upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mtd/nand/fsmc_nand.c

519 lines
14 KiB

/*
* (C) Copyright 2010
* Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
*
* (C) Copyright 2012
* Amit Virdi, ST Microelectronics, amit.virdi@st.com.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/fsmc_nand.h>
#include <asm/arch/hardware.h>
static u32 fsmc_version;
static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
CONFIG_SYS_FSMC_BASE;
/*
* ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
* data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
* correct 1 bit in 512 bytes
*/
static struct nand_ecclayout fsmc_ecc4_lp_layout = {
.eccbytes = 104,
.eccpos = { 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14,
18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30,
34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46,
50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62,
66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78,
82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94,
98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110,
114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126
},
.oobfree = {
{.offset = 15, .length = 3},
{.offset = 31, .length = 3},
{.offset = 47, .length = 3},
{.offset = 63, .length = 3},
{.offset = 79, .length = 3},
{.offset = 95, .length = 3},
{.offset = 111, .length = 3},
{.offset = 127, .length = 1}
}
};
/*
* ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
* of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
* bytes are free for use.
*/
static struct nand_ecclayout fsmc_ecc4_224_layout = {
.eccbytes = 104,
.eccpos = { 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14,
18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30,
34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46,
50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62,
66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78,
82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94,
98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110,
114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126
},
.oobfree = {
{.offset = 15, .length = 3},
{.offset = 31, .length = 3},
{.offset = 47, .length = 3},
{.offset = 63, .length = 3},
{.offset = 79, .length = 3},
{.offset = 95, .length = 3},
{.offset = 111, .length = 3},
{.offset = 127, .length = 97}
}
};
/*
* ECC placement definitions in oobfree type format
* There are 13 bytes of ecc for every 512 byte block and it has to be read
* consecutively and immediately after the 512 byte data block for hardware to
* generate the error bit offsets in 512 byte data
* Managing the ecc bytes in the following way makes it easier for software to
* read ecc bytes consecutive to data bytes. This way is similar to
* oobfree structure maintained already in u-boot nand driver
*/
static struct fsmc_eccplace fsmc_eccpl_lp = {
.eccplace = {
{.offset = 2, .length = 13},
{.offset = 18, .length = 13},
{.offset = 34, .length = 13},
{.offset = 50, .length = 13},
{.offset = 66, .length = 13},
{.offset = 82, .length = 13},
{.offset = 98, .length = 13},
{.offset = 114, .length = 13}
}
};
static struct nand_ecclayout fsmc_ecc4_sp_layout = {
.eccbytes = 13,
.eccpos = { 0, 1, 2, 3, 6, 7, 8,
9, 10, 11, 12, 13, 14
},
.oobfree = {
{.offset = 15, .length = 1},
}
};
static struct fsmc_eccplace fsmc_eccpl_sp = {
.eccplace = {
{.offset = 0, .length = 4},
{.offset = 6, .length = 9}
}
};
static struct nand_ecclayout fsmc_ecc1_layout = {
.eccbytes = 24,
.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
.oobfree = {
{.offset = 8, .length = 8},
{.offset = 24, .length = 8},
{.offset = 40, .length = 8},
{.offset = 56, .length = 8},
{.offset = 72, .length = 8},
{.offset = 88, .length = 8},
{.offset = 104, .length = 8},
{.offset = 120, .length = 8}
}
};
/* Count the number of 0's in buff upto a max of max_bits */
static int count_written_bits(uint8_t *buff, int size, int max_bits)
{
int k, written_bits = 0;
for (k = 0; k < size; k++) {
written_bits += hweight8(~buff[k]);
if (written_bits > max_bits)
break;
}
return written_bits;
}
static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
{
struct nand_chip *this = mtd_to_nand(mtd);
ulong IO_ADDR_W;
if (ctrl & NAND_CTRL_CHANGE) {
IO_ADDR_W = (ulong)this->IO_ADDR_W;
IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
if (ctrl & NAND_CLE)
IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
if (ctrl & NAND_ALE)
IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
if (ctrl & NAND_NCE) {
writel(readl(&fsmc_regs_p->pc) |
FSMC_ENABLE, &fsmc_regs_p->pc);
} else {
writel(readl(&fsmc_regs_p->pc) &
~FSMC_ENABLE, &fsmc_regs_p->pc);
}
this->IO_ADDR_W = (void *)IO_ADDR_W;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, this->IO_ADDR_W);
}
static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
/* The calculated ecc is actually the correction index in data */
u32 err_idx[8];
u32 num_err, i;
u32 ecc1, ecc2, ecc3, ecc4;
num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
if (likely(num_err == 0))
return 0;
if (unlikely(num_err > 8)) {
/*
* This is a temporary erase check. A newly erased page read
* would result in an ecc error because the oob data is also
* erased to FF and the calculated ecc for an FF data is not
* FF..FF.
* This is a workaround to skip performing correction in case
* data is FF..FF
*
* Logic:
* For every page, each bit written as 0 is counted until these
* number of bits are greater than 8 (the maximum correction
* capability of FSMC for each 512 + 13 bytes)
*/
int bits_ecc = count_written_bits(read_ecc, 13, 8);
int bits_data = count_written_bits(dat, 512, 8);
if ((bits_ecc + bits_data) <= 8) {
if (bits_data)
memset(dat, 0xff, 512);
return bits_data + bits_ecc;
}
return -EBADMSG;
}
ecc1 = readl(&fsmc_regs_p->ecc1);
ecc2 = readl(&fsmc_regs_p->ecc2);
ecc3 = readl(&fsmc_regs_p->ecc3);
ecc4 = readl(&fsmc_regs_p->sts);
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
err_idx[3] = (ecc2 >> 7) & 0x1FFF;
err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
err_idx[5] = (ecc3 >> 1) & 0x1FFF;
err_idx[6] = (ecc3 >> 14) & 0x1FFF;
err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
i = 0;
while (i < num_err) {
err_idx[i] ^= 3;
if (err_idx[i] < 512 * 8)
__change_bit(err_idx[i], dat);
i++;
}
return num_err;
}
static int fsmc_read_hwecc(struct mtd_info *mtd,
const u_char *data, u_char *ecc)
{
u_int ecc_tmp;
int timeout = CONFIG_SYS_HZ;
ulong start;
switch (fsmc_version) {
case FSMC_VER8:
start = get_timer(0);
while (get_timer(start) < timeout) {
/*
* Busy waiting for ecc computation
* to finish for 512 bytes
*/
if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
break;
}
ecc_tmp = readl(&fsmc_regs_p->ecc1);
ecc[0] = (u_char) (ecc_tmp >> 0);
ecc[1] = (u_char) (ecc_tmp >> 8);
ecc[2] = (u_char) (ecc_tmp >> 16);
ecc[3] = (u_char) (ecc_tmp >> 24);
ecc_tmp = readl(&fsmc_regs_p->ecc2);
ecc[4] = (u_char) (ecc_tmp >> 0);
ecc[5] = (u_char) (ecc_tmp >> 8);
ecc[6] = (u_char) (ecc_tmp >> 16);
ecc[7] = (u_char) (ecc_tmp >> 24);
ecc_tmp = readl(&fsmc_regs_p->ecc3);
ecc[8] = (u_char) (ecc_tmp >> 0);
ecc[9] = (u_char) (ecc_tmp >> 8);
ecc[10] = (u_char) (ecc_tmp >> 16);
ecc[11] = (u_char) (ecc_tmp >> 24);
ecc_tmp = readl(&fsmc_regs_p->sts);
ecc[12] = (u_char) (ecc_tmp >> 16);
break;
default:
ecc_tmp = readl(&fsmc_regs_p->ecc1);
ecc[0] = (u_char) (ecc_tmp >> 0);
ecc[1] = (u_char) (ecc_tmp >> 8);
ecc[2] = (u_char) (ecc_tmp >> 16);
break;
}
return 0;
}
void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
&fsmc_regs_p->pc);
writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
&fsmc_regs_p->pc);
writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
&fsmc_regs_p->pc);
}
/*
* fsmc_read_page_hwecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller expects OOB data read to chip->oob_poi
* @page: page number to read
*
* This routine is needed for fsmc verison 8 as reading from NAND chip has to be
* performed in a strict sequence as follows:
* data(512 byte) -> ecc(13 byte)
* After this read, fsmc hardware generates and reports error data bits(upto a
* max of 8 bits)
*/
static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct fsmc_eccplace *fsmc_eccpl;
int i, j, s, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
int off, len, group = 0;
uint8_t oob[13] __attribute__ ((aligned (2)));
/* Differentiate between small and large page ecc place definitions */
if (mtd->writesize == 512)
fsmc_eccpl = &fsmc_eccpl_sp;
else
fsmc_eccpl = &fsmc_eccpl_lp;
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
for (j = 0; j < eccbytes;) {
off = fsmc_eccpl->eccplace[group].offset;
len = fsmc_eccpl->eccplace[group].length;
group++;
/*
* length is intentionally kept a higher multiple of 2
* to read at least 13 bytes even in case of 16 bit NAND
* devices
*/
if (chip->options & NAND_BUSWIDTH_16)
len = roundup(len, 2);
chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
chip->read_buf(mtd, oob + j, len);
j += len;
}
memcpy(&ecc_code[i], oob, 13);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i],
&ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
#ifndef CONFIG_SPL_BUILD
/*
* fsmc_nand_switch_ecc - switch the ECC operation between different engines
*
* @eccstrength - the number of bits that could be corrected
* (1 - HW, 4 - SW BCH4)
*/
int fsmc_nand_switch_ecc(uint32_t eccstrength)
{
struct nand_chip *nand;
struct mtd_info *mtd;
int err;
/*
* This functions is only called on SPEAr600 platforms, supporting
* 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson
* Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()
* function, as it doesn't need to switch to a different ECC layout.
*/
mtd = get_nand_dev_by_index(nand_curr_device);
nand = mtd_to_nand(mtd);
/* Setup the ecc configurations again */
if (eccstrength == 1) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
nand->ecc.layout = &fsmc_ecc1_layout;
nand->ecc.calculate = fsmc_read_hwecc;
nand->ecc.correct = nand_correct_data;
} else if (eccstrength == 4) {
/*
* .calculate .correct and .bytes will be set in
* nand_scan_tail()
*/
nand->ecc.mode = NAND_ECC_SOFT_BCH;
nand->ecc.strength = 4;
nand->ecc.layout = NULL;
} else {
printf("Error: ECC strength %d not supported!\n", eccstrength);
}
/* Update NAND handling after ECC mode switch */
err = nand_scan_tail(mtd);
return err;
}
#endif /* CONFIG_SPL_BUILD */
int fsmc_nand_init(struct nand_chip *nand)
{
static int chip_nr;
struct mtd_info *mtd;
u32 peripid2 = readl(&fsmc_regs_p->peripid2);
fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
FSMC_REVISION_MSK;
writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
&fsmc_regs_p->pc);
#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
&fsmc_regs_p->pc);
#else
#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
#endif
writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
&fsmc_regs_p->pc);
writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
&fsmc_regs_p->comm);
writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
&fsmc_regs_p->attrib);
nand->options = 0;
#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
nand->options |= NAND_BUSWIDTH_16;
#endif
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = 512;
nand->ecc.calculate = fsmc_read_hwecc;
nand->ecc.hwctl = fsmc_enable_hwecc;
nand->cmd_ctrl = fsmc_nand_hwcontrol;
nand->IO_ADDR_R = nand->IO_ADDR_W =
(void __iomem *)CONFIG_SYS_NAND_BASE;
nand->badblockbits = 7;
mtd = nand_to_mtd(nand);
switch (fsmc_version) {
case FSMC_VER8:
nand->ecc.bytes = 13;
nand->ecc.strength = 8;
nand->ecc.correct = fsmc_bch8_correct_data;
nand->ecc.read_page = fsmc_read_page_hwecc;
if (mtd->writesize == 512)
nand->ecc.layout = &fsmc_ecc4_sp_layout;
else {
if (mtd->oobsize == 224)
nand->ecc.layout = &fsmc_ecc4_224_layout;
else
nand->ecc.layout = &fsmc_ecc4_lp_layout;
}
break;
default:
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
nand->ecc.layout = &fsmc_ecc1_layout;
nand->ecc.correct = nand_correct_data;
break;
}
/* Detect NAND chips */
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
return -ENXIO;
if (nand_scan_tail(mtd))
return -ENXIO;
if (nand_register(chip_nr++, mtd))
return -ENXIO;
return 0;
}