upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/ddr/marvell/axp/ddr3_read_leveling.c

1214 lines
34 KiB

/*
* Copyright (C) Marvell International Ltd. and its affiliates
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <i2c.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "ddr3_hw_training.h"
/*
* Debug
*/
#define DEBUG_RL_C(s, d, l) \
DEBUG_RL_S(s); DEBUG_RL_D(d, l); DEBUG_RL_S("\n")
#define DEBUG_RL_FULL_C(s, d, l) \
DEBUG_RL_FULL_S(s); DEBUG_RL_FULL_D(d, l); DEBUG_RL_FULL_S("\n")
#ifdef MV_DEBUG_RL
#define DEBUG_RL_S(s) \
debug_cond(ddr3_get_log_level() >= MV_LOG_LEVEL_2, "%s", s)
#define DEBUG_RL_D(d, l) \
debug_cond(ddr3_get_log_level() >= MV_LOG_LEVEL_2, "%x", d)
#else
#define DEBUG_RL_S(s)
#define DEBUG_RL_D(d, l)
#endif
#ifdef MV_DEBUG_RL_FULL
#define DEBUG_RL_FULL_S(s) puts(s)
#define DEBUG_RL_FULL_D(d, l) printf("%x", d)
#else
#define DEBUG_RL_FULL_S(s)
#define DEBUG_RL_FULL_D(d, l)
#endif
extern u32 rl_pattern[LEN_STD_PATTERN];
#ifdef RL_MODE
static int ddr3_read_leveling_single_cs_rl_mode(u32 cs, u32 freq,
int ratio_2to1, u32 ecc,
MV_DRAM_INFO *dram_info);
#else
static int ddr3_read_leveling_single_cs_window_mode(u32 cs, u32 freq,
int ratio_2to1, u32 ecc,
MV_DRAM_INFO *dram_info);
#endif
/*
* Name: ddr3_read_leveling_hw
* Desc: Execute the Read leveling phase by HW
* Args: dram_info - main struct
* freq - current sequence frequency
* Notes:
* Returns: MV_OK if success, MV_FAIL if fail.
*/
int ddr3_read_leveling_hw(u32 freq, MV_DRAM_INFO *dram_info)
{
u32 reg;
/* Debug message - Start Read leveling procedure */
DEBUG_RL_S("DDR3 - Read Leveling - Starting HW RL procedure\n");
/* Start Auto Read Leveling procedure */
reg = 1 << REG_DRAM_TRAINING_RL_OFFS;
/* Config the retest number */
reg |= (COUNT_HW_RL << REG_DRAM_TRAINING_RETEST_OFFS);
/* Enable CS in the automatic process */
reg |= (dram_info->cs_ena << REG_DRAM_TRAINING_CS_OFFS);
reg_write(REG_DRAM_TRAINING_ADDR, reg); /* 0x15B0 - Training Register */
reg = reg_read(REG_DRAM_TRAINING_SHADOW_ADDR) |
(1 << REG_DRAM_TRAINING_AUTO_OFFS);
reg_write(REG_DRAM_TRAINING_SHADOW_ADDR, reg);
/* Wait */
do {
reg = reg_read(REG_DRAM_TRAINING_SHADOW_ADDR) &
(1 << REG_DRAM_TRAINING_AUTO_OFFS);
} while (reg); /* Wait for '0' */
/* Check if Successful */
if (reg_read(REG_DRAM_TRAINING_SHADOW_ADDR) &
(1 << REG_DRAM_TRAINING_ERROR_OFFS)) {
u32 delay, phase, pup, cs;
dram_info->rl_max_phase = 0;
dram_info->rl_min_phase = 10;
/* Read results to arrays */
for (cs = 0; cs < MAX_CS; cs++) {
if (dram_info->cs_ena & (1 << cs)) {
for (pup = 0;
pup < dram_info->num_of_total_pups;
pup++) {
if (pup == dram_info->num_of_std_pups
&& dram_info->ecc_ena)
pup = ECC_PUP;
reg =
ddr3_read_pup_reg(PUP_RL_MODE, cs,
pup);
phase = (reg >> REG_PHY_PHASE_OFFS) &
PUP_PHASE_MASK;
delay = reg & PUP_DELAY_MASK;
dram_info->rl_val[cs][pup][P] = phase;
if (phase > dram_info->rl_max_phase)
dram_info->rl_max_phase = phase;
if (phase < dram_info->rl_min_phase)
dram_info->rl_min_phase = phase;
dram_info->rl_val[cs][pup][D] = delay;
dram_info->rl_val[cs][pup][S] =
RL_FINAL_STATE;
reg =
ddr3_read_pup_reg(PUP_RL_MODE + 0x1,
cs, pup);
dram_info->rl_val[cs][pup][DQS] =
(reg & 0x3F);
}
#ifdef MV_DEBUG_RL
/* Print results */
DEBUG_RL_C("DDR3 - Read Leveling - Results for CS - ",
(u32) cs, 1);
for (pup = 0;
pup < (dram_info->num_of_total_pups);
pup++) {
if (pup == dram_info->num_of_std_pups
&& dram_info->ecc_ena)
pup = ECC_PUP;
DEBUG_RL_S("DDR3 - Read Leveling - PUP: ");
DEBUG_RL_D((u32) pup, 1);
DEBUG_RL_S(", Phase: ");
DEBUG_RL_D((u32) dram_info->
rl_val[cs][pup][P], 1);
DEBUG_RL_S(", Delay: ");
DEBUG_RL_D((u32) dram_info->
rl_val[cs][pup][D], 2);
DEBUG_RL_S("\n");
}
#endif
}
}
dram_info->rd_rdy_dly =
reg_read(REG_READ_DATA_READY_DELAYS_ADDR) &
REG_READ_DATA_SAMPLE_DELAYS_MASK;
dram_info->rd_smpl_dly =
reg_read(REG_READ_DATA_SAMPLE_DELAYS_ADDR) &
REG_READ_DATA_READY_DELAYS_MASK;
#ifdef MV_DEBUG_RL
DEBUG_RL_C("DDR3 - Read Leveling - Read Sample Delay: ",
dram_info->rd_smpl_dly, 2);
DEBUG_RL_C("DDR3 - Read Leveling - Read Ready Delay: ",
dram_info->rd_rdy_dly, 2);
DEBUG_RL_S("DDR3 - Read Leveling - HW RL Ended Successfully\n");
#endif
return MV_OK;
} else {
DEBUG_RL_S("DDR3 - Read Leveling - HW RL Error\n");
return MV_FAIL;
}
}
/*
* Name: ddr3_read_leveling_sw
* Desc: Execute the Read leveling phase by SW
* Args: dram_info - main struct
* freq - current sequence frequency
* Notes:
* Returns: MV_OK if success, MV_FAIL if fail.
*/
int ddr3_read_leveling_sw(u32 freq, int ratio_2to1, MV_DRAM_INFO *dram_info)
{
u32 reg, cs, ecc, pup_num, phase, delay, pup;
int status;
/* Debug message - Start Read leveling procedure */
DEBUG_RL_S("DDR3 - Read Leveling - Starting SW RL procedure\n");
/* Enable SW Read Leveling */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) |
(1 << REG_DRAM_TRAINING_2_SW_OVRD_OFFS);
reg &= ~(1 << REG_DRAM_TRAINING_2_RL_MODE_OFFS);
/* [0]=1 - Enable SW override */
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
#ifdef RL_MODE
reg = (dram_info->cs_ena << REG_DRAM_TRAINING_CS_OFFS) |
(1 << REG_DRAM_TRAINING_AUTO_OFFS);
reg_write(REG_DRAM_TRAINING_ADDR, reg); /* 0x15B0 - Training Register */
#endif
/* Loop for each CS */
for (cs = 0; cs < dram_info->num_cs; cs++) {
DEBUG_RL_C("DDR3 - Read Leveling - CS - ", (u32) cs, 1);
for (ecc = 0; ecc <= (dram_info->ecc_ena); ecc++) {
/* ECC Support - Switch ECC Mux on ecc=1 */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) &
~(1 << REG_DRAM_TRAINING_2_ECC_MUX_OFFS);
reg |= (dram_info->ecc_ena *
ecc << REG_DRAM_TRAINING_2_ECC_MUX_OFFS);
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
if (ecc)
DEBUG_RL_S("DDR3 - Read Leveling - ECC Mux Enabled\n");
else
DEBUG_RL_S("DDR3 - Read Leveling - ECC Mux Disabled\n");
/* Set current sample delays */
reg = reg_read(REG_READ_DATA_SAMPLE_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_SAMPLE_DELAYS_MASK <<
(REG_READ_DATA_SAMPLE_DELAYS_OFFS * cs));
reg |= (dram_info->cl <<
(REG_READ_DATA_SAMPLE_DELAYS_OFFS * cs));
reg_write(REG_READ_DATA_SAMPLE_DELAYS_ADDR, reg);
/* Set current Ready delay */
reg = reg_read(REG_READ_DATA_READY_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_READY_DELAYS_MASK <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
if (!ratio_2to1) {
/* 1:1 mode */
reg |= ((dram_info->cl + 1) <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
} else {
/* 2:1 mode */
reg |= ((dram_info->cl + 2) <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
}
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, reg);
/* Read leveling Single CS[cs] */
#ifdef RL_MODE
status =
ddr3_read_leveling_single_cs_rl_mode(cs, freq,
ratio_2to1,
ecc,
dram_info);
if (MV_OK != status)
return status;
#else
status =
ddr3_read_leveling_single_cs_window_mode(cs, freq,
ratio_2to1,
ecc,
dram_info)
if (MV_OK != status)
return status;
#endif
}
/* Print results */
DEBUG_RL_C("DDR3 - Read Leveling - Results for CS - ", (u32) cs,
1);
for (pup = 0;
pup < (dram_info->num_of_std_pups + dram_info->ecc_ena);
pup++) {
DEBUG_RL_S("DDR3 - Read Leveling - PUP: ");
DEBUG_RL_D((u32) pup, 1);
DEBUG_RL_S(", Phase: ");
DEBUG_RL_D((u32) dram_info->rl_val[cs][pup][P], 1);
DEBUG_RL_S(", Delay: ");
DEBUG_RL_D((u32) dram_info->rl_val[cs][pup][D], 2);
DEBUG_RL_S("\n");
}
DEBUG_RL_C("DDR3 - Read Leveling - Read Sample Delay: ",
dram_info->rd_smpl_dly, 2);
DEBUG_RL_C("DDR3 - Read Leveling - Read Ready Delay: ",
dram_info->rd_rdy_dly, 2);
/* Configure PHY with average of 3 locked leveling settings */
for (pup = 0;
pup < (dram_info->num_of_std_pups + dram_info->ecc_ena);
pup++) {
/* ECC support - bit 8 */
pup_num = (pup == dram_info->num_of_std_pups) ? ECC_BIT : pup;
/* For now, set last cnt result */
phase = dram_info->rl_val[cs][pup][P];
delay = dram_info->rl_val[cs][pup][D];
ddr3_write_pup_reg(PUP_RL_MODE, cs, pup_num, phase,
delay);
}
}
/* Reset PHY read FIFO */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) |
(1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS);
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
do {
reg = (reg_read(REG_DRAM_TRAINING_2_ADDR)) &
(1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS);
} while (reg); /* Wait for '0' */
/* ECC Support - Switch ECC Mux off ecc=0 */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) &
~(1 << REG_DRAM_TRAINING_2_ECC_MUX_OFFS);
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
#ifdef RL_MODE
reg_write(REG_DRAM_TRAINING_ADDR, 0); /* 0x15B0 - Training Register */
#endif
/* Disable SW Read Leveling */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) &
~(1 << REG_DRAM_TRAINING_2_SW_OVRD_OFFS);
/* [0] = 0 - Disable SW override */
reg = (reg | (0x1 << REG_DRAM_TRAINING_2_RL_MODE_OFFS));
/* [3] = 1 - Disable RL MODE */
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
DEBUG_RL_S("DDR3 - Read Leveling - Finished RL procedure for all CS\n");
return MV_OK;
}
#ifdef RL_MODE
/*
* overrun() extracted from ddr3_read_leveling_single_cs_rl_mode().
* This just got too much indented making it hard to read / edit.
*/
static void overrun(u32 cs, MV_DRAM_INFO *info, u32 pup, u32 locked_pups,
u32 *locked_sum, u32 ecc, int *first_octet_locked,
int *counter_in_progress, int final_delay, u32 delay,
u32 phase)
{
/* If no OverRun */
if (((~locked_pups >> pup) & 0x1) && (final_delay == 0)) {
int idx;
idx = pup + ecc * ECC_BIT;
/* PUP passed, start examining */
if (info->rl_val[cs][idx][S] == RL_UNLOCK_STATE) {
/* Must be RL_UNLOCK_STATE */
/* Match expected value ? - Update State Machine */
if (info->rl_val[cs][idx][C] < RL_RETRY_COUNT) {
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We have no overrun and a match on pup: ",
(u32)pup, 1);
info->rl_val[cs][idx][C]++;
/* If pup got to last state - lock the delays */
if (info->rl_val[cs][idx][C] == RL_RETRY_COUNT) {
info->rl_val[cs][idx][C] = 0;
info->rl_val[cs][idx][DS] = delay;
info->rl_val[cs][idx][PS] = phase;
/* Go to Final State */
info->rl_val[cs][idx][S] = RL_FINAL_STATE;
*locked_sum = *locked_sum + 1;
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We have locked pup: ",
(u32)pup, 1);
/*
* If first lock - need to lock delays
*/
if (*first_octet_locked == 0) {
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We got first lock on pup: ",
(u32)pup, 1);
*first_octet_locked = 1;
}
/*
* If pup is in not in final state but
* there was match - dont increment
* counter
*/
} else {
*counter_in_progress = 1;
}
}
}
}
}
/*
* Name: ddr3_read_leveling_single_cs_rl_mode
* Desc: Execute Read leveling for single Chip select
* Args: cs - current chip select
* freq - current sequence frequency
* ecc - ecc iteration indication
* dram_info - main struct
* Notes:
* Returns: MV_OK if success, MV_FAIL if fail.
*/
static int ddr3_read_leveling_single_cs_rl_mode(u32 cs, u32 freq,
int ratio_2to1, u32 ecc,
MV_DRAM_INFO *dram_info)
{
u32 reg, delay, phase, pup, rd_sample_delay, add, locked_pups,
repeat_max_cnt, sdram_offset, locked_sum;
u32 phase_min, ui_max_delay;
int all_locked, first_octet_locked, counter_in_progress;
int final_delay = 0;
DEBUG_RL_FULL_C("DDR3 - Read Leveling - Single CS - ", (u32) cs, 1);
/* Init values */
phase = 0;
delay = 0;
rd_sample_delay = dram_info->cl;
all_locked = 0;
first_octet_locked = 0;
repeat_max_cnt = 0;
locked_sum = 0;
for (pup = 0; pup < (dram_info->num_of_std_pups * (1 - ecc) + ecc);
pup++)
dram_info->rl_val[cs][pup + ecc * ECC_BIT][S] = 0;
/* Main loop */
while (!all_locked) {
counter_in_progress = 0;
DEBUG_RL_FULL_S("DDR3 - Read Leveling - RdSmplDly = ");
DEBUG_RL_FULL_D(rd_sample_delay, 2);
DEBUG_RL_FULL_S(", RdRdyDly = ");
DEBUG_RL_FULL_D(dram_info->rd_rdy_dly, 2);
DEBUG_RL_FULL_S(", Phase = ");
DEBUG_RL_FULL_D(phase, 1);
DEBUG_RL_FULL_S(", Delay = ");
DEBUG_RL_FULL_D(delay, 2);
DEBUG_RL_FULL_S("\n");
/*
* Broadcast to all PUPs current RL delays: DQS phase,
* leveling delay
*/
ddr3_write_pup_reg(PUP_RL_MODE, cs, PUP_BC, phase, delay);
/* Reset PHY read FIFO */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) |
(1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS);
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
do {
reg = (reg_read(REG_DRAM_TRAINING_2_ADDR)) &
(1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS);
} while (reg); /* Wait for '0' */
/* Read pattern from SDRAM */
sdram_offset = cs * (SDRAM_CS_SIZE + 1) + SDRAM_RL_OFFS;
locked_pups = 0;
if (MV_OK !=
ddr3_sdram_compare(dram_info, 0xFF, &locked_pups,
rl_pattern, LEN_STD_PATTERN,
sdram_offset, 0, 0, NULL, 0))
return MV_DDR3_TRAINING_ERR_RD_LVL_RL_PATTERN;
/* Octet evaluation */
/* pup_num = Q or 1 for ECC */
for (pup = 0; pup < (dram_info->num_of_std_pups * (1 - ecc) + ecc); pup++) {
/* Check Overrun */
if (!((reg_read(REG_DRAM_TRAINING_2_ADDR) >>
(REG_DRAM_TRAINING_2_OVERRUN_OFFS + pup)) & 0x1)) {
overrun(cs, dram_info, pup, locked_pups,
&locked_sum, ecc, &first_octet_locked,
&counter_in_progress, final_delay,
delay, phase);
} else {
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We got overrun on pup: ",
(u32)pup, 1);
}
}
if (locked_sum == (dram_info->num_of_std_pups *
(1 - ecc) + ecc)) {
all_locked = 1;
DEBUG_RL_FULL_S("DDR3 - Read Leveling - Single Cs - All pups locked\n");
}
/*
* This is a fix for unstable condition where pups are
* toggling between match and no match
*/
/*
* If some of the pups is >1 <3, check if we did it too
* many times
*/
if (counter_in_progress == 1) {
/* Notify at least one Counter is >=1 and < 3 */
if (repeat_max_cnt < RL_RETRY_COUNT) {
repeat_max_cnt++;
counter_in_progress = 1;
DEBUG_RL_FULL_S("DDR3 - Read Leveling - Counter is >=1 and <3\n");
DEBUG_RL_FULL_S("DDR3 - Read Leveling - So we will not increment the delay to see if locked again\n");
} else {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - repeat_max_cnt reached max so now we will increment the delay\n");
counter_in_progress = 0;
}
}
/*
* Check some of the pups are in the middle of state machine
* and don't increment the delays
*/
if (!counter_in_progress && !all_locked) {
int idx;
idx = pup + ecc * ECC_BIT;
repeat_max_cnt = 0;
/* if 1:1 mode */
if ((!ratio_2to1) && ((phase == 0) || (phase == 4)))
ui_max_delay = MAX_DELAY_INV;
else
ui_max_delay = MAX_DELAY;
/* Increment Delay */
if (delay < ui_max_delay) {
delay++;
/*
* Mark the last delay/pahse place for
* window final place
*/
if (delay == ui_max_delay) {
if ((!ratio_2to1 && phase ==
MAX_PHASE_RL_L_1TO1)
|| (ratio_2to1 && phase ==
MAX_PHASE_RL_L_2TO1))
final_delay = 1;
}
} else {
/* Phase+CL Incrementation */
delay = 0;
if (!ratio_2to1) {
/* 1:1 mode */
if (first_octet_locked) {
/* some Pup was Locked */
if (phase < MAX_PHASE_RL_L_1TO1) {
if (phase == 1) {
phase = 4;
} else {
phase++;
delay = MIN_DELAY_PHASE_1_LIMIT;
}
} else {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
DEBUG_RL_S("1)DDR3 - Read Leveling - ERROR - NOT all PUPs Locked n");
return MV_DDR3_TRAINING_ERR_RD_LVL_RL_PUP_UNLOCK;
}
} else {
/* NO Pup was Locked */
if (phase < MAX_PHASE_RL_UL_1TO1) {
phase++;
delay =
MIN_DELAY_PHASE_1_LIMIT;
} else {
phase = 0;
}
}
} else {
/* 2:1 mode */
if (first_octet_locked) {
/* some Pup was Locked */
if (phase < MAX_PHASE_RL_L_2TO1) {
phase++;
} else {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
DEBUG_RL_S("2)DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
for (pup = 0; pup < (dram_info->num_of_std_pups * (1 - ecc) + ecc); pup++) {
/* pup_num = Q or 1 for ECC */
if (dram_info->rl_val[cs][idx][S]
== 0) {
DEBUG_RL_C("Failed byte is = ",
pup, 1);
}
}
return MV_DDR3_TRAINING_ERR_RD_LVL_RL_PUP_UNLOCK;
}
} else {
/* No Pup was Locked */
if (phase < MAX_PHASE_RL_UL_2TO1)
phase++;
else
phase = 0;
}
}
/*
* If we finished a full Phases cycle (so now
* phase = 0, need to increment rd_sample_dly
*/
if (phase == 0 && first_octet_locked == 0) {
rd_sample_delay++;
if (rd_sample_delay == 0x10) {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
DEBUG_RL_S("3)DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
for (pup = 0; pup < (dram_info->num_of_std_pups * (1 - ecc) + ecc); pup++) {
/* pup_num = Q or 1 for ECC */
if (dram_info->
rl_val[cs][idx][S] == 0) {
DEBUG_RL_C("Failed byte is = ",
pup, 1);
}
}
return MV_DDR3_TRAINING_ERR_RD_LVL_PUP_UNLOCK;
}
/* Set current rd_sample_delay */
reg = reg_read(REG_READ_DATA_SAMPLE_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_SAMPLE_DELAYS_MASK
<< (REG_READ_DATA_SAMPLE_DELAYS_OFFS
* cs));
reg |= (rd_sample_delay <<
(REG_READ_DATA_SAMPLE_DELAYS_OFFS *
cs));
reg_write(REG_READ_DATA_SAMPLE_DELAYS_ADDR,
reg);
}
/*
* Set current rdReadyDelay according to the
* hash table (Need to do this in every phase
* change)
*/
if (!ratio_2to1) {
/* 1:1 mode */
add = reg_read(REG_TRAINING_DEBUG_2_ADDR);
switch (phase) {
case 0:
add = (add >>
REG_TRAINING_DEBUG_2_OFFS);
break;
case 1:
add = (add >>
(REG_TRAINING_DEBUG_2_OFFS
+ 3));
break;
case 4:
add = (add >>
(REG_TRAINING_DEBUG_2_OFFS
+ 6));
break;
case 5:
add = (add >>
(REG_TRAINING_DEBUG_2_OFFS
+ 9));
break;
}
add &= REG_TRAINING_DEBUG_2_MASK;
} else {
/* 2:1 mode */
add = reg_read(REG_TRAINING_DEBUG_3_ADDR);
add = (add >>
(phase *
REG_TRAINING_DEBUG_3_OFFS));
add &= REG_TRAINING_DEBUG_3_MASK;
}
reg = reg_read(REG_READ_DATA_READY_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_READY_DELAYS_MASK <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg |= ((rd_sample_delay + add) <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, reg);
dram_info->rd_smpl_dly = rd_sample_delay;
dram_info->rd_rdy_dly = rd_sample_delay + add;
}
/* Reset counters for pups with states<RD_STATE_COUNT */
for (pup = 0; pup <
(dram_info->num_of_std_pups * (1 - ecc) + ecc);
pup++) {
if (dram_info->rl_val[cs][idx][C] < RL_RETRY_COUNT)
dram_info->rl_val[cs][idx][C] = 0;
}
}
}
phase_min = 10;
for (pup = 0; pup < (dram_info->num_of_std_pups); pup++) {
if (dram_info->rl_val[cs][pup][PS] < phase_min)
phase_min = dram_info->rl_val[cs][pup][PS];
}
/*
* Set current rdReadyDelay according to the hash table (Need to
* do this in every phase change)
*/
if (!ratio_2to1) {
/* 1:1 mode */
add = reg_read(REG_TRAINING_DEBUG_2_ADDR);
switch (phase_min) {
case 0:
add = (add >> REG_TRAINING_DEBUG_2_OFFS);
break;
case 1:
add = (add >> (REG_TRAINING_DEBUG_2_OFFS + 3));
break;
case 4:
add = (add >> (REG_TRAINING_DEBUG_2_OFFS + 6));
break;
case 5:
add = (add >> (REG_TRAINING_DEBUG_2_OFFS + 9));
break;
}
add &= REG_TRAINING_DEBUG_2_MASK;
} else {
/* 2:1 mode */
add = reg_read(REG_TRAINING_DEBUG_3_ADDR);
add = (add >> (phase_min * REG_TRAINING_DEBUG_3_OFFS));
add &= REG_TRAINING_DEBUG_3_MASK;
}
reg = reg_read(REG_READ_DATA_READY_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_READY_DELAYS_MASK <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg |= ((rd_sample_delay + add) << (REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, reg);
dram_info->rd_rdy_dly = rd_sample_delay + add;
for (cs = 0; cs < dram_info->num_cs; cs++) {
for (pup = 0; pup < dram_info->num_of_total_pups; pup++) {
reg = ddr3_read_pup_reg(PUP_RL_MODE + 0x1, cs, pup);
dram_info->rl_val[cs][pup][DQS] = (reg & 0x3F);
}
}
return MV_OK;
}
#else
/*
* Name: ddr3_read_leveling_single_cs_window_mode
* Desc: Execute Read leveling for single Chip select
* Args: cs - current chip select
* freq - current sequence frequency
* ecc - ecc iteration indication
* dram_info - main struct
* Notes:
* Returns: MV_OK if success, MV_FAIL if fail.
*/
static int ddr3_read_leveling_single_cs_window_mode(u32 cs, u32 freq,
int ratio_2to1, u32 ecc,
MV_DRAM_INFO *dram_info)
{
u32 reg, delay, phase, sum, pup, rd_sample_delay, add, locked_pups,
repeat_max_cnt, sdram_offset, final_sum, locked_sum;
u32 delay_s, delay_e, tmp, phase_min, ui_max_delay;
int all_locked, first_octet_locked, counter_in_progress;
int final_delay = 0;
DEBUG_RL_FULL_C("DDR3 - Read Leveling - Single CS - ", (u32) cs, 1);
/* Init values */
phase = 0;
delay = 0;
rd_sample_delay = dram_info->cl;
all_locked = 0;
first_octet_locked = 0;
repeat_max_cnt = 0;
sum = 0;
final_sum = 0;
locked_sum = 0;
for (pup = 0; pup < (dram_info->num_of_std_pups * (1 - ecc) + ecc);
pup++)
dram_info->rl_val[cs][pup + ecc * ECC_BIT][S] = 0;
/* Main loop */
while (!all_locked) {
counter_in_progress = 0;
DEBUG_RL_FULL_S("DDR3 - Read Leveling - RdSmplDly = ");
DEBUG_RL_FULL_D(rd_sample_delay, 2);
DEBUG_RL_FULL_S(", RdRdyDly = ");
DEBUG_RL_FULL_D(dram_info->rd_rdy_dly, 2);
DEBUG_RL_FULL_S(", Phase = ");
DEBUG_RL_FULL_D(phase, 1);
DEBUG_RL_FULL_S(", Delay = ");
DEBUG_RL_FULL_D(delay, 2);
DEBUG_RL_FULL_S("\n");
/*
* Broadcast to all PUPs current RL delays: DQS phase,leveling
* delay
*/
ddr3_write_pup_reg(PUP_RL_MODE, cs, PUP_BC, phase, delay);
/* Reset PHY read FIFO */
reg = reg_read(REG_DRAM_TRAINING_2_ADDR) |
(1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS);
/* 0x15B8 - Training SW 2 Register */
reg_write(REG_DRAM_TRAINING_2_ADDR, reg);
do {
reg = (reg_read(REG_DRAM_TRAINING_2_ADDR)) &
(1 << REG_DRAM_TRAINING_2_FIFO_RST_OFFS);
} while (reg); /* Wait for '0' */
/* Read pattern from SDRAM */
sdram_offset = cs * (SDRAM_CS_SIZE + 1) + SDRAM_RL_OFFS;
locked_pups = 0;
if (MV_OK !=
ddr3_sdram_compare(dram_info, 0xFF, &locked_pups,
rl_pattern, LEN_STD_PATTERN,
sdram_offset, 0, 0, NULL, 0))
return MV_DDR3_TRAINING_ERR_RD_LVL_WIN_PATTERN;
/* Octet evaluation */
for (pup = 0; pup < (dram_info->num_of_std_pups *
(1 - ecc) + ecc); pup++) {
/* pup_num = Q or 1 for ECC */
int idx;
idx = pup + ecc * ECC_BIT;
/* Check Overrun */
if (!((reg_read(REG_DRAM_TRAINING_2_ADDR) >>
(REG_DRAM_TRAINING_2_OVERRUN_OFFS +
pup)) & 0x1)) {
/* If no OverRun */
/* Inside the window */
if (dram_info->rl_val[cs][idx][S] == RL_WINDOW_STATE) {
/*
* Match expected value ? - Update
* State Machine
*/
if (((~locked_pups >> pup) & 0x1)
&& (final_delay == 0)) {
/* Match - Still inside the Window */
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We got another match inside the window for pup: ",
(u32)pup, 1);
} else {
/* We got fail -> this is the end of the window */
dram_info->rl_val[cs][idx][DE] = delay;
dram_info->rl_val[cs][idx][PE] = phase;
/* Go to Final State */
dram_info->rl_val[cs][idx][S]++;
final_sum++;
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We finished the window for pup: ",
(u32)pup, 1);
}
/* Before the start of the window */
} else if (dram_info->rl_val[cs][idx][S] ==
RL_UNLOCK_STATE) {
/* Must be RL_UNLOCK_STATE */
/*
* Match expected value ? - Update
* State Machine
*/
if (dram_info->rl_val[cs][idx][C] <
RL_RETRY_COUNT) {
if (((~locked_pups >> pup) & 0x1)) {
/* Match */
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We have no overrun and a match on pup: ",
(u32)pup, 1);
dram_info->rl_val[cs][idx][C]++;
/* If pup got to last state - lock the delays */
if (dram_info->rl_val[cs][idx][C] ==
RL_RETRY_COUNT) {
dram_info->rl_val[cs][idx][C] = 0;
dram_info->rl_val[cs][idx][DS] =
delay;
dram_info->rl_val[cs][idx][PS] =
phase;
dram_info->rl_val[cs][idx][S]++; /* Go to Window State */
locked_sum++;
/* Will count the pups that got locked */
/* IF First lock - need to lock delays */
if (first_octet_locked == 0) {
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We got first lock on pup: ",
(u32)pup, 1);
first_octet_locked
=
1;
}
}
/* if pup is in not in final state but there was match - dont increment counter */
else {
counter_in_progress
= 1;
}
}
}
}
} else {
DEBUG_RL_FULL_C("DDR3 - Read Leveling - We got overrun on pup: ",
(u32)pup, 1);
counter_in_progress = 1;
}
}
if (final_sum == (dram_info->num_of_std_pups * (1 - ecc) + ecc)) {
all_locked = 1;
DEBUG_RL_FULL_S("DDR3 - Read Leveling - Single Cs - All pups locked\n");
}
/*
* This is a fix for unstable condition where pups are
* toggling between match and no match
*/
/*
* If some of the pups is >1 <3, check if we did it too many
* times
*/
if (counter_in_progress == 1) {
if (repeat_max_cnt < RL_RETRY_COUNT) {
/* Notify at least one Counter is >=1 and < 3 */
repeat_max_cnt++;
counter_in_progress = 1;
DEBUG_RL_FULL_S("DDR3 - Read Leveling - Counter is >=1 and <3\n");
DEBUG_RL_FULL_S("DDR3 - Read Leveling - So we will not increment the delay to see if locked again\n");
} else {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - repeat_max_cnt reached max so now we will increment the delay\n");
counter_in_progress = 0;
}
}
/*
* Check some of the pups are in the middle of state machine
* and don't increment the delays
*/
if (!counter_in_progress && !all_locked) {
repeat_max_cnt = 0;
if (!ratio_2to1)
ui_max_delay = MAX_DELAY_INV;
else
ui_max_delay = MAX_DELAY;
/* Increment Delay */
if (delay < ui_max_delay) {
/* Delay Incrementation */
delay++;
if (delay == ui_max_delay) {
/*
* Mark the last delay/pahse place
* for window final place
*/
if ((!ratio_2to1
&& phase == MAX_PHASE_RL_L_1TO1)
|| (ratio_2to1
&& phase ==
MAX_PHASE_RL_L_2TO1))
final_delay = 1;
}
} else {
/* Phase+CL Incrementation */
delay = 0;
if (!ratio_2to1) {
/* 1:1 mode */
if (first_octet_locked) {
/* some pupet was Locked */
if (phase < MAX_PHASE_RL_L_1TO1) {
#ifdef RL_WINDOW_WA
if (phase == 0)
#else
if (phase == 1)
#endif
phase = 4;
else
phase++;
} else {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
return MV_DDR3_TRAINING_ERR_RD_LVL_WIN_PUP_UNLOCK;
}
} else {
/* No Pup was Locked */
if (phase < MAX_PHASE_RL_UL_1TO1) {
#ifdef RL_WINDOW_WA
if (phase == 0)
phase = 4;
#else
phase++;
#endif
} else
phase = 0;
}
} else {
/* 2:1 mode */
if (first_octet_locked) {
/* Some Pup was Locked */
if (phase < MAX_PHASE_RL_L_2TO1) {
phase++;
} else {
DEBUG_RL_FULL_S("DDR3 - Read Leveling - ERROR - NOT all PUPs Locked\n");
return MV_DDR3_TRAINING_ERR_RD_LVL_WIN_PUP_UNLOCK;
}
} else {
/* No Pup was Locked */
if (phase < MAX_PHASE_RL_UL_2TO1)
phase++;
else
phase = 0;
}
}
/*
* If we finished a full Phases cycle (so
* now phase = 0, need to increment
* rd_sample_dly
*/
if (phase == 0 && first_octet_locked == 0) {
rd_sample_delay++;
/* Set current rd_sample_delay */
reg = reg_read(REG_READ_DATA_SAMPLE_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_SAMPLE_DELAYS_MASK <<
(REG_READ_DATA_SAMPLE_DELAYS_OFFS
* cs));
reg |= (rd_sample_delay <<
(REG_READ_DATA_SAMPLE_DELAYS_OFFS *
cs));
reg_write(REG_READ_DATA_SAMPLE_DELAYS_ADDR,
reg);
}
/*
* Set current rdReadyDelay according to the
* hash table (Need to do this in every phase
* change)
*/
if (!ratio_2to1) {
/* 1:1 mode */
add = reg_read(REG_TRAINING_DEBUG_2_ADDR);
switch (phase) {
case 0:
add = add >>
REG_TRAINING_DEBUG_2_OFFS;
break;
case 1:
add = add >>
(REG_TRAINING_DEBUG_2_OFFS
+ 3);
break;
case 4:
add = add >>
(REG_TRAINING_DEBUG_2_OFFS
+ 6);
break;
case 5:
add = add >>
(REG_TRAINING_DEBUG_2_OFFS
+ 9);
break;
}
} else {
/* 2:1 mode */
add = reg_read(REG_TRAINING_DEBUG_3_ADDR);
add = (add >> phase *
REG_TRAINING_DEBUG_3_OFFS);
}
add &= REG_TRAINING_DEBUG_2_MASK;
reg = reg_read(REG_READ_DATA_READY_DELAYS_ADDR);
reg &= ~(REG_READ_DATA_READY_DELAYS_MASK <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg |= ((rd_sample_delay + add) <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, reg);
dram_info->rd_smpl_dly = rd_sample_delay;
dram_info->rd_rdy_dly = rd_sample_delay + add;
}
/* Reset counters for pups with states<RD_STATE_COUNT */
for (pup = 0;
pup <
(dram_info->num_of_std_pups * (1 - ecc) + ecc);
pup++) {
if (dram_info->rl_val[cs][idx][C] < RL_RETRY_COUNT)
dram_info->rl_val[cs][idx][C] = 0;
}
}
}
phase_min = 10;
for (pup = 0; pup < (dram_info->num_of_std_pups); pup++) {
DEBUG_RL_S("DDR3 - Read Leveling - Window info - PUP: ");
DEBUG_RL_D((u32) pup, 1);
DEBUG_RL_S(", PS: ");
DEBUG_RL_D((u32) dram_info->rl_val[cs][pup][PS], 1);
DEBUG_RL_S(", DS: ");
DEBUG_RL_D((u32) dram_info->rl_val[cs][pup][DS], 2);
DEBUG_RL_S(", PE: ");
DEBUG_RL_D((u32) dram_info->rl_val[cs][pup][PE], 1);
DEBUG_RL_S(", DE: ");
DEBUG_RL_D((u32) dram_info->rl_val[cs][pup][DE], 2);
DEBUG_RL_S("\n");
}
/* Find center of the window procedure */
for (pup = 0; pup < (dram_info->num_of_std_pups * (1 - ecc) + ecc);
pup++) {
#ifdef RL_WINDOW_WA
if (!ratio_2to1) { /* 1:1 mode */
if (dram_info->rl_val[cs][idx][PS] == 4)
dram_info->rl_val[cs][idx][PS] = 1;
if (dram_info->rl_val[cs][idx][PE] == 4)
dram_info->rl_val[cs][idx][PE] = 1;
delay_s = dram_info->rl_val[cs][idx][PS] *
MAX_DELAY_INV + dram_info->rl_val[cs][idx][DS];
delay_e = dram_info->rl_val[cs][idx][PE] *
MAX_DELAY_INV + dram_info->rl_val[cs][idx][DE];
tmp = (delay_e - delay_s) / 2 + delay_s;
phase = tmp / MAX_DELAY_INV;
if (phase == 1) /* 1:1 mode */
phase = 4;
if (phase < phase_min) /* for the read ready delay */
phase_min = phase;
dram_info->rl_val[cs][idx][P] = phase;
dram_info->rl_val[cs][idx][D] = tmp % MAX_DELAY_INV;
} else {
delay_s = dram_info->rl_val[cs][idx][PS] *
MAX_DELAY + dram_info->rl_val[cs][idx][DS];
delay_e = dram_info->rl_val[cs][idx][PE] *
MAX_DELAY + dram_info->rl_val[cs][idx][DE];
tmp = (delay_e - delay_s) / 2 + delay_s;
phase = tmp / MAX_DELAY;
if (phase < phase_min) /* for the read ready delay */
phase_min = phase;
dram_info->rl_val[cs][idx][P] = phase;
dram_info->rl_val[cs][idx][D] = tmp % MAX_DELAY;
}
#else
if (!ratio_2to1) { /* 1:1 mode */
if (dram_info->rl_val[cs][idx][PS] > 1)
dram_info->rl_val[cs][idx][PS] -= 2;
if (dram_info->rl_val[cs][idx][PE] > 1)
dram_info->rl_val[cs][idx][PE] -= 2;
}
delay_s = dram_info->rl_val[cs][idx][PS] * MAX_DELAY +
dram_info->rl_val[cs][idx][DS];
delay_e = dram_info->rl_val[cs][idx][PE] * MAX_DELAY +
dram_info->rl_val[cs][idx][DE];
tmp = (delay_e - delay_s) / 2 + delay_s;
phase = tmp / MAX_DELAY;
if (!ratio_2to1 && phase > 1) /* 1:1 mode */
phase += 2;
if (phase < phase_min) /* for the read ready delay */
phase_min = phase;
dram_info->rl_val[cs][idx][P] = phase;
dram_info->rl_val[cs][idx][D] = tmp % MAX_DELAY;
#endif
}
/* Set current rdReadyDelay according to the hash table (Need to do this in every phase change) */
if (!ratio_2to1) { /* 1:1 mode */
add = reg_read(REG_TRAINING_DEBUG_2_ADDR);
switch (phase_min) {
case 0:
add = (add >> REG_TRAINING_DEBUG_2_OFFS);
break;
case 1:
add = (add >> (REG_TRAINING_DEBUG_2_OFFS + 3));
break;
case 4:
add = (add >> (REG_TRAINING_DEBUG_2_OFFS + 6));
break;
case 5:
add = (add >> (REG_TRAINING_DEBUG_2_OFFS + 9));
break;
}
} else { /* 2:1 mode */
add = reg_read(REG_TRAINING_DEBUG_3_ADDR);
add = (add >> phase_min * REG_TRAINING_DEBUG_3_OFFS);
}
add &= REG_TRAINING_DEBUG_2_MASK;
reg = reg_read(REG_READ_DATA_READY_DELAYS_ADDR);
reg &=
~(REG_READ_DATA_READY_DELAYS_MASK <<
(REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg |=
((rd_sample_delay + add) << (REG_READ_DATA_READY_DELAYS_OFFS * cs));
reg_write(REG_READ_DATA_READY_DELAYS_ADDR, reg);
dram_info->rd_rdy_dly = rd_sample_delay + add;
for (cs = 0; cs < dram_info->num_cs; cs++) {
for (pup = 0; pup < dram_info->num_of_total_pups; pup++) {
reg = ddr3_read_pup_reg(PUP_RL_MODE + 0x1, cs, pup);
dram_info->rl_val[cs][pup][DQS] = (reg & 0x3F);
}
}
return MV_OK;
}
#endif