/* * Copyright 2004-2007 Freescale Semiconductor, Inc. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de * Copyright 2009 Ilya Yanok, <yanok@emcraft.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include <common.h> #include <nand.h> #include <linux/err.h> #include <asm/io.h> #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) #include <asm/arch/imx-regs.h> #endif #define DRIVER_NAME "mxc_nand" /* * TODO: Use same register defs here as nand_spl mxc nand driver. */ /* * Register map and bit definitions for the Freescale NAND Flash Controller * present in various i.MX devices. * * MX31 and MX27 have version 1 which has * 4 512 byte main buffers and * 4 16 byte spare buffers * to support up to 2K byte pagesize nand. * Reading or writing a 2K page requires 4 FDI/FDO cycles. * * MX25 has version 1.1 which has * 8 512 byte main buffers and * 8 64 byte spare buffers * to support up to 4K byte pagesize nand. * Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle. * Also some of registers are moved and/or changed meaning as seen below. */ #if defined(CONFIG_MX31) || defined(CONFIG_MX27) #define MXC_NFC_V1 #elif defined(CONFIG_MX25) || defined(CONFIG_MX35) #define MXC_NFC_V1_1 #else #warning "MXC NFC version not defined" #endif #if defined(MXC_NFC_V1) #define NAND_MXC_NR_BUFS 4 #define NAND_MXC_SPARE_BUF_SIZE 16 #define NAND_MXC_REG_OFFSET 0xe00 #define is_mxc_nfc_11() 0 #elif defined(MXC_NFC_V1_1) #define NAND_MXC_NR_BUFS 8 #define NAND_MXC_SPARE_BUF_SIZE 64 #define NAND_MXC_REG_OFFSET 0x1e00 #define is_mxc_nfc_11() 1 #else #error "define CONFIG_NAND_MXC_VXXX to use mtd mxc nand driver" #endif struct nfc_regs { uint8_t main_area[NAND_MXC_NR_BUFS][0x200]; uint8_t spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE]; /* * reserved size is offset of nfc registers * minus total main and spare sizes */ uint8_t reserved1[NAND_MXC_REG_OFFSET - NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)]; #if defined(MXC_NFC_V1) uint16_t nfc_buf_size; uint16_t reserved2; uint16_t nfc_buf_addr; uint16_t nfc_flash_addr; uint16_t nfc_flash_cmd; uint16_t nfc_config; uint16_t nfc_ecc_status_result; uint16_t nfc_rsltmain_area; uint16_t nfc_rsltspare_area; uint16_t nfc_wrprot; uint16_t nfc_unlockstart_blkaddr; uint16_t nfc_unlockend_blkaddr; uint16_t nfc_nf_wrprst; uint16_t nfc_config1; uint16_t nfc_config2; #elif defined(MXC_NFC_V1_1) uint16_t reserved2[2]; uint16_t nfc_buf_addr; uint16_t nfc_flash_addr; uint16_t nfc_flash_cmd; uint16_t nfc_config; uint16_t nfc_ecc_status_result; uint16_t nfc_ecc_status_result2; uint16_t nfc_spare_area_size; uint16_t nfc_wrprot; uint16_t reserved3[2]; uint16_t nfc_nf_wrprst; uint16_t nfc_config1; uint16_t nfc_config2; uint16_t reserved4; uint16_t nfc_unlockstart_blkaddr; uint16_t nfc_unlockend_blkaddr; uint16_t nfc_unlockstart_blkaddr1; uint16_t nfc_unlockend_blkaddr1; uint16_t nfc_unlockstart_blkaddr2; uint16_t nfc_unlockend_blkaddr2; uint16_t nfc_unlockstart_blkaddr3; uint16_t nfc_unlockend_blkaddr3; #endif }; /* * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register * for Command operation */ #define NFC_CMD 0x1 /* * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register * for Address operation */ #define NFC_ADDR 0x2 /* * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register * for Input operation */ #define NFC_INPUT 0x4 /* * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register * for Data Output operation */ #define NFC_OUTPUT 0x8 /* * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register * for Read ID operation */ #define NFC_ID 0x10 /* * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register * for Read Status operation */ #define NFC_STATUS 0x20 /* * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read * Status operation */ #define NFC_INT 0x8000 #ifdef MXC_NFC_V1_1 #define NFC_4_8N_ECC (1 << 0) #else #define NFC_4_8N_ECC 0 #endif #define NFC_SP_EN (1 << 2) #define NFC_ECC_EN (1 << 3) #define NFC_BIG (1 << 5) #define NFC_RST (1 << 6) #define NFC_CE (1 << 7) #define NFC_ONE_CYCLE (1 << 8) typedef enum {false, true} bool; struct mxc_nand_host { struct mtd_info mtd; struct nand_chip *nand; struct nfc_regs __iomem *regs; int spare_only; int status_request; int pagesize_2k; int clk_act; uint16_t col_addr; unsigned int page_addr; }; static struct mxc_nand_host mxc_host; static struct mxc_nand_host *host = &mxc_host; /* Define delays in microsec for NAND device operations */ #define TROP_US_DELAY 2000 /* Macros to get byte and bit positions of ECC */ #define COLPOS(x) ((x) >> 3) #define BITPOS(x) ((x) & 0xf) /* Define single bit Error positions in Main & Spare area */ #define MAIN_SINGLEBIT_ERROR 0x4 #define SPARE_SINGLEBIT_ERROR 0x1 /* OOB placement block for use with hardware ecc generation */ #if defined(MXC_NFC_V1) #ifndef CONFIG_SYS_NAND_LARGEPAGE static struct nand_ecclayout nand_hw_eccoob = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = { {0, 5}, {11, 5}, } }; #else static struct nand_ecclayout nand_hw_eccoob2k = { .eccbytes = 20, .eccpos = { 6, 7, 8, 9, 10, 22, 23, 24, 25, 26, 38, 39, 40, 41, 42, 54, 55, 56, 57, 58, }, .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} }, }; #endif #elif defined(MXC_NFC_V1_1) #ifndef CONFIG_SYS_NAND_LARGEPAGE static struct nand_ecclayout nand_hw_eccoob = { .eccbytes = 9, .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, .oobfree = { {2, 5} } }; #else static struct nand_ecclayout nand_hw_eccoob2k = { .eccbytes = 36, .eccpos = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} }, }; #endif #endif #ifdef CONFIG_MX27 static int is_16bit_nand(void) { struct system_control_regs *sc_regs = (struct system_control_regs *)IMX_SYSTEM_CTL_BASE; if (readl(&sc_regs->fmcr) & NF_16BIT_SEL) return 1; else return 0; } #elif defined(CONFIG_MX31) static int is_16bit_nand(void) { struct clock_control_regs *sc_regs = (struct clock_control_regs *)CCM_BASE; if (readl(&sc_regs->rcsr) & CCM_RCSR_NF16B) return 1; else return 0; } #elif defined(CONFIG_MX25) || defined(CONFIG_MX35) static int is_16bit_nand(void) { struct ccm_regs *ccm = (struct ccm_regs *)IMX_CCM_BASE; if (readl(&ccm->rcsr) & CCM_RCSR_NF_16BIT_SEL) return 1; else return 0; } #else #warning "8/16 bit NAND autodetection not supported" static int is_16bit_nand(void) { return 0; } #endif static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size) { uint32_t *d = dest; size >>= 2; while (size--) __raw_writel(__raw_readl(source++), d++); return dest; } /* * This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit of config2 register. */ static void wait_op_done(struct mxc_nand_host *host, int max_retries, uint16_t param) { uint32_t tmp; while (max_retries-- > 0) { if (readw(&host->regs->nfc_config2) & NFC_INT) { tmp = readw(&host->regs->nfc_config2); tmp &= ~NFC_INT; writew(tmp, &host->regs->nfc_config2); break; } udelay(1); } if (max_retries < 0) { MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", __func__, param); } } /* * This function issues the specified command to the NAND device and * waits for completion. */ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd) { MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd); writew(cmd, &host->regs->nfc_flash_cmd); writew(NFC_CMD, &host->regs->nfc_config2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, cmd); } /* * This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */ static void send_addr(struct mxc_nand_host *host, uint16_t addr) { MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr); writew(addr, &host->regs->nfc_flash_addr); writew(NFC_ADDR, &host->regs->nfc_config2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, addr); } /* * This function requests the NANDFC to initate the transfer * of data currently in the NANDFC RAM buffer to the NAND device. */ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only) { if (spare_only) MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only); if (is_mxc_nfc_11()) { int i; /* * The controller copies the 64 bytes of spare data from * the first 16 bytes of each of the 4 64 byte spare buffers. * Copy the contiguous data starting in spare_area[0] to * the four spare area buffers. */ for (i = 1; i < 4; i++) { void __iomem *src = &host->regs->spare_area[0][i * 16]; void __iomem *dst = &host->regs->spare_area[i][0]; mxc_nand_memcpy32(dst, src, 16); } } writew(buf_id, &host->regs->nfc_buf_addr); /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint16_t config1 = readw(&host->regs->nfc_config1); if (spare_only) config1 |= NFC_SP_EN; else config1 &= ~(NFC_SP_EN); writew(config1, &host->regs->nfc_config1); } writew(NFC_INPUT, &host->regs->nfc_config2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only); } /* * Requests NANDFC to initated the transfer of data from the * NAND device into in the NANDFC ram buffer. */ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only) { MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); writew(buf_id, &host->regs->nfc_buf_addr); /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint32_t config1 = readw(&host->regs->nfc_config1); if (spare_only) config1 |= NFC_SP_EN; else config1 &= ~NFC_SP_EN; writew(config1, &host->regs->nfc_config1); } writew(NFC_OUTPUT, &host->regs->nfc_config2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only); if (is_mxc_nfc_11()) { int i; /* * The controller copies the 64 bytes of spare data to * the first 16 bytes of each of the 4 spare buffers. * Make the data contiguous starting in spare_area[0]. */ for (i = 1; i < 4; i++) { void __iomem *src = &host->regs->spare_area[i][0]; void __iomem *dst = &host->regs->spare_area[0][i * 16]; mxc_nand_memcpy32(dst, src, 16); } } } /* Request the NANDFC to perform a read of the NAND device ID. */ static void send_read_id(struct mxc_nand_host *host) { uint16_t tmp; /* NANDFC buffer 0 is used for device ID output */ writew(0x0, &host->regs->nfc_buf_addr); /* Read ID into main buffer */ tmp = readw(&host->regs->nfc_config1); tmp &= ~NFC_SP_EN; writew(tmp, &host->regs->nfc_config1); writew(NFC_ID, &host->regs->nfc_config2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0); } /* * This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */ static uint16_t get_dev_status(struct mxc_nand_host *host) { void __iomem *main_buf = host->regs->main_area[1]; uint32_t store; uint16_t ret, tmp; /* Issue status request to NAND device */ /* store the main area1 first word, later do recovery */ store = readl(main_buf); /* NANDFC buffer 1 is used for device status */ writew(1, &host->regs->nfc_buf_addr); /* Read status into main buffer */ tmp = readw(&host->regs->nfc_config1); tmp &= ~NFC_SP_EN; writew(tmp, &host->regs->nfc_config1); writew(NFC_STATUS, &host->regs->nfc_config2); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0); /* * Status is placed in first word of main buffer * get status, then recovery area 1 data */ ret = readw(main_buf); writel(store, main_buf); return ret; } /* This function is used by upper layer to checks if device is ready */ static int mxc_nand_dev_ready(struct mtd_info *mtd) { /* * NFC handles R/B internally. Therefore, this function * always returns status as ready. */ return 1; } #ifdef CONFIG_MXC_NAND_HWECC static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) { /* * If HW ECC is enabled, we turn it on during init. There is * no need to enable again here. */ } #ifdef MXC_NFC_V1_1 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t tmp = readw(&host->regs->nfc_config1); if (on) tmp |= NFC_ECC_EN; else tmp &= ~NFC_ECC_EN; writew(tmp, &host->regs->nfc_config1); } static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { struct mxc_nand_host *host = chip->priv; uint8_t *buf = chip->oob_poi; int length = mtd->oobsize; int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *bufpoi = buf; int i, toread; MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Reading OOB area of page %u to oob %p\n", __FUNCTION__, host->page_addr, buf); chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); for (i = 0; i < chip->ecc.steps; i++) { toread = min_t(int, length, chip->ecc.prepad); if (toread) { chip->read_buf(mtd, bufpoi, toread); bufpoi += toread; length -= toread; } bufpoi += chip->ecc.bytes; host->col_addr += chip->ecc.bytes; length -= chip->ecc.bytes; toread = min_t(int, length, chip->ecc.postpad); if (toread) { chip->read_buf(mtd, bufpoi, toread); bufpoi += toread; length -= toread; } } if (length > 0) chip->read_buf(mtd, bufpoi, length); _mxc_nand_enable_hwecc(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize + chip->ecc.prepad, page); bufpoi = buf + chip->ecc.prepad; length = mtd->oobsize - chip->ecc.prepad; for (i = 0; i < chip->ecc.steps; i++) { toread = min_t(int, length, chip->ecc.bytes); chip->read_buf(mtd, bufpoi, toread); bufpoi += eccpitch; length -= eccpitch; host->col_addr += chip->ecc.postpad + chip->ecc.prepad; } _mxc_nand_enable_hwecc(mtd, 1); return 1; } static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct mxc_nand_host *host = chip->priv; int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *oob = chip->oob_poi; int steps, size; int n; _mxc_nand_enable_hwecc(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, host->page_addr); for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { host->col_addr = n * eccsize; chip->read_buf(mtd, buf, eccsize); buf += eccsize; host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->read_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->read_buf(mtd, oob, size); _mxc_nand_enable_hwecc(mtd, 0); return 0; } static int mxc_nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct mxc_nand_host *host = chip->priv; int n, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n", host->page_addr, buf, oob); /* first read out the data area and the available portion of OOB */ for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { int stat; host->col_addr = n * eccsize; chip->read_buf(mtd, p, eccsize); host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } stat = chip->ecc.correct(mtd, p, oob, NULL); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ n = mtd->oobsize - (oob - chip->oob_poi); if (n) chip->read_buf(mtd, oob, n); /* Then switch ECC off and read the OOB area to get the ECC code */ _mxc_nand_enable_hwecc(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, host->page_addr); eccsteps = chip->ecc.steps; oob = chip->oob_poi + chip->ecc.prepad; for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { host->col_addr = mtd->writesize + n * eccpitch + chip->ecc.prepad; chip->read_buf(mtd, oob, eccbytes); oob += eccbytes + chip->ecc.postpad; } _mxc_nand_enable_hwecc(mtd, 1); return 0; } static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct mxc_nand_host *host = chip->priv; int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; int length = mtd->oobsize; int i, len, status, steps = chip->ecc.steps; const uint8_t *bufpoi = chip->oob_poi; chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); for (i = 0; i < steps; i++) { len = min_t(int, length, eccpitch); chip->write_buf(mtd, bufpoi, len); bufpoi += len; length -= len; host->col_addr += chip->ecc.prepad + chip->ecc.postpad; } if (length > 0) chip->write_buf(mtd, bufpoi, length); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } static void mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { struct mxc_nand_host *host = chip->priv; int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *oob = chip->oob_poi; int steps, size; int n; for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { host->col_addr = n * eccsize; chip->write_buf(mtd, buf, eccsize); buf += eccsize; host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } host->col_addr += eccbytes; oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->write_buf(mtd, oob, size); } static void mxc_nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { struct mxc_nand_host *host = chip->priv; int i, n, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; int eccsteps = chip->ecc.steps; const uint8_t *p = buf; uint8_t *oob = chip->oob_poi; chip->ecc.hwctl(mtd, NAND_ECC_WRITE); for (i = n = 0; eccsteps; n++, eccsteps--, i += eccbytes, p += eccsize) { host->col_addr = n * eccsize; chip->write_buf(mtd, p, eccsize); host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->write_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = mtd->oobsize - (oob - chip->oob_poi); if (i) chip->write_buf(mtd, oob, i); } static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result); int subpages = mtd->writesize / nand_chip->subpagesize; int pg2blk_shift = nand_chip->phys_erase_shift - nand_chip->page_shift; do { if ((ecc_status & 0xf) > 4) { static int last_bad = -1; if (last_bad != host->page_addr >> pg2blk_shift) { last_bad = host->page_addr >> pg2blk_shift; printk(KERN_DEBUG "MXC_NAND: HWECC uncorrectable ECC error" " in block %u page %u subpage %d\n", last_bad, host->page_addr, mtd->writesize / nand_chip->subpagesize - subpages); } return -1; } ecc_status >>= 4; subpages--; } while (subpages > 0); return 0; } #else #define mxc_nand_read_page_syndrome NULL #define mxc_nand_read_page_raw_syndrome NULL #define mxc_nand_read_oob_syndrome NULL #define mxc_nand_write_page_syndrome NULL #define mxc_nand_write_page_raw_syndrome NULL #define mxc_nand_write_oob_syndrome NULL #define mxc_nfc_11_nand_correct_data NULL static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; /* * 1-Bit errors are automatically corrected in HW. No need for * additional correction. 2-Bit errors cannot be corrected by * HW ECC, so we need to return failure */ uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { MTDDEBUG(MTD_DEBUG_LEVEL0, "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -1; } return 0; } #endif static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { return 0; } #endif static u_char mxc_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint8_t ret = 0; uint16_t col; uint16_t __iomem *main_buf = (uint16_t __iomem *)host->regs->main_area[0]; uint16_t __iomem *spare_buf = (uint16_t __iomem *)host->regs->spare_area[0]; union { uint16_t word; uint8_t bytes[2]; } nfc_word; /* Check for status request */ if (host->status_request) return get_dev_status(host) & 0xFF; /* Get column for 16-bit access */ col = host->col_addr >> 1; /* If we are accessing the spare region */ if (host->spare_only) nfc_word.word = readw(&spare_buf[col]); else nfc_word.word = readw(&main_buf[col]); /* Pick upper/lower byte of word from RAM buffer */ ret = nfc_word.bytes[host->col_addr & 0x1]; /* Update saved column address */ if (nand_chip->options & NAND_BUSWIDTH_16) host->col_addr += 2; else host->col_addr++; return ret; } static uint16_t mxc_nand_read_word(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t col, ret; uint16_t __iomem *p; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_word(col = %d)\n", host->col_addr); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; if (col < mtd->writesize) { p = (uint16_t __iomem *)(host->regs->main_area[0] + (col >> 1)); } else { p = (uint16_t __iomem *)(host->regs->spare_area[0] + ((col - mtd->writesize) >> 1)); } if (col & 1) { union { uint16_t word; uint8_t bytes[2]; } nfc_word[3]; nfc_word[0].word = readw(p); nfc_word[1].word = readw(p + 1); nfc_word[2].bytes[0] = nfc_word[0].bytes[1]; nfc_word[2].bytes[1] = nfc_word[1].bytes[0]; ret = nfc_word[2].word; } else { ret = readw(p); } /* Update saved column address */ host->col_addr = col + 2; return ret; } /* * Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */ static void mxc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int n, col, i = 0; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); while (n > 0) { void __iomem *p; if (col < mtd->writesize) { p = host->regs->main_area[0] + (col & ~3); } else { p = host->regs->spare_area[0] - mtd->writesize + (col & ~3); } MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, __LINE__, p); if (((col | (unsigned long)&buf[i]) & 3) || n < 4) { union { uint32_t word; uint8_t bytes[4]; } nfc_word; nfc_word.word = readl(p); nfc_word.bytes[col & 3] = buf[i++]; n--; col++; writel(nfc_word.word, p); } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize; m = min(n, m) & ~3; MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: n = %d, m = %d, i = %d, col = %d\n", __func__, __LINE__, n, m, i, col); mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m); col += m; i += m; n -= m; } } /* Update saved column address */ host->col_addr = col; } /* * Read the data buffer from the NAND Flash. To read the data from NAND * Flash first the data output cycle is initiated by the NFC, which copies * the data to RAMbuffer. This data of length len is then copied to buffer buf. */ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int n, col, i = 0; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); while (n > 0) { void __iomem *p; if (col < mtd->writesize) { p = host->regs->main_area[0] + (col & ~3); } else { p = host->regs->spare_area[0] - mtd->writesize + (col & ~3); } if (((col | (int)&buf[i]) & 3) || n < 4) { union { uint32_t word; uint8_t bytes[4]; } nfc_word; nfc_word.word = readl(p); buf[i++] = nfc_word.bytes[col & 3]; n--; col++; } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize; m = min(n, m) & ~3; mxc_nand_memcpy32((uint32_t *)&buf[i], p, m); col += m; i += m; n -= m; } } /* Update saved column address */ host->col_addr = col; } /* * Used by the upper layer to verify the data in NAND Flash * with the data in the buf. */ static int mxc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { u_char tmp[256]; uint bsize; while (len) { bsize = min(len, 256); mxc_nand_read_buf(mtd, tmp, bsize); if (memcmp(buf, tmp, bsize)) return 1; buf += bsize; len -= bsize; } return 0; } /* * This function is used by upper layer for select and * deselect of the NAND chip */ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; switch (chip) { case -1: /* TODO: Disable the NFC clock */ if (host->clk_act) host->clk_act = 0; break; case 0: /* TODO: Enable the NFC clock */ if (!host->clk_act) host->clk_act = 1; break; default: break; } } /* * Used by the upper layer to write command to NAND Flash for * different operations to be carried out on NAND Flash */ void mxc_nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ host->status_request = false; /* Command pre-processing step */ switch (command) { case NAND_CMD_STATUS: host->col_addr = 0; host->status_request = true; break; case NAND_CMD_READ0: host->page_addr = page_addr; host->col_addr = column; host->spare_only = false; break; case NAND_CMD_READOOB: host->col_addr = column; host->spare_only = true; if (host->pagesize_2k) command = NAND_CMD_READ0; /* only READ0 is valid */ break; case NAND_CMD_SEQIN: if (column >= mtd->writesize) { /* * before sending SEQIN command for partial write, * we need read one page out. FSL NFC does not support * partial write. It alway send out 512+ecc+512+ecc ... * for large page nand flash. But for small page nand * flash, it does support SPARE ONLY operation. */ if (host->pagesize_2k) { /* call ourself to read a page */ mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); } host->col_addr = column - mtd->writesize; host->spare_only = true; /* Set program pointer to spare region */ if (!host->pagesize_2k) send_cmd(host, NAND_CMD_READOOB); } else { host->spare_only = false; host->col_addr = column; /* Set program pointer to page start */ if (!host->pagesize_2k) send_cmd(host, NAND_CMD_READ0); } break; case NAND_CMD_PAGEPROG: send_prog_page(host, 0, host->spare_only); if (host->pagesize_2k && !is_mxc_nfc_11()) { /* data in 4 areas datas */ send_prog_page(host, 1, host->spare_only); send_prog_page(host, 2, host->spare_only); send_prog_page(host, 3, host->spare_only); } break; } /* Write out the command to the device. */ send_cmd(host, command); /* Write out column address, if necessary */ if (column != -1) { /* * MXC NANDFC can only perform full page+spare or * spare-only read/write. When the upper layers * layers perform a read/write buf operation, * we will used the saved column adress to index into * the full page. */ send_addr(host, 0); if (host->pagesize_2k) /* another col addr cycle for 2k page */ send_addr(host, 0); } /* Write out page address, if necessary */ if (page_addr != -1) { u32 page_mask = nand_chip->pagemask; do { send_addr(host, page_addr & 0xFF); page_addr >>= 8; page_mask >>= 8; } while (page_mask); } /* Command post-processing step */ switch (command) { case NAND_CMD_RESET: break; case NAND_CMD_READOOB: case NAND_CMD_READ0: if (host->pagesize_2k) { /* send read confirm command */ send_cmd(host, NAND_CMD_READSTART); /* read for each AREA */ send_read_page(host, 0, host->spare_only); if (!is_mxc_nfc_11()) { send_read_page(host, 1, host->spare_only); send_read_page(host, 2, host->spare_only); send_read_page(host, 3, host->spare_only); } } else { send_read_page(host, 0, host->spare_only); } break; case NAND_CMD_READID: host->col_addr = 0; send_read_id(host); break; case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: break; case NAND_CMD_ERASE2: break; } } #ifdef MXC_NFC_V1_1 static void mxc_setup_config1(void) { uint16_t tmp; tmp = readw(&host->regs->nfc_config1); tmp |= NFC_ONE_CYCLE; tmp |= NFC_4_8N_ECC; writew(tmp, &host->regs->nfc_config1); if (host->pagesize_2k) writew(64/2, &host->regs->nfc_spare_area_size); else writew(16/2, &host->regs->nfc_spare_area_size); } #else #define mxc_setup_config1() #endif int board_nand_init(struct nand_chip *this) { struct mtd_info *mtd; uint16_t tmp; int err = 0; /* structures must be linked */ mtd = &host->mtd; mtd->priv = this; host->nand = this; /* 5 us command delay time */ this->chip_delay = 5; this->priv = host; this->dev_ready = mxc_nand_dev_ready; this->cmdfunc = mxc_nand_command; this->select_chip = mxc_nand_select_chip; this->read_byte = mxc_nand_read_byte; this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; this->verify_buf = mxc_nand_verify_buf; host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE; host->clk_act = 1; #ifdef CONFIG_MXC_NAND_HWECC this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.correct = mxc_nand_correct_data; if (is_mxc_nfc_11()) { this->ecc.mode = NAND_ECC_HW_SYNDROME; this->ecc.read_page = mxc_nand_read_page_syndrome; this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome; this->ecc.read_oob = mxc_nand_read_oob_syndrome; this->ecc.write_page = mxc_nand_write_page_syndrome; this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome; this->ecc.write_oob = mxc_nand_write_oob_syndrome; this->ecc.bytes = 9; this->ecc.prepad = 7; } else { this->ecc.mode = NAND_ECC_HW; } host->pagesize_2k = 0; this->ecc.size = 512; tmp = readw(&host->regs->nfc_config1); tmp |= NFC_ECC_EN; writew(tmp, &host->regs->nfc_config1); #else this->ecc.layout = &nand_soft_eccoob; this->ecc.mode = NAND_ECC_SOFT; tmp = readw(&host->regs->nfc_config1); tmp &= ~NFC_ECC_EN; writew(tmp, &host->regs->nfc_config1); #endif /* Reset NAND */ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* * preset operation * Unlock the internal RAM Buffer */ writew(0x2, &host->regs->nfc_config); /* Blocks to be unlocked */ writew(0x0, &host->regs->nfc_unlockstart_blkaddr); writew(0x4000, &host->regs->nfc_unlockend_blkaddr); /* Unlock Block Command for given address range */ writew(0x4, &host->regs->nfc_wrprot); /* NAND bus width determines access funtions used by upper layer */ if (is_16bit_nand()) this->options |= NAND_BUSWIDTH_16; #ifdef CONFIG_SYS_NAND_LARGEPAGE host->pagesize_2k = 1; this->ecc.layout = &nand_hw_eccoob2k; #else host->pagesize_2k = 0; this->ecc.layout = &nand_hw_eccoob; #endif mxc_setup_config1(); return err; }