_vbus_det >= 0) { ret = gpio_request(phy->gpio_vbus_det, "usb_vbus_det"); if (ret) return ret; ret = gpio_direction_input(phy->gpio_vbus_det); if (ret) return ret; } phy->gpio_id_det = sunxi_name_to_gpio(info->gpio_id_det); if (phy->gpio_id_det >= 0) { ret = gpio_request(phy->gpio_id_det, "usb_id_det"); if (ret) return ret; ret = gpio_direction_input(phy->gpio_id_det); if (ret) return ret; sunxi_gpio_set_pull(phy->gpio_id_det, SUNXI_GPIO_PULL_UP); } if (i || data->cfg->phy0_dual_route) { snprintf(name, sizeof(name), "pmu%d", i); phy->pmu = (void __iomem *)devfdt_get_addr_name(dev, name); if (IS_ERR(phy->pmu)) return PTR_ERR(phy->pmu); } phy->id = i; phy->rst_mask = info->rst_mask; }; setbits_le32(&data->ccm->usb_clk_cfg, CCM_USB_CTRL_PHYGATE); debug("Allwinner Sun4I USB PHY driver loaded\n"); return 0; } static const struct sun4i_usb_phy_cfg sun4i_a10_cfg = { .num_phys = 3, .type = sun4i_a10_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .enable_pmu_unk1 = false, }; static const struct sun4i_usb_phy_cfg sun5i_a13_cfg = { .num_phys = 2, .type = sun4i_a10_phy, .disc_thresh = 2, .phyctl_offset = REG_PHYCTL_A10, .enable_pmu_unk1 = false, }; static const struct sun4i_usb_phy_cfg sun6i_a31_cfg = { .num_phys = 3, .type = sun6i_a31_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .enable_pmu_unk1 = false, }; static const struct sun4i_usb_phy_cfg sun7i_a20_cfg = { .num_phys = 3, .type = sun4i_a10_phy, .disc_thresh = 2, .phyctl_offset = REG_PHYCTL_A10, .enable_pmu_unk1 = false, }; static const struct sun4i_usb_phy_cfg sun8i_a23_cfg = { .num_phys = 2, .type = sun4i_a10_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .enable_pmu_unk1 = false, }; static const struct sun4i_usb_phy_cfg sun8i_a33_cfg = { .num_phys = 2, .type = sun8i_a33_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .enable_pmu_unk1 = false, }; static const struct sun4i_usb_phy_cfg sun8i_a83t_cfg = { .num_phys = 3, .type = sun8i_a83t_phy, .phyctl_offset = REG_PHYCTL_A33, }; static const struct sun4i_usb_phy_cfg sun8i_h3_cfg = { .num_phys = 4, .type = sun8i_h3_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .enable_pmu_unk1 = true, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun8i_v3s_cfg = { .num_phys = 1, .type = sun8i_v3s_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .enable_pmu_unk1 = true, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun50i_a64_cfg = { .num_phys = 2, .type = sun50i_a64_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .enable_pmu_unk1 = true, .phy0_dual_route = true, }; static const struct udevice_id sun4i_usb_phy_ids[] = { { .compatible = "allwinner,sun4i-a10-usb-phy", .data = (ulong)&sun4i_a10_cfg }, { .compatible = "allwinner,sun5i-a13-usb-phy", .data = (ulong)&sun5i_a13_cfg }, { .compatible = "allwinner,sun6i-a31-usb-phy", .data = (ulong)&sun6i_a31_cfg }, { .compatible = "allwinner,sun7i-a20-usb-phy", .data = (ulong)&sun7i_a20_cfg }, { .compatible = "allwinner,sun8i-a23-usb-phy", .data = (ulong)&sun8i_a23_cfg }, { .compatible = "allwinner,sun8i-a33-usb-phy", .data = (ulong)&sun8i_a33_cfg }, { .compatible = "allwinner,sun8i-a83t-usb-phy", .data = (ulong)&sun8i_a83t_cfg }, { .compatible = "allwinner,sun8i-h3-usb-phy", .data = (ulong)&sun8i_h3_cfg }, { .compatible = "allwinner,sun8i-v3s-usb-phy", .data = (ulong)&sun8i_v3s_cfg }, { .compatible = "allwinner,sun50i-a64-usb-phy", .data = (ulong)&sun50i_a64_cfg}, { } }; U_BOOT_DRIVER(sun4i_usb_phy) = { .name = "sun4i_usb_phy", .id = UCLASS_PHY, .of_match = sun4i_usb_phy_ids, .ops = &sun4i_usb_phy_ops, .probe = sun4i_usb_phy_probe, .platdata_auto_alloc_size = sizeof(struct sun4i_usb_phy_plat[MAX_PHYS]), .priv_auto_alloc_size = sizeof(struct sun4i_usb_phy_data), };