upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/mpl/pip405/pip405.c

958 lines
24 KiB

/*
* (C) Copyright 2001
* Denis Peter, MPL AG Switzerland, d.peter@mpl.ch
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* TODO: clean-up
*/
#include <common.h>
#include "pip405.h"
#include <asm/processor.h>
#include <i2c.h>
#include <stdio_dev.h>
#include "../common/isa.h"
#include "../common/common_util.h"
DECLARE_GLOBAL_DATA_PTR;
#undef SDRAM_DEBUG
#define FALSE 0
#define TRUE 1
/* stdlib.h causes some compatibility problems; should fixe these! -- wd */
#ifndef __ldiv_t_defined
typedef struct {
long int quot; /* Quotient */
long int rem; /* Remainder */
} ldiv_t;
extern ldiv_t ldiv (long int __numer, long int __denom);
# define __ldiv_t_defined 1
#endif
typedef enum {
SDRAM_NO_ERR,
SDRAM_SPD_COMM_ERR,
SDRAM_SPD_CHKSUM_ERR,
SDRAM_UNSUPPORTED_ERR,
SDRAM_UNKNOWN_ERR
} SDRAM_ERR;
typedef struct {
const unsigned char mode;
const unsigned char row;
const unsigned char col;
const unsigned char bank;
} SDRAM_SETUP;
static const SDRAM_SETUP sdram_setup_table[] = {
{1, 11, 9, 2},
{1, 11, 10, 2},
{2, 12, 9, 4},
{2, 12, 10, 4},
{3, 13, 9, 4},
{3, 13, 10, 4},
{3, 13, 11, 4},
{4, 12, 8, 2},
{4, 12, 8, 4},
{5, 11, 8, 2},
{5, 11, 8, 4},
{6, 13, 8, 2},
{6, 13, 8, 4},
{7, 13, 9, 2},
{7, 13, 10, 2},
{0, 0, 0, 0}
};
static const unsigned char cal_indextable[] = {
9, 23, 25
};
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
unsigned short NS10to10PS (unsigned char spd_byte, unsigned char spd_version)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return (ns * 100 + ns10 * 10);
}
/*
* translate ns.ns/4 coding of SPD timing values
* into 10 ps unit values
*/
unsigned short NS4to10PS (unsigned char spd_byte, unsigned char spd_version)
{
unsigned short ns, ns4;
/* isolate upper 6 bits */
ns = (spd_byte >> 2) & 0x3F;
/* isloate lower 2 bits */
ns4 = (spd_byte & 0x03);
return (ns * 100 + ns4 * 25);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
unsigned short NSto10PS (unsigned char spd_byte)
{
return (spd_byte * 100);
}
void SDRAM_err (const char *s)
{
#ifndef SDRAM_DEBUG
(void) get_clocks ();
gd->baudrate = 9600;
serial_init ();
#endif
serial_puts ("\n");
serial_puts (s);
serial_puts ("\n enable SDRAM_DEBUG for more info\n");
for (;;);
}
#ifdef SDRAM_DEBUG
void write_hex (unsigned char i)
{
char cc;
cc = i >> 4;
cc &= 0xf;
if (cc > 9)
serial_putc (cc + 55);
else
serial_putc (cc + 48);
cc = i & 0xf;
if (cc > 9)
serial_putc (cc + 55);
else
serial_putc (cc + 48);
}
void write_4hex (unsigned long val)
{
write_hex ((unsigned char) (val >> 24));
write_hex ((unsigned char) (val >> 16));
write_hex ((unsigned char) (val >> 8));
write_hex ((unsigned char) val);
}
#endif
int board_early_init_f (void)
{
unsigned char datain[128];
unsigned long sdram_size = 0;
SDRAM_SETUP *t = (SDRAM_SETUP *) sdram_setup_table;
unsigned long memclk;
unsigned long tmemclk = 0;
unsigned long tmp, bank, baseaddr, bank_size;
unsigned short i;
unsigned char rows, cols, banks, sdram_banks, density;
unsigned char supported_cal, trp_clocks, trcd_clocks, tras_clocks,
trc_clocks;
unsigned char cal_index, cal_val, spd_version, spd_chksum;
unsigned char buf[8];
#ifdef SDRAM_DEBUG
unsigned char tctp_clocks;
#endif
/* set up the config port */
mtdcr (EBC0_CFGADDR, PB7AP);
mtdcr (EBC0_CFGDATA, CONFIG_PORT_AP);
mtdcr (EBC0_CFGADDR, PB7CR);
mtdcr (EBC0_CFGDATA, CONFIG_PORT_CR);
memclk = get_bus_freq (tmemclk);
tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
#ifdef SDRAM_DEBUG
(void) get_clocks ();
gd->baudrate = 9600;
serial_init ();
serial_puts ("\nstart SDRAM Setup\n");
#endif
/* Read Serial Presence Detect Information */
i2c_init (CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
for (i = 0; i < 128; i++)
datain[i] = 127;
i2c_read(SPD_EEPROM_ADDRESS,0,1,datain,128);
#ifdef SDRAM_DEBUG
serial_puts ("\ni2c_read returns ");
write_hex (i);
serial_puts ("\n");
#endif
#ifdef SDRAM_DEBUG
for (i = 0; i < 128; i++) {
write_hex (datain[i]);
serial_puts (" ");
if (((i + 1) % 16) == 0)
serial_puts ("\n");
}
serial_puts ("\n");
#endif
spd_chksum = 0;
for (i = 0; i < 63; i++) {
spd_chksum += datain[i];
} /* endfor */
if (datain[63] != spd_chksum) {
#ifdef SDRAM_DEBUG
serial_puts ("SPD chksum: 0x");
write_hex (datain[63]);
serial_puts (" != calc. chksum: 0x");
write_hex (spd_chksum);
serial_puts ("\n");
#endif
SDRAM_err ("SPD checksum Error");
}
/* SPD seems to be ok, use it */
/* get SPD version */
spd_version = datain[62];
/* do some sanity checks on the kind of RAM */
if ((datain[0] < 0x80) || /* less than 128 valid bytes in SPD */
(datain[2] != 0x04) || /* if not SDRAM */
(!((datain[6] == 0x40) || (datain[6] == 0x48))) || /* or not (64 Bit or 72 Bit) */
(datain[7] != 0x00) || (datain[8] != 0x01) || /* or not LVTTL signal levels */
(datain[126] == 0x66)) /* or a 66MHz modules */
SDRAM_err ("unsupported SDRAM");
#ifdef SDRAM_DEBUG
serial_puts ("SDRAM sanity ok\n");
#endif
/* get number of rows/cols/banks out of byte 3+4+5 */
rows = datain[3];
cols = datain[4];
banks = datain[5];
/* get number of SDRAM banks out of byte 17 and
supported CAS latencies out of byte 18 */
sdram_banks = datain[17];
supported_cal = datain[18] & ~0x81;
while (t->mode != 0) {
if ((t->row == rows) && (t->col == cols)
&& (t->bank == sdram_banks))
break;
t++;
} /* endwhile */
#ifdef SDRAM_DEBUG
serial_puts ("rows: ");
write_hex (rows);
serial_puts (" cols: ");
write_hex (cols);
serial_puts (" banks: ");
write_hex (banks);
serial_puts (" mode: ");
write_hex (t->mode);
serial_puts ("\n");
#endif
if (t->mode == 0)
SDRAM_err ("unsupported SDRAM");
/* get tRP, tRCD, tRAS and density from byte 27+29+30+31 */
#ifdef SDRAM_DEBUG
serial_puts ("tRP: ");
write_hex (datain[27]);
serial_puts ("\ntRCD: ");
write_hex (datain[29]);
serial_puts ("\ntRAS: ");
write_hex (datain[30]);
serial_puts ("\n");
#endif
trp_clocks = (NSto10PS (datain[27]) + (tmemclk - 1)) / tmemclk;
trcd_clocks = (NSto10PS (datain[29]) + (tmemclk - 1)) / tmemclk;
tras_clocks = (NSto10PS (datain[30]) + (tmemclk - 1)) / tmemclk;
density = datain[31];
/* trc_clocks is sum of trp_clocks + tras_clocks */
trc_clocks = trp_clocks + tras_clocks;
#ifdef SDRAM_DEBUG
/* ctp = ((trp + tras) - trp - trcd) => tras - trcd */
tctp_clocks =
((NSto10PS (datain[30]) - NSto10PS (datain[29])) +
(tmemclk - 1)) / tmemclk;
serial_puts ("c_RP: ");
write_hex (trp_clocks);
serial_puts ("\nc_RCD: ");
write_hex (trcd_clocks);
serial_puts ("\nc_RAS: ");
write_hex (tras_clocks);
serial_puts ("\nc_RC: (RP+RAS): ");
write_hex (trc_clocks);
serial_puts ("\nc_CTP: ((RP+RAS)-RP-RCD): ");
write_hex (tctp_clocks);
serial_puts ("\nt_CTP: RAS - RCD: ");
write_hex ((unsigned
char) ((NSto10PS (datain[30]) -
NSto10PS (datain[29])) >> 8));
write_hex ((unsigned char) (NSto10PS (datain[30]) - NSto10PS (datain[29])));
serial_puts ("\ntmemclk: ");
write_hex ((unsigned char) (tmemclk >> 8));
write_hex ((unsigned char) (tmemclk));
serial_puts ("\n");
#endif
cal_val = 255;
for (i = 6, cal_index = 0; (i > 0) && (cal_index < 3); i--) {
/* is this CAS latency supported ? */
if ((supported_cal >> i) & 0x01) {
buf[0] = datain[cal_indextable[cal_index]];
if (cal_index < 2) {
if (NS10to10PS (buf[0], spd_version) <= tmemclk)
cal_val = i;
} else {
/* SPD bytes 25+26 have another format */
if (NS4to10PS (buf[0], spd_version) <= tmemclk)
cal_val = i;
} /* endif */
cal_index++;
} /* endif */
} /* endfor */
#ifdef SDRAM_DEBUG
serial_puts ("CAL: ");
write_hex (cal_val + 1);
serial_puts ("\n");
#endif
if (cal_val == 255)
SDRAM_err ("unsupported SDRAM");
/* get SDRAM timing register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_TR);
tmp = mfdcr (SDRAM0_CFGDATA) & ~0x018FC01F;
/* insert CASL value */
/* tmp |= ((unsigned long)cal_val) << 23; */
tmp |= ((unsigned long) cal_val) << 23;
/* insert PTA value */
tmp |= ((unsigned long) (trp_clocks - 1)) << 18;
/* insert CTP value */
/* tmp |= ((unsigned long)(trc_clocks - trp_clocks - trcd_clocks - 1)) << 16; */
tmp |= ((unsigned long) (trc_clocks - trp_clocks - trcd_clocks)) << 16;
/* insert LDF (always 01) */
tmp |= ((unsigned long) 0x01) << 14;
/* insert RFTA value */
tmp |= ((unsigned long) (trc_clocks - 4)) << 2;
/* insert RCD value */
tmp |= ((unsigned long) (trcd_clocks - 1)) << 0;
#ifdef SDRAM_DEBUG
serial_puts ("sdtr: ");
write_4hex (tmp);
serial_puts ("\n");
#endif
/* write SDRAM timing register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_TR);
mtdcr (SDRAM0_CFGDATA, tmp);
baseaddr = CONFIG_SYS_SDRAM_BASE;
bank_size = (((unsigned long) density) << 22) / 2;
/* insert AM value */
tmp = ((unsigned long) t->mode - 1) << 13;
/* insert SZ value; */
switch (bank_size) {
case 0x00400000:
tmp |= ((unsigned long) 0x00) << 17;
break;
case 0x00800000:
tmp |= ((unsigned long) 0x01) << 17;
break;
case 0x01000000:
tmp |= ((unsigned long) 0x02) << 17;
break;
case 0x02000000:
tmp |= ((unsigned long) 0x03) << 17;
break;
case 0x04000000:
tmp |= ((unsigned long) 0x04) << 17;
break;
case 0x08000000:
tmp |= ((unsigned long) 0x05) << 17;
break;
case 0x10000000:
tmp |= ((unsigned long) 0x06) << 17;
break;
default:
SDRAM_err ("unsupported SDRAM");
} /* endswitch */
/* get SDRAM bank 0 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B0CR);
bank = mfdcr (SDRAM0_CFGDATA) & ~0xFFCEE001;
bank |= (baseaddr | tmp | 0x01);
#ifdef SDRAM_DEBUG
serial_puts ("bank0: baseaddr: ");
write_4hex (baseaddr);
serial_puts (" banksize: ");
write_4hex (bank_size);
serial_puts (" mb0cf: ");
write_4hex (bank);
serial_puts ("\n");
#endif
baseaddr += bank_size;
sdram_size += bank_size;
/* write SDRAM bank 0 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B0CR);
mtdcr (SDRAM0_CFGDATA, bank);
/* get SDRAM bank 1 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B1CR);
bank = mfdcr (SDRAM0_CFGDATA) & ~0xFFCEE001;
sdram_size = 0;
#ifdef SDRAM_DEBUG
serial_puts ("bank1: baseaddr: ");
write_4hex (baseaddr);
serial_puts (" banksize: ");
write_4hex (bank_size);
#endif
if (banks == 2) {
bank |= (baseaddr | tmp | 0x01);
baseaddr += bank_size;
sdram_size += bank_size;
} /* endif */
#ifdef SDRAM_DEBUG
serial_puts (" mb1cf: ");
write_4hex (bank);
serial_puts ("\n");
#endif
/* write SDRAM bank 1 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B1CR);
mtdcr (SDRAM0_CFGDATA, bank);
/* get SDRAM bank 2 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B2CR);
bank = mfdcr (SDRAM0_CFGDATA) & ~0xFFCEE001;
bank |= (baseaddr | tmp | 0x01);
#ifdef SDRAM_DEBUG
serial_puts ("bank2: baseaddr: ");
write_4hex (baseaddr);
serial_puts (" banksize: ");
write_4hex (bank_size);
serial_puts (" mb2cf: ");
write_4hex (bank);
serial_puts ("\n");
#endif
baseaddr += bank_size;
sdram_size += bank_size;
/* write SDRAM bank 2 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B2CR);
mtdcr (SDRAM0_CFGDATA, bank);
/* get SDRAM bank 3 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B3CR);
bank = mfdcr (SDRAM0_CFGDATA) & ~0xFFCEE001;
#ifdef SDRAM_DEBUG
serial_puts ("bank3: baseaddr: ");
write_4hex (baseaddr);
serial_puts (" banksize: ");
write_4hex (bank_size);
#endif
if (banks == 2) {
bank |= (baseaddr | tmp | 0x01);
baseaddr += bank_size;
sdram_size += bank_size;
}
/* endif */
#ifdef SDRAM_DEBUG
serial_puts (" mb3cf: ");
write_4hex (bank);
serial_puts ("\n");
#endif
/* write SDRAM bank 3 register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_B3CR);
mtdcr (SDRAM0_CFGDATA, bank);
/* get SDRAM refresh interval register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_RTR);
tmp = mfdcr (SDRAM0_CFGDATA) & ~0x3FF80000;
if (tmemclk < NSto10PS (16))
tmp |= 0x05F00000;
else
tmp |= 0x03F80000;
/* write SDRAM refresh interval register */
mtdcr (SDRAM0_CFGADDR, SDRAM0_RTR);
mtdcr (SDRAM0_CFGDATA, tmp);
/* enable SDRAM controller with no ECC, 32-bit SDRAM width, 16 byte burst */
mtdcr (SDRAM0_CFGADDR, SDRAM0_CFG);
tmp = (mfdcr (SDRAM0_CFGDATA) & ~0xFFE00000) | 0x80E00000;
mtdcr (SDRAM0_CFGADDR, SDRAM0_CFG);
mtdcr (SDRAM0_CFGDATA, tmp);
/*-------------------------------------------------------------------------+
| Interrupt controller setup for the PIP405 board.
| Note: IRQ 0-15 405GP internally generated; active high; level sensitive
| IRQ 16 405GP internally generated; active low; level sensitive
| IRQ 17-24 RESERVED
| IRQ 25 (EXT IRQ 0) SouthBridg; active low; level sensitive
| IRQ 26 (EXT IRQ 1) NMI: active low; level sensitive
| IRQ 27 (EXT IRQ 2) SMI: active Low; level sensitive
| IRQ 28 (EXT IRQ 3) PCI SLOT 3; active low; level sensitive
| IRQ 29 (EXT IRQ 4) PCI SLOT 2; active low; level sensitive
| IRQ 30 (EXT IRQ 5) PCI SLOT 1; active low; level sensitive
| IRQ 31 (EXT IRQ 6) PCI SLOT 0; active low; level sensitive
| Note for PIP405 board:
| An interrupt taken for the SouthBridge (IRQ 25) indicates that
| the Interrupt Controller in the South Bridge has caused the
| interrupt. The IC must be read to determine which device
| caused the interrupt.
|
+-------------------------------------------------------------------------*/
mtdcr (UIC0SR, 0xFFFFFFFF); /* clear all ints */
mtdcr (UIC0ER, 0x00000000); /* disable all ints */
mtdcr (UIC0CR, 0x00000000); /* set all to be non-critical (for now) */
mtdcr (UIC0PR, 0xFFFFFF80); /* set int polarities */
mtdcr (UIC0TR, 0x10000000); /* set int trigger levels */
mtdcr (UIC0VCR, 0x00000001); /* set vect base=0,INT0 highest priority */
mtdcr (UIC0SR, 0xFFFFFFFF); /* clear all ints */
return 0;
}
/* ------------------------------------------------------------------------- */
/*
* Check Board Identity:
*/
int checkboard (void)
{
char s[50];
unsigned char bc;
int i;
backup_t *b = (backup_t *) s;
puts ("Board: ");
i = getenv_f("serial#", (char *)s, 32);
if ((i == 0) || strncmp ((char *)s, "PIP405", 6)) {
get_backup_values (b);
if (strncmp (b->signature, "MPL\0", 4) != 0) {
puts ("### No HW ID - assuming PIP405");
} else {
b->serial_name[6] = 0;
printf ("%s SN: %s", b->serial_name,
&b->serial_name[7]);
}
} else {
s[6] = 0;
printf ("%s SN: %s", s, &s[7]);
}
bc = in8 (CONFIG_PORT_ADDR);
printf (" Boot Config: 0x%x\n", bc);
return (0);
}
/* ------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------- */
/*
initdram(int board_type) reads EEPROM via I2c. EEPROM contains all of
the necessary info for SDRAM controller configuration
*/
/* ------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------- */
static int test_dram (unsigned long ramsize);
phys_size_t initdram (int board_type)
{
unsigned long bank_reg[4], tmp, bank_size;
int i, ds;
unsigned long TotalSize;
ds = 0;
/* since the DRAM controller is allready set up,
* calculate the size with the bank registers
*/
mtdcr (SDRAM0_CFGADDR, SDRAM0_B0CR);
bank_reg[0] = mfdcr (SDRAM0_CFGDATA);
mtdcr (SDRAM0_CFGADDR, SDRAM0_B1CR);
bank_reg[1] = mfdcr (SDRAM0_CFGDATA);
mtdcr (SDRAM0_CFGADDR, SDRAM0_B2CR);
bank_reg[2] = mfdcr (SDRAM0_CFGDATA);
mtdcr (SDRAM0_CFGADDR, SDRAM0_B3CR);
bank_reg[3] = mfdcr (SDRAM0_CFGDATA);
TotalSize = 0;
for (i = 0; i < 4; i++) {
if ((bank_reg[i] & 0x1) == 0x1) {
tmp = (bank_reg[i] >> 17) & 0x7;
bank_size = 4 << tmp;
TotalSize += bank_size;
} else
ds = 1;
}
if (ds == 1)
printf ("single-sided DIMM ");
else
printf ("double-sided DIMM ");
test_dram (TotalSize * 1024 * 1024);
/* bank 2 (SDRAM Clock 2) is not usable if 133MHz SDRAM IF */
(void) get_clocks();
if (gd->cpu_clk > 220000000)
TotalSize /= 2;
return (TotalSize * 1024 * 1024);
}
/* ------------------------------------------------------------------------- */
static int test_dram (unsigned long ramsize)
{
/* not yet implemented */
return (1);
}
extern flash_info_t flash_info[]; /* info for FLASH chips */
int misc_init_r (void)
{
/* adjust flash start and size as well as the offset */
gd->bd->bi_flashstart=0-flash_info[0].size;
gd->bd->bi_flashsize=flash_info[0].size-CONFIG_SYS_MONITOR_LEN;
gd->bd->bi_flashoffset=0;
/* if PIP405 has booted from PCI, reset CCR0[24] as described in errata PCI_18 */
if (mfdcr(CPC0_PSR) & PSR_ROM_LOC)
mtspr(SPRN_CCR0, (mfspr(SPRN_CCR0) & ~0x80));
return (0);
}
/***************************************************************************
* some helping routines
*/
int overwrite_console (void)
{
return (in8 (CONFIG_PORT_ADDR) & 0x1); /* return TRUE if console should be overwritten */
}
extern int isa_init (void);
void print_pip405_rev (void)
{
unsigned char part, vers, cfg;
part = in8 (PLD_PART_REG);
vers = in8 (PLD_VERS_REG);
cfg = in8 (PLD_BOARD_CFG_REG);
printf ("Rev: PIP405-%d Rev %c PLD%d %d PLD%d %d\n",
16 - ((cfg >> 4) & 0xf), (cfg & 0xf) + 'A', part & 0xf,
vers & 0xf, (part >> 4) & 0xf, (vers >> 4) & 0xf);
}
extern void check_env(void);
int last_stage_init (void)
{
print_pip405_rev ();
isa_init ();
stdio_print_current_devices ();
check_env();
return 0;
}
/************************************************************************
* Print PIP405 Info
************************************************************************/
void print_pip405_info (void)
{
unsigned char part, vers, cfg, ledu, sysman, flashcom, can, serpwr,
compwr, nicvga, scsirst;
part = in8 (PLD_PART_REG);
vers = in8 (PLD_VERS_REG);
cfg = in8 (PLD_BOARD_CFG_REG);
ledu = in8 (PLD_LED_USER_REG);
sysman = in8 (PLD_SYS_MAN_REG);
flashcom = in8 (PLD_FLASH_COM_REG);
can = in8 (PLD_CAN_REG);
serpwr = in8 (PLD_SER_PWR_REG);
compwr = in8 (PLD_COM_PWR_REG);
nicvga = in8 (PLD_NIC_VGA_REG);
scsirst = in8 (PLD_SCSI_RST_REG);
printf ("PLD Part %d version %d\n",
part & 0xf, vers & 0xf);
printf ("PLD Part %d version %d\n",
(part >> 4) & 0xf, (vers >> 4) & 0xf);
printf ("Board Revision %c\n", (cfg & 0xf) + 'A');
printf ("Population Options %d %d %d %d\n",
(cfg >> 4) & 0x1, (cfg >> 5) & 0x1,
(cfg >> 6) & 0x1, (cfg >> 7) & 0x1);
printf ("User LED0 %s User LED1 %s\n",
((ledu & 0x1) == 0x1) ? "on" : "off",
((ledu & 0x2) == 0x2) ? "on" : "off");
printf ("Additionally Options %d %d\n",
(ledu >> 2) & 0x1, (ledu >> 3) & 0x1);
printf ("User Config Switch %d %d %d %d\n",
(ledu >> 4) & 0x1, (ledu >> 5) & 0x1,
(ledu >> 6) & 0x1, (ledu >> 7) & 0x1);
switch (sysman & 0x3) {
case 0:
printf ("PCI Clocks are running\n");
break;
case 1:
printf ("PCI Clocks are stopped in POS State\n");
break;
case 2:
printf ("PCI Clocks are stopped when PCI_STP# is asserted\n");
break;
case 3:
printf ("PCI Clocks are stopped\n");
break;
}
switch ((sysman >> 2) & 0x3) {
case 0:
printf ("Main Clocks are running\n");
break;
case 1:
printf ("Main Clocks are stopped in POS State\n");
break;
case 2:
case 3:
printf ("PCI Clocks are stopped\n");
break;
}
printf ("INIT asserts %sINT2# (SMI)\n",
((sysman & 0x10) == 0x10) ? "" : "not ");
printf ("INIT asserts %sINT1# (NMI)\n",
((sysman & 0x20) == 0x20) ? "" : "not ");
printf ("INIT occured %d\n", (sysman >> 6) & 0x1);
printf ("SER1 is routed to %s\n",
((flashcom & 0x1) == 0x1) ? "RS485" : "RS232");
printf ("COM2 is routed to %s\n",
((flashcom & 0x2) == 0x2) ? "RS485" : "RS232");
printf ("RS485 is configured as %s duplex\n",
((flashcom & 0x4) == 0x4) ? "full" : "half");
printf ("RS485 is connected to %s\n",
((flashcom & 0x8) == 0x8) ? "COM1" : "COM2");
printf ("SER1 uses handshakes %s\n",
((flashcom & 0x10) == 0x10) ? "DTR/DSR" : "RTS/CTS");
printf ("Bootflash is %swriteprotected\n",
((flashcom & 0x20) == 0x20) ? "not " : "");
printf ("Bootflash VPP is %s\n",
((flashcom & 0x40) == 0x40) ? "on" : "off");
printf ("Bootsector is %swriteprotected\n",
((flashcom & 0x80) == 0x80) ? "not " : "");
switch ((can) & 0x3) {
case 0:
printf ("CAN Controller is on address 0x1000..0x10FF\n");
break;
case 1:
printf ("CAN Controller is on address 0x8000..0x80FF\n");
break;
case 2:
printf ("CAN Controller is on address 0xE000..0xE0FF\n");
break;
case 3:
printf ("CAN Controller is disabled\n");
break;
}
switch ((can >> 2) & 0x3) {
case 0:
printf ("CAN Controller Reset is ISA Reset\n");
break;
case 1:
printf ("CAN Controller Reset is ISA Reset and POS State\n");
break;
case 2:
case 3:
printf ("CAN Controller is in reset\n");
break;
}
if (((can >> 4) < 3) || ((can >> 4) == 8) || ((can >> 4) == 13))
printf ("CAN Interrupt is disabled\n");
else
printf ("CAN Interrupt is ISA INT%d\n", (can >> 4) & 0xf);
switch (serpwr & 0x3) {
case 0:
printf ("SER0 Drivers are enabled\n");
break;
case 1:
printf ("SER0 Drivers are disabled in the POS state\n");
break;
case 2:
case 3:
printf ("SER0 Drivers are disabled\n");
break;
}
switch ((serpwr >> 2) & 0x3) {
case 0:
printf ("SER1 Drivers are enabled\n");
break;
case 1:
printf ("SER1 Drivers are disabled in the POS state\n");
break;
case 2:
case 3:
printf ("SER1 Drivers are disabled\n");
break;
}
switch (compwr & 0x3) {
case 0:
printf ("COM1 Drivers are enabled\n");
break;
case 1:
printf ("COM1 Drivers are disabled in the POS state\n");
break;
case 2:
case 3:
printf ("COM1 Drivers are disabled\n");
break;
}
switch ((compwr >> 2) & 0x3) {
case 0:
printf ("COM2 Drivers are enabled\n");
break;
case 1:
printf ("COM2 Drivers are disabled in the POS state\n");
break;
case 2:
case 3:
printf ("COM2 Drivers are disabled\n");
break;
}
switch ((nicvga) & 0x3) {
case 0:
printf ("PHY is running\n");
break;
case 1:
printf ("PHY is in Power save mode in POS state\n");
break;
case 2:
case 3:
printf ("PHY is in Power save mode\n");
break;
}
switch ((nicvga >> 2) & 0x3) {
case 0:
printf ("VGA is running\n");
break;
case 1:
printf ("VGA is in Power save mode in POS state\n");
break;
case 2:
case 3:
printf ("VGA is in Power save mode\n");
break;
}
printf ("PHY is %sreseted\n", ((nicvga & 0x10) == 0x10) ? "" : "not ");
printf ("VGA is %sreseted\n", ((nicvga & 0x20) == 0x20) ? "" : "not ");
printf ("Reserved Configuration is %d %d\n", (nicvga >> 6) & 0x1,
(nicvga >> 7) & 0x1);
switch ((scsirst) & 0x3) {
case 0:
printf ("SCSI Controller is running\n");
break;
case 1:
printf ("SCSI Controller is in Power save mode in POS state\n");
break;
case 2:
case 3:
printf ("SCSI Controller is in Power save mode\n");
break;
}
printf ("SCSI termination is %s\n",
((scsirst & 0x4) == 0x4) ? "disabled" : "enabled");
printf ("SCSI Controller is %sreseted\n",
((scsirst & 0x10) == 0x10) ? "" : "not ");
printf ("IDE disks are %sreseted\n",
((scsirst & 0x20) == 0x20) ? "" : "not ");
printf ("ISA Bus is %sreseted\n",
((scsirst & 0x40) == 0x40) ? "" : "not ");
printf ("Super IO is %sreseted\n",
((scsirst & 0x80) == 0x80) ? "" : "not ");
}
void user_led0 (unsigned char on)
{
if (on == TRUE)
out8 (PLD_LED_USER_REG, (in8 (PLD_LED_USER_REG) | 0x1));
else
out8 (PLD_LED_USER_REG, (in8 (PLD_LED_USER_REG) & 0xfe));
}
void user_led1 (unsigned char on)
{
if (on == TRUE)
out8 (PLD_LED_USER_REG, (in8 (PLD_LED_USER_REG) | 0x2));
else
out8 (PLD_LED_USER_REG, (in8 (PLD_LED_USER_REG) & 0xfd));
}
void ide_set_reset (int idereset)
{
/* if reset = 1 IDE reset will be asserted */
unsigned char resreg;
resreg = in8 (PLD_SCSI_RST_REG);
if (idereset == 1)
resreg |= 0x20;
else {
udelay(10000);
resreg &= 0xdf;
}
out8 (PLD_SCSI_RST_REG, resreg);
}