upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/arm/mach-socfpga/clock_manager_arria10.c

1096 lines
32 KiB

/*
* Copyright (C) 2016-2017 Intel Corporation
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <asm/arch/clock_manager.h>
DECLARE_GLOBAL_DATA_PTR;
static u32 eosc1_hz;
static u32 cb_intosc_hz;
static u32 f2s_free_hz;
static u32 cm_l4_main_clk_hz;
static u32 cm_l4_sp_clk_hz;
static u32 cm_l4_mp_clk_hz;
static u32 cm_l4_sys_free_clk_hz;
struct mainpll_cfg {
u32 vco0_psrc;
u32 vco1_denom;
u32 vco1_numer;
u32 mpuclk;
u32 mpuclk_cnt;
u32 mpuclk_src;
u32 nocclk;
u32 nocclk_cnt;
u32 nocclk_src;
u32 cntr2clk_cnt;
u32 cntr3clk_cnt;
u32 cntr4clk_cnt;
u32 cntr5clk_cnt;
u32 cntr6clk_cnt;
u32 cntr7clk_cnt;
u32 cntr7clk_src;
u32 cntr8clk_cnt;
u32 cntr9clk_cnt;
u32 cntr9clk_src;
u32 cntr15clk_cnt;
u32 nocdiv_l4mainclk;
u32 nocdiv_l4mpclk;
u32 nocdiv_l4spclk;
u32 nocdiv_csatclk;
u32 nocdiv_cstraceclk;
u32 nocdiv_cspdbclk;
};
struct perpll_cfg {
u32 vco0_psrc;
u32 vco1_denom;
u32 vco1_numer;
u32 cntr2clk_cnt;
u32 cntr2clk_src;
u32 cntr3clk_cnt;
u32 cntr3clk_src;
u32 cntr4clk_cnt;
u32 cntr4clk_src;
u32 cntr5clk_cnt;
u32 cntr5clk_src;
u32 cntr6clk_cnt;
u32 cntr6clk_src;
u32 cntr7clk_cnt;
u32 cntr8clk_cnt;
u32 cntr8clk_src;
u32 cntr9clk_cnt;
u32 emacctl_emac0sel;
u32 emacctl_emac1sel;
u32 emacctl_emac2sel;
u32 gpiodiv_gpiodbclk;
};
struct alteragrp_cfg {
u32 nocclk;
u32 mpuclk;
};
static const struct socfpga_clock_manager *clock_manager_base =
(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
static int of_to_struct(const void *blob, int node, int cfg_len, void *cfg)
{
if (fdtdec_get_int_array(blob, node, "altr,of_reg_value",
(u32 *)cfg, cfg_len)) {
/* could not find required property */
return -EINVAL;
}
return 0;
}
static int of_get_input_clks(const void *blob, int node, u32 *val)
{
*val = fdtdec_get_uint(blob, node, "clock-frequency", 0);
if (!*val)
return -EINVAL;
return 0;
}
static int of_get_clk_cfg(const void *blob, struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
struct alteragrp_cfg *altrgrp_cfg)
{
int node, child, len;
const char *node_name;
node = fdtdec_next_compatible(blob, 0, COMPAT_ALTERA_SOCFPGA_CLK);
if (node < 0)
return -EINVAL;
child = fdt_first_subnode(blob, node);
if (child < 0)
return -EINVAL;
child = fdt_first_subnode(blob, child);
if (child < 0)
return -EINVAL;
node_name = fdt_get_name(blob, child, &len);
while (node_name) {
if (!strcmp(node_name, "osc1")) {
if (of_get_input_clks(blob, child, &eosc1_hz))
return -EINVAL;
} else if (!strcmp(node_name, "cb_intosc_ls_clk")) {
if (of_get_input_clks(blob, child, &cb_intosc_hz))
return -EINVAL;
} else if (!strcmp(node_name, "f2s_free_clk")) {
if (of_get_input_clks(blob, child, &f2s_free_hz))
return -EINVAL;
} else if (!strcmp(node_name, "main_pll")) {
if (of_to_struct(blob, child,
sizeof(*main_cfg)/sizeof(u32),
main_cfg))
return -EINVAL;
} else if (!strcmp(node_name, "periph_pll")) {
if (of_to_struct(blob, child,
sizeof(*per_cfg)/sizeof(u32),
per_cfg))
return -EINVAL;
} else if (!strcmp(node_name, "altera")) {
if (of_to_struct(blob, child,
sizeof(*altrgrp_cfg)/sizeof(u32),
altrgrp_cfg))
return -EINVAL;
main_cfg->mpuclk = altrgrp_cfg->mpuclk;
main_cfg->nocclk = altrgrp_cfg->nocclk;
}
child = fdt_next_subnode(blob, child);
if (child < 0)
break;
node_name = fdt_get_name(blob, child, &len);
}
return 0;
}
/* calculate the intended main VCO frequency based on handoff */
static unsigned int cm_calc_handoff_main_vco_clk_hz
(struct mainpll_cfg *main_cfg)
{
unsigned int clk_hz;
/* Check main VCO clock source: eosc, intosc or f2s? */
switch (main_cfg->vco0_psrc) {
case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
/* calculate the VCO frequency */
clk_hz /= 1 + main_cfg->vco1_denom;
clk_hz *= 1 + main_cfg->vco1_numer;
return clk_hz;
}
/* calculate the intended periph VCO frequency based on handoff */
static unsigned int cm_calc_handoff_periph_vco_clk_hz(
struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
{
unsigned int clk_hz;
/* Check periph VCO clock source: eosc, intosc, f2s or mainpll? */
switch (per_cfg->vco0_psrc) {
case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= main_cfg->cntr15clk_cnt;
break;
default:
return 0;
}
/* calculate the VCO frequency */
clk_hz /= 1 + per_cfg->vco1_denom;
clk_hz *= 1 + per_cfg->vco1_numer;
return clk_hz;
}
/* calculate the intended MPU clock frequency based on handoff */
static unsigned int cm_calc_handoff_mpu_clk_hz(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
unsigned int clk_hz;
/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
switch (main_cfg->mpuclk_src) {
case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= (main_cfg->mpuclk & CLKMGR_MAINPLL_MPUCLK_CNT_MSK)
+ 1;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_PERI:
clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
clk_hz /= ((main_cfg->mpuclk >>
CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) &
CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
clk_hz /= main_cfg->mpuclk_cnt + 1;
return clk_hz;
}
/* calculate the intended NOC clock frequency based on handoff */
static unsigned int cm_calc_handoff_noc_clk_hz(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
unsigned int clk_hz;
/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
switch (main_cfg->nocclk_src) {
case CLKMGR_MAINPLL_NOCCLK_SRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= (main_cfg->nocclk & CLKMGR_MAINPLL_NOCCLK_CNT_MSK)
+ 1;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_PERI:
clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
clk_hz /= ((main_cfg->nocclk >>
CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) &
CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_OSC1:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_NOCCLK_SRC_FPGA:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
clk_hz /= main_cfg->nocclk_cnt + 1;
return clk_hz;
}
/* return 1 if PLL ramp is required */
static int cm_is_pll_ramp_required(int main0periph1,
struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg)
{
/* Check for main PLL */
if (main0periph1 == 0) {
/*
* PLL ramp is not required if both MPU clock and NOC clock are
* not sourced from main PLL
*/
if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_MAIN)
return 0;
/*
* PLL ramp is required if MPU clock is sourced from main PLL
* and MPU clock is over 900MHz (as advised by HW team)
*/
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
(cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
return 1;
/*
* PLL ramp is required if NOC clock is sourced from main PLL
* and NOC clock is over 300MHz (as advised by HW team)
*/
if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN &&
(cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
return 2;
} else if (main0periph1 == 1) {
/*
* PLL ramp is not required if both MPU clock and NOC clock are
* not sourced from periph PLL
*/
if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_PERI)
return 0;
/*
* PLL ramp is required if MPU clock are source from periph PLL
* and MPU clock is over 900MHz (as advised by HW team)
*/
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
(cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
return 1;
/*
* PLL ramp is required if NOC clock are source from periph PLL
* and NOC clock is over 300MHz (as advised by HW team)
*/
if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI &&
(cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
return 2;
}
return 0;
}
static u32 cm_calculate_numer(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
u32 safe_hz, u32 clk_hz)
{
u32 cnt;
u32 clk;
u32 shift;
u32 mask;
u32 denom;
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
cnt = main_cfg->mpuclk_cnt;
clk = main_cfg->mpuclk;
shift = 0;
mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
denom = main_cfg->vco1_denom;
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
cnt = main_cfg->nocclk_cnt;
clk = main_cfg->nocclk;
shift = 0;
mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
denom = main_cfg->vco1_denom;
} else if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
cnt = main_cfg->mpuclk_cnt;
clk = main_cfg->mpuclk;
shift = CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB;
mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
denom = per_cfg->vco1_denom;
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
cnt = main_cfg->nocclk_cnt;
clk = main_cfg->nocclk;
shift = CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB;
mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
denom = per_cfg->vco1_denom;
} else {
return 0;
}
return (safe_hz / clk_hz) * (cnt + 1) * (((clk >> shift) & mask) + 1) *
(1 + denom) - 1;
}
/*
* Calculate the new PLL numerator which is based on existing DTS hand off and
* intended safe frequency (safe_hz). Note that PLL ramp is only modifying the
* numerator while maintaining denominator as denominator will influence the
* jitter condition. Please refer A10 HPS TRM for the jitter guide. Note final
* value for numerator is minus with 1 to cater our register value
* representation.
*/
static unsigned int cm_calc_safe_pll_numer(int main0periph1,
struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
unsigned int safe_hz)
{
unsigned int clk_hz = 0;
/* Check for main PLL */
if (main0periph1 == 0) {
/* Check main VCO clock source: eosc, intosc or f2s? */
switch (main_cfg->vco0_psrc) {
case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
default:
return 0;
}
} else if (main0periph1 == 1) {
/* Check periph VCO clock source: eosc, intosc, f2s, mainpll */
switch (per_cfg->vco0_psrc) {
case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
clk_hz = eosc1_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_F2S:
clk_hz = f2s_free_hz;
break;
case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
clk_hz /= main_cfg->cntr15clk_cnt;
break;
default:
return 0;
}
} else {
return 0;
}
return cm_calculate_numer(main_cfg, per_cfg, safe_hz, clk_hz);
}
/* ramping the main PLL to final value */
static void cm_pll_ramp_main(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
unsigned int pll_ramp_main_hz)
{
unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;
/* find out the increment value */
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
}
/* execute the ramping here */
for (clk_hz = pll_ramp_main_hz + clk_incr_hz;
clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
writel((main_cfg->vco1_denom <<
CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(0, main_cfg, per_cfg, clk_hz),
&clock_manager_base->main_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
main_cfg->vco1_numer, &clock_manager_base->main_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
/* ramping the periph PLL to final value */
static void cm_pll_ramp_periph(struct mainpll_cfg *main_cfg,
struct perpll_cfg *per_cfg,
unsigned int pll_ramp_periph_hz)
{
unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;
/* find out the increment value */
if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
} else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
}
/* execute the ramping here */
for (clk_hz = pll_ramp_periph_hz + clk_incr_hz;
clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(1, main_cfg, per_cfg, clk_hz),
&clock_manager_base->per_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
per_cfg->vco1_numer, &clock_manager_base->per_pll.vco1);
mdelay(1);
cm_wait_for_lock(LOCKED_MASK);
}
/*
* Setup clocks while making no assumptions of the
* previous state of the clocks.
*
* Start by being paranoid and gate all sw managed clocks
*
* Put all plls in bypass
*
* Put all plls VCO registers back to reset value (bgpwr dwn).
*
* Put peripheral and main pll src to reset value to avoid glitch.
*
* Delay 5 us.
*
* Deassert bg pwr dn and set numerator and denominator
*
* Start 7 us timer.
*
* set internal dividers
*
* Wait for 7 us timer.
*
* Enable plls
*
* Set external dividers while plls are locking
*
* Wait for pll lock
*
* Assert/deassert outreset all.
*
* Take all pll's out of bypass
*
* Clear safe mode
*
* set source main and peripheral clocks
*
* Ungate clocks
*/
static int cm_full_cfg(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
{
unsigned int pll_ramp_main_hz = 0, pll_ramp_periph_hz = 0,
ramp_required;
/* gate off all mainpll clock excpet HW managed clock */
writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
&clock_manager_base->main_pll.enr);
/* now we can gate off the rest of the peripheral clocks */
writel(0, &clock_manager_base->per_pll.en);
/* Put all plls in external bypass */
writel(CLKMGR_MAINPLL_BYPASS_RESET,
&clock_manager_base->main_pll.bypasss);
writel(CLKMGR_PERPLL_BYPASS_RESET,
&clock_manager_base->per_pll.bypasss);
/*
* Put all plls VCO registers back to reset value.
* Some code might have messed with them. At same time set the
* desired clock source
*/
writel(CLKMGR_MAINPLL_VCO0_RESET |
CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK |
(main_cfg->vco0_psrc << CLKMGR_MAINPLL_VCO0_PSRC_LSB),
&clock_manager_base->main_pll.vco0);
writel(CLKMGR_PERPLL_VCO0_RESET |
CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK |
(per_cfg->vco0_psrc << CLKMGR_PERPLL_VCO0_PSRC_LSB),
&clock_manager_base->per_pll.vco0);
writel(CLKMGR_MAINPLL_VCO1_RESET, &clock_manager_base->main_pll.vco1);
writel(CLKMGR_PERPLL_VCO1_RESET, &clock_manager_base->per_pll.vco1);
/* clear the interrupt register status register */
writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLACHIEVED_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLACHIEVED_SET_MSK,
&clock_manager_base->intr);
/* Program VCO Numerator and Denominator for main PLL */
ramp_required = cm_is_pll_ramp_required(0, main_cfg, per_cfg);
if (ramp_required) {
/* set main PLL to safe starting threshold frequency */
if (ramp_required == 1)
pll_ramp_main_hz = CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
else if (ramp_required == 2)
pll_ramp_main_hz = CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;
writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(0, main_cfg, per_cfg,
pll_ramp_main_hz),
&clock_manager_base->main_pll.vco1);
} else
writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
main_cfg->vco1_numer,
&clock_manager_base->main_pll.vco1);
/* Program VCO Numerator and Denominator for periph PLL */
ramp_required = cm_is_pll_ramp_required(1, main_cfg, per_cfg);
if (ramp_required) {
/* set periph PLL to safe starting threshold frequency */
if (ramp_required == 1)
pll_ramp_periph_hz =
CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
else if (ramp_required == 2)
pll_ramp_periph_hz =
CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
cm_calc_safe_pll_numer(1, main_cfg, per_cfg,
pll_ramp_periph_hz),
&clock_manager_base->per_pll.vco1);
} else
writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
per_cfg->vco1_numer,
&clock_manager_base->per_pll.vco1);
/* Wait for at least 5 us */
udelay(5);
/* Now deassert BGPWRDN and PWRDN */
clrbits_le32(&clock_manager_base->main_pll.vco0,
CLKMGR_MAINPLL_VCO0_BGPWRDN_SET_MSK |
CLKMGR_MAINPLL_VCO0_PWRDN_SET_MSK);
clrbits_le32(&clock_manager_base->per_pll.vco0,
CLKMGR_PERPLL_VCO0_BGPWRDN_SET_MSK |
CLKMGR_PERPLL_VCO0_PWRDN_SET_MSK);
/* Wait for at least 7 us */
udelay(7);
/* enable the VCO and disable the external regulator to PLL */
writel((readl(&clock_manager_base->main_pll.vco0) &
~CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK) |
CLKMGR_MAINPLL_VCO0_EN_SET_MSK,
&clock_manager_base->main_pll.vco0);
writel((readl(&clock_manager_base->per_pll.vco0) &
~CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK) |
CLKMGR_PERPLL_VCO0_EN_SET_MSK,
&clock_manager_base->per_pll.vco0);
/* setup all the main PLL counter and clock source */
writel(main_cfg->nocclk,
SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET);
writel(main_cfg->mpuclk,
SOCFPGA_CLKMGR_ADDRESS + CLKMGR_ALTERAGRP_MPU_CLK_OFFSET);
/* main_emaca_clk divider */
writel(main_cfg->cntr2clk_cnt, &clock_manager_base->main_pll.cntr2clk);
/* main_emacb_clk divider */
writel(main_cfg->cntr3clk_cnt, &clock_manager_base->main_pll.cntr3clk);
/* main_emac_ptp_clk divider */
writel(main_cfg->cntr4clk_cnt, &clock_manager_base->main_pll.cntr4clk);
/* main_gpio_db_clk divider */
writel(main_cfg->cntr5clk_cnt, &clock_manager_base->main_pll.cntr5clk);
/* main_sdmmc_clk divider */
writel(main_cfg->cntr6clk_cnt, &clock_manager_base->main_pll.cntr6clk);
/* main_s2f_user0_clk divider */
writel(main_cfg->cntr7clk_cnt |
(main_cfg->cntr7clk_src << CLKMGR_MAINPLL_CNTR7CLK_SRC_LSB),
&clock_manager_base->main_pll.cntr7clk);
/* main_s2f_user1_clk divider */
writel(main_cfg->cntr8clk_cnt, &clock_manager_base->main_pll.cntr8clk);
/* main_hmc_pll_clk divider */
writel(main_cfg->cntr9clk_cnt |
(main_cfg->cntr9clk_src << CLKMGR_MAINPLL_CNTR9CLK_SRC_LSB),
&clock_manager_base->main_pll.cntr9clk);
/* main_periph_ref_clk divider */
writel(main_cfg->cntr15clk_cnt,
&clock_manager_base->main_pll.cntr15clk);
/* setup all the peripheral PLL counter and clock source */
/* peri_emaca_clk divider */
writel(per_cfg->cntr2clk_cnt |
(per_cfg->cntr2clk_src << CLKMGR_PERPLL_CNTR2CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr2clk);
/* peri_emacb_clk divider */
writel(per_cfg->cntr3clk_cnt |
(per_cfg->cntr3clk_src << CLKMGR_PERPLL_CNTR3CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr3clk);
/* peri_emac_ptp_clk divider */
writel(per_cfg->cntr4clk_cnt |
(per_cfg->cntr4clk_src << CLKMGR_PERPLL_CNTR4CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr4clk);
/* peri_gpio_db_clk divider */
writel(per_cfg->cntr5clk_cnt |
(per_cfg->cntr5clk_src << CLKMGR_PERPLL_CNTR5CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr5clk);
/* peri_sdmmc_clk divider */
writel(per_cfg->cntr6clk_cnt |
(per_cfg->cntr6clk_src << CLKMGR_PERPLL_CNTR6CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr6clk);
/* peri_s2f_user0_clk divider */
writel(per_cfg->cntr7clk_cnt, &clock_manager_base->per_pll.cntr7clk);
/* peri_s2f_user1_clk divider */
writel(per_cfg->cntr8clk_cnt |
(per_cfg->cntr8clk_src << CLKMGR_PERPLL_CNTR8CLK_SRC_LSB),
&clock_manager_base->per_pll.cntr8clk);
/* peri_hmc_pll_clk divider */
writel(per_cfg->cntr9clk_cnt, &clock_manager_base->per_pll.cntr9clk);
/* setup all the external PLL counter */
/* mpu wrapper / external divider */
writel(main_cfg->mpuclk_cnt |
(main_cfg->mpuclk_src << CLKMGR_MAINPLL_MPUCLK_SRC_LSB),
&clock_manager_base->main_pll.mpuclk);
/* NOC wrapper / external divider */
writel(main_cfg->nocclk_cnt |
(main_cfg->nocclk_src << CLKMGR_MAINPLL_NOCCLK_SRC_LSB),
&clock_manager_base->main_pll.nocclk);
/* NOC subclock divider such as l4 */
writel(main_cfg->nocdiv_l4mainclk |
(main_cfg->nocdiv_l4mpclk <<
CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) |
(main_cfg->nocdiv_l4spclk <<
CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB) |
(main_cfg->nocdiv_csatclk <<
CLKMGR_MAINPLL_NOCDIV_CSATCLK_LSB) |
(main_cfg->nocdiv_cstraceclk <<
CLKMGR_MAINPLL_NOCDIV_CSTRACECLK_LSB) |
(main_cfg->nocdiv_cspdbclk <<
CLKMGR_MAINPLL_NOCDIV_CSPDBGCLK_LSB),
&clock_manager_base->main_pll.nocdiv);
/* gpio_db external divider */
writel(per_cfg->gpiodiv_gpiodbclk,
&clock_manager_base->per_pll.gpiodiv);
/* setup the EMAC clock mux select */
writel((per_cfg->emacctl_emac0sel <<
CLKMGR_PERPLL_EMACCTL_EMAC0SEL_LSB) |
(per_cfg->emacctl_emac1sel <<
CLKMGR_PERPLL_EMACCTL_EMAC1SEL_LSB) |
(per_cfg->emacctl_emac2sel <<
CLKMGR_PERPLL_EMACCTL_EMAC2SEL_LSB),
&clock_manager_base->per_pll.emacctl);
/* at this stage, check for PLL lock status */
cm_wait_for_lock(LOCKED_MASK);
/*
* after locking, but before taking out of bypass,
* assert/deassert outresetall
*/
/* assert mainpll outresetall */
setbits_le32(&clock_manager_base->main_pll.vco0,
CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
/* assert perpll outresetall */
setbits_le32(&clock_manager_base->per_pll.vco0,
CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
/* de-assert mainpll outresetall */
clrbits_le32(&clock_manager_base->main_pll.vco0,
CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
/* de-assert perpll outresetall */
clrbits_le32(&clock_manager_base->per_pll.vco0,
CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
/* Take all PLLs out of bypass when boot mode is cleared. */
/* release mainpll from bypass */
writel(CLKMGR_MAINPLL_BYPASS_RESET,
&clock_manager_base->main_pll.bypassr);
/* wait till Clock Manager is not busy */
cm_wait_for_fsm();
/* release perpll from bypass */
writel(CLKMGR_PERPLL_BYPASS_RESET,
&clock_manager_base->per_pll.bypassr);
/* wait till Clock Manager is not busy */
cm_wait_for_fsm();
/* clear boot mode */
clrbits_le32(&clock_manager_base->ctrl,
CLKMGR_CLKMGR_CTL_BOOTMOD_SET_MSK);
/* wait till Clock Manager is not busy */
cm_wait_for_fsm();
/* At here, we need to ramp to final value if needed */
if (pll_ramp_main_hz != 0)
cm_pll_ramp_main(main_cfg, per_cfg, pll_ramp_main_hz);
if (pll_ramp_periph_hz != 0)
cm_pll_ramp_periph(main_cfg, per_cfg, pll_ramp_periph_hz);
/* Now ungate non-hw-managed clocks */
writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
&clock_manager_base->main_pll.ens);
writel(CLKMGR_PERPLL_EN_RESET, &clock_manager_base->per_pll.ens);
/* Clear the loss lock and slip bits as they might set during
clock reconfiguration */
writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK,
&clock_manager_base->intr);
return 0;
}
void cm_use_intosc(void)
{
setbits_le32(&clock_manager_base->ctrl,
CLKMGR_CLKMGR_CTL_BOOTCLK_INTOSC_SET_MSK);
}
unsigned int cm_get_noc_clk_hz(void)
{
unsigned int clk_src, divisor, nocclk, src_hz;
nocclk = readl(&clock_manager_base->main_pll.nocclk);
clk_src = (nocclk >> CLKMGR_MAINPLL_NOCCLK_SRC_LSB) &
CLKMGR_MAINPLL_NOCCLK_SRC_MSK;
divisor = 1 + (nocclk & CLKMGR_MAINPLL_NOCDIV_MSK);
if (clk_src == CLKMGR_PERPLLGRP_SRC_MAIN) {
src_hz = cm_get_main_vco_clk_hz();
src_hz /= 1 +
(readl(SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET) &
CLKMGR_MAINPLL_NOCCLK_CNT_MSK);
} else if (clk_src == CLKMGR_PERPLLGRP_SRC_PERI) {
src_hz = cm_get_per_vco_clk_hz();
src_hz /= 1 +
((readl(SOCFPGA_CLKMGR_ADDRESS +
CLKMGR_MAINPLL_NOC_CLK_OFFSET) >>
CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) &
CLKMGR_MAINPLL_NOCCLK_CNT_MSK);
} else if (clk_src == CLKMGR_PERPLLGRP_SRC_OSC1) {
src_hz = eosc1_hz;
} else if (clk_src == CLKMGR_PERPLLGRP_SRC_INTOSC) {
src_hz = cb_intosc_hz;
} else if (clk_src == CLKMGR_PERPLLGRP_SRC_FPGA) {
src_hz = f2s_free_hz;
} else {
src_hz = 0;
}
return src_hz / divisor;
}
unsigned int cm_get_l4_noc_hz(unsigned int nocdivshift)
{
unsigned int divisor2 = 1 <<
((readl(&clock_manager_base->main_pll.nocdiv) >>
nocdivshift) & CLKMGR_MAINPLL_NOCDIV_MSK);
return cm_get_noc_clk_hz() / divisor2;
}
int cm_basic_init(const void *blob)
{
struct mainpll_cfg main_cfg;
struct perpll_cfg per_cfg;
struct alteragrp_cfg altrgrp_cfg;
int rval;
/* initialize to zero for use case of optional node */
memset(&main_cfg, 0, sizeof(main_cfg));
memset(&per_cfg, 0, sizeof(per_cfg));
memset(&altrgrp_cfg, 0, sizeof(altrgrp_cfg));
rval = of_get_clk_cfg(blob, &main_cfg, &per_cfg, &altrgrp_cfg);
if (rval)
return rval;
rval = cm_full_cfg(&main_cfg, &per_cfg);
cm_l4_main_clk_hz =
cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB);
cm_l4_mp_clk_hz = cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB);
cm_l4_sp_clk_hz = cm_get_l4_sp_clk_hz();
cm_l4_sys_free_clk_hz = cm_get_noc_clk_hz() / 4;
return rval;
}
unsigned long cm_get_mpu_clk_hz(void)
{
u32 reg, clk_hz;
u32 clk_src, mainmpuclk_reg;
mainmpuclk_reg = readl(&clock_manager_base->main_pll.mpuclk);
clk_src = (mainmpuclk_reg >> CLKMGR_MAINPLL_MPUCLK_SRC_LSB) &
CLKMGR_MAINPLL_MPUCLK_SRC_MSK;
reg = readl(&clock_manager_base->altera.mpuclk);
/* Check MPU clock source: main, periph, osc1, intosc or f2s? */
switch (clk_src) {
case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN:
clk_hz = cm_get_main_vco_clk_hz();
clk_hz /= (reg & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_PERI:
clk_hz = cm_get_per_vco_clk_hz();
clk_hz /= (((reg >> CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) &
CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1);
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1:
clk_hz = eosc1_hz;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA:
clk_hz = f2s_free_hz;
break;
default:
printf("cm_get_mpu_clk_hz invalid clk_src %d\n", clk_src);
return 0;
}
clk_hz /= (mainmpuclk_reg & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
return clk_hz;
}
unsigned int cm_get_per_vco_clk_hz(void)
{
u32 src_hz = 0;
u32 clk_src = 0;
u32 numer = 0;
u32 denom = 0;
u32 vco = 0;
clk_src = readl(&clock_manager_base->per_pll.vco0);
clk_src = (clk_src >> CLKMGR_PERPLL_VCO0_PSRC_LSB) &
CLKMGR_PERPLL_VCO0_PSRC_MSK;
if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_EOSC) {
src_hz = eosc1_hz;
} else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC) {
src_hz = cb_intosc_hz;
} else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_F2S) {
src_hz = f2s_free_hz;
} else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_MAIN) {
src_hz = cm_get_main_vco_clk_hz();
src_hz /= (readl(&clock_manager_base->main_pll.cntr15clk) &
CLKMGR_MAINPLL_CNTRCLK_MSK) + 1;
} else {
printf("cm_get_per_vco_clk_hz invalid clk_src %d\n", clk_src);
return 0;
}
vco = readl(&clock_manager_base->per_pll.vco1);
numer = vco & CLKMGR_PERPLL_VCO1_NUMER_MSK;
denom = (vco >> CLKMGR_PERPLL_VCO1_DENOM_LSB) &
CLKMGR_PERPLL_VCO1_DENOM_MSK;
vco = src_hz;
vco /= 1 + denom;
vco *= 1 + numer;
return vco;
}
unsigned int cm_get_main_vco_clk_hz(void)
{
u32 src_hz, numer, denom, vco;
u32 clk_src = readl(&clock_manager_base->main_pll.vco0);
clk_src = (clk_src >> CLKMGR_MAINPLL_VCO0_PSRC_LSB) &
CLKMGR_MAINPLL_VCO0_PSRC_MSK;
if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_EOSC) {
src_hz = eosc1_hz;
} else if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC) {
src_hz = cb_intosc_hz;
} else if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_F2S) {
src_hz = f2s_free_hz;
} else {
printf("cm_get_main_vco_clk_hz invalid clk_src %d\n", clk_src);
return 0;
}
vco = readl(&clock_manager_base->main_pll.vco1);
numer = vco & CLKMGR_MAINPLL_VCO1_NUMER_MSK;
denom = (vco >> CLKMGR_MAINPLL_VCO1_DENOM_LSB) &
CLKMGR_MAINPLL_VCO1_DENOM_MSK;
vco = src_hz;
vco /= 1 + denom;
vco *= 1 + numer;
return vco;
}
unsigned int cm_get_l4_sp_clk_hz(void)
{
return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB);
}
unsigned int cm_get_mmc_controller_clk_hz(void)
{
u32 clk_hz = 0;
u32 clk_input = 0;
clk_input = readl(&clock_manager_base->per_pll.cntr6clk);
clk_input = (clk_input >> CLKMGR_PERPLL_CNTR6CLK_SRC_LSB) &
CLKMGR_PERPLLGRP_SRC_MSK;
switch (clk_input) {
case CLKMGR_PERPLLGRP_SRC_MAIN:
clk_hz = cm_get_main_vco_clk_hz();
clk_hz /= 1 + (readl(&clock_manager_base->main_pll.cntr6clk) &
CLKMGR_MAINPLL_CNTRCLK_MSK);
break;
case CLKMGR_PERPLLGRP_SRC_PERI:
clk_hz = cm_get_per_vco_clk_hz();
clk_hz /= 1 + (readl(&clock_manager_base->per_pll.cntr6clk) &
CLKMGR_PERPLL_CNTRCLK_MSK);
break;
case CLKMGR_PERPLLGRP_SRC_OSC1:
clk_hz = eosc1_hz;
break;
case CLKMGR_PERPLLGRP_SRC_INTOSC:
clk_hz = cb_intosc_hz;
break;
case CLKMGR_PERPLLGRP_SRC_FPGA:
clk_hz = f2s_free_hz;
break;
}
return clk_hz / 4;
}
unsigned int cm_get_spi_controller_clk_hz(void)
{
return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB);
}
unsigned int cm_get_qspi_controller_clk_hz(void)
{
return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB);
}
void cm_print_clock_quick_summary(void)
{
printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
printf("EOSC1 %8d kHz\n", eosc1_hz / 1000);
printf("cb_intosc %8d kHz\n", cb_intosc_hz / 1000);
printf("f2s_free %8d kHz\n", f2s_free_hz / 1000);
printf("Main VCO %8d kHz\n", cm_get_main_vco_clk_hz() / 1000);
printf("NOC %8d kHz\n", cm_get_noc_clk_hz() / 1000);
printf("L4 Main %8d kHz\n",
cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB) / 1000);
printf("L4 MP %8d kHz\n",
cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) / 1000);
printf("L4 SP %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
printf("L4 sys free %8d kHz\n", cm_l4_sys_free_clk_hz / 1000);
}