upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
413 lines
14 KiB
413 lines
14 KiB
/*
|
|
* Copyright (c) 2013 Google, Inc
|
|
*
|
|
* (C) Copyright 2012
|
|
* Pavel Herrmann <morpheus.ibis@gmail.com>
|
|
* Marek Vasut <marex@denx.de>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#ifndef _DM_DEVICE_H
|
|
#define _DM_DEVICE_H
|
|
|
|
#include <dm/uclass-id.h>
|
|
#include <fdtdec.h>
|
|
#include <linker_lists.h>
|
|
#include <linux/list.h>
|
|
|
|
struct driver_info;
|
|
|
|
/* Driver is active (probed). Cleared when it is removed */
|
|
#define DM_FLAG_ACTIVATED (1 << 0)
|
|
|
|
/* DM is responsible for allocating and freeing platdata */
|
|
#define DM_FLAG_ALLOC_PDATA (1 << 1)
|
|
|
|
/* DM should init this device prior to relocation */
|
|
#define DM_FLAG_PRE_RELOC (1 << 2)
|
|
|
|
/* DM is responsible for allocating and freeing parent_platdata */
|
|
#define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
|
|
|
|
/* Allocate driver private data on a DMA boundary */
|
|
#define DM_FLAG_ALLOC_PRIV_DMA (1 << 4)
|
|
|
|
/**
|
|
* struct udevice - An instance of a driver
|
|
*
|
|
* This holds information about a device, which is a driver bound to a
|
|
* particular port or peripheral (essentially a driver instance).
|
|
*
|
|
* A device will come into existence through a 'bind' call, either due to
|
|
* a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
|
|
* in the device tree (in which case of_offset is >= 0). In the latter case
|
|
* we translate the device tree information into platdata in a function
|
|
* implemented by the driver ofdata_to_platdata method (called just before the
|
|
* probe method if the device has a device tree node.
|
|
*
|
|
* All three of platdata, priv and uclass_priv can be allocated by the
|
|
* driver, or you can use the auto_alloc_size members of struct driver and
|
|
* struct uclass_driver to have driver model do this automatically.
|
|
*
|
|
* @driver: The driver used by this device
|
|
* @name: Name of device, typically the FDT node name
|
|
* @platdata: Configuration data for this device
|
|
* @parent_platdata: The parent bus's configuration data for this device
|
|
* @of_offset: Device tree node offset for this device (- for none)
|
|
* @driver_data: Driver data word for the entry that matched this device with
|
|
* its driver
|
|
* @parent: Parent of this device, or NULL for the top level device
|
|
* @priv: Private data for this device
|
|
* @uclass: Pointer to uclass for this device
|
|
* @uclass_priv: The uclass's private data for this device
|
|
* @parent_priv: The parent's private data for this device
|
|
* @uclass_node: Used by uclass to link its devices
|
|
* @child_head: List of children of this device
|
|
* @sibling_node: Next device in list of all devices
|
|
* @flags: Flags for this device DM_FLAG_...
|
|
* @req_seq: Requested sequence number for this device (-1 = any)
|
|
* @seq: Allocated sequence number for this device (-1 = none). This is set up
|
|
* when the device is probed and will be unique within the device's uclass.
|
|
*/
|
|
struct udevice {
|
|
const struct driver *driver;
|
|
const char *name;
|
|
void *platdata;
|
|
void *parent_platdata;
|
|
int of_offset;
|
|
ulong driver_data;
|
|
struct udevice *parent;
|
|
void *priv;
|
|
struct uclass *uclass;
|
|
void *uclass_priv;
|
|
void *parent_priv;
|
|
struct list_head uclass_node;
|
|
struct list_head child_head;
|
|
struct list_head sibling_node;
|
|
uint32_t flags;
|
|
int req_seq;
|
|
int seq;
|
|
};
|
|
|
|
/* Maximum sequence number supported */
|
|
#define DM_MAX_SEQ 999
|
|
|
|
/* Returns the operations for a device */
|
|
#define device_get_ops(dev) (dev->driver->ops)
|
|
|
|
/* Returns non-zero if the device is active (probed and not removed) */
|
|
#define device_active(dev) ((dev)->flags & DM_FLAG_ACTIVATED)
|
|
|
|
/**
|
|
* struct udevice_id - Lists the compatible strings supported by a driver
|
|
* @compatible: Compatible string
|
|
* @data: Data for this compatible string
|
|
*/
|
|
struct udevice_id {
|
|
const char *compatible;
|
|
ulong data;
|
|
};
|
|
|
|
#ifdef CONFIG_OF_CONTROL
|
|
#define of_match_ptr(_ptr) (_ptr)
|
|
#else
|
|
#define of_match_ptr(_ptr) NULL
|
|
#endif /* CONFIG_OF_CONTROL */
|
|
|
|
/**
|
|
* struct driver - A driver for a feature or peripheral
|
|
*
|
|
* This holds methods for setting up a new device, and also removing it.
|
|
* The device needs information to set itself up - this is provided either
|
|
* by platdata or a device tree node (which we find by looking up
|
|
* matching compatible strings with of_match).
|
|
*
|
|
* Drivers all belong to a uclass, representing a class of devices of the
|
|
* same type. Common elements of the drivers can be implemented in the uclass,
|
|
* or the uclass can provide a consistent interface to the drivers within
|
|
* it.
|
|
*
|
|
* @name: Device name
|
|
* @id: Identiies the uclass we belong to
|
|
* @of_match: List of compatible strings to match, and any identifying data
|
|
* for each.
|
|
* @bind: Called to bind a device to its driver
|
|
* @probe: Called to probe a device, i.e. activate it
|
|
* @remove: Called to remove a device, i.e. de-activate it
|
|
* @unbind: Called to unbind a device from its driver
|
|
* @ofdata_to_platdata: Called before probe to decode device tree data
|
|
* @child_post_bind: Called after a new child has been bound
|
|
* @child_pre_probe: Called before a child device is probed. The device has
|
|
* memory allocated but it has not yet been probed.
|
|
* @child_post_remove: Called after a child device is removed. The device
|
|
* has memory allocated but its device_remove() method has been called.
|
|
* @priv_auto_alloc_size: If non-zero this is the size of the private data
|
|
* to be allocated in the device's ->priv pointer. If zero, then the driver
|
|
* is responsible for allocating any data required.
|
|
* @platdata_auto_alloc_size: If non-zero this is the size of the
|
|
* platform data to be allocated in the device's ->platdata pointer.
|
|
* This is typically only useful for device-tree-aware drivers (those with
|
|
* an of_match), since drivers which use platdata will have the data
|
|
* provided in the U_BOOT_DEVICE() instantiation.
|
|
* @per_child_auto_alloc_size: Each device can hold private data owned by
|
|
* its parent. If required this will be automatically allocated if this
|
|
* value is non-zero.
|
|
* TODO(sjg@chromium.org): I'm considering dropping this, and just having
|
|
* device_probe_child() pass it in. So far the use case for allocating it
|
|
* is SPI, but I found that unsatisfactory. Since it is here I will leave it
|
|
* until things are clearer.
|
|
* @per_child_platdata_auto_alloc_size: A bus likes to store information about
|
|
* its children. If non-zero this is the size of this data, to be allocated
|
|
* in the child's parent_platdata pointer.
|
|
* @ops: Driver-specific operations. This is typically a list of function
|
|
* pointers defined by the driver, to implement driver functions required by
|
|
* the uclass.
|
|
* @flags: driver flags - see DM_FLAGS_...
|
|
*/
|
|
struct driver {
|
|
char *name;
|
|
enum uclass_id id;
|
|
const struct udevice_id *of_match;
|
|
int (*bind)(struct udevice *dev);
|
|
int (*probe)(struct udevice *dev);
|
|
int (*remove)(struct udevice *dev);
|
|
int (*unbind)(struct udevice *dev);
|
|
int (*ofdata_to_platdata)(struct udevice *dev);
|
|
int (*child_post_bind)(struct udevice *dev);
|
|
int (*child_pre_probe)(struct udevice *dev);
|
|
int (*child_post_remove)(struct udevice *dev);
|
|
int priv_auto_alloc_size;
|
|
int platdata_auto_alloc_size;
|
|
int per_child_auto_alloc_size;
|
|
int per_child_platdata_auto_alloc_size;
|
|
const void *ops; /* driver-specific operations */
|
|
uint32_t flags;
|
|
};
|
|
|
|
/* Declare a new U-Boot driver */
|
|
#define U_BOOT_DRIVER(__name) \
|
|
ll_entry_declare(struct driver, __name, driver)
|
|
|
|
/**
|
|
* dev_get_platdata() - Get the platform data for a device
|
|
*
|
|
* This checks that dev is not NULL, but no other checks for now
|
|
*
|
|
* @dev Device to check
|
|
* @return platform data, or NULL if none
|
|
*/
|
|
void *dev_get_platdata(struct udevice *dev);
|
|
|
|
/**
|
|
* dev_get_parent_platdata() - Get the parent platform data for a device
|
|
*
|
|
* This checks that dev is not NULL, but no other checks for now
|
|
*
|
|
* @dev Device to check
|
|
* @return parent's platform data, or NULL if none
|
|
*/
|
|
void *dev_get_parent_platdata(struct udevice *dev);
|
|
|
|
/**
|
|
* dev_get_parentdata() - Get the parent data for a device
|
|
*
|
|
* The parent data is data stored in the device but owned by the parent.
|
|
* For example, a USB device may have parent data which contains information
|
|
* about how to talk to the device over USB.
|
|
*
|
|
* This checks that dev is not NULL, but no other checks for now
|
|
*
|
|
* @dev Device to check
|
|
* @return parent data, or NULL if none
|
|
*/
|
|
void *dev_get_parentdata(struct udevice *dev);
|
|
|
|
/**
|
|
* dev_get_priv() - Get the private data for a device
|
|
*
|
|
* This checks that dev is not NULL, but no other checks for now
|
|
*
|
|
* @dev Device to check
|
|
* @return private data, or NULL if none
|
|
*/
|
|
void *dev_get_priv(struct udevice *dev);
|
|
|
|
/**
|
|
* struct dev_get_parent() - Get the parent of a device
|
|
*
|
|
* @child: Child to check
|
|
* @return parent of child, or NULL if this is the root device
|
|
*/
|
|
struct udevice *dev_get_parent(struct udevice *child);
|
|
|
|
/**
|
|
* dev_get_uclass_priv() - Get the private uclass data for a device
|
|
*
|
|
* This checks that dev is not NULL, but no other checks for now
|
|
*
|
|
* @dev Device to check
|
|
* @return private uclass data for this device, or NULL if none
|
|
*/
|
|
void *dev_get_uclass_priv(struct udevice *dev);
|
|
|
|
/**
|
|
* dev_get_driver_data() - get the driver data used to bind a device
|
|
*
|
|
* When a device is bound using a device tree node, it matches a
|
|
* particular compatible string as in struct udevice_id. This function
|
|
* returns the associated data value for that compatible string. This is
|
|
* the 'data' field in struct udevice_id.
|
|
*
|
|
* For USB devices, this is the driver_info field in struct usb_device_id.
|
|
*
|
|
* @dev: Device to check
|
|
*/
|
|
ulong dev_get_driver_data(struct udevice *dev);
|
|
|
|
/*
|
|
* device_get_uclass_id() - return the uclass ID of a device
|
|
*
|
|
* @dev: Device to check
|
|
* @return uclass ID for the device
|
|
*/
|
|
enum uclass_id device_get_uclass_id(struct udevice *dev);
|
|
|
|
/**
|
|
* device_get_child() - Get the child of a device by index
|
|
*
|
|
* Returns the numbered child, 0 being the first. This does not use
|
|
* sequence numbers, only the natural order.
|
|
*
|
|
* @dev: Parent device to check
|
|
* @index: Child index
|
|
* @devp: Returns pointer to device
|
|
*/
|
|
int device_get_child(struct udevice *parent, int index, struct udevice **devp);
|
|
|
|
/**
|
|
* device_find_child_by_seq() - Find a child device based on a sequence
|
|
*
|
|
* This searches for a device with the given seq or req_seq.
|
|
*
|
|
* For seq, if an active device has this sequence it will be returned.
|
|
* If there is no such device then this will return -ENODEV.
|
|
*
|
|
* For req_seq, if a device (whether activated or not) has this req_seq
|
|
* value, that device will be returned. This is a strong indication that
|
|
* the device will receive that sequence when activated.
|
|
*
|
|
* @parent: Parent device
|
|
* @seq_or_req_seq: Sequence number to find (0=first)
|
|
* @find_req_seq: true to find req_seq, false to find seq
|
|
* @devp: Returns pointer to device (there is only one per for each seq).
|
|
* Set to NULL if none is found
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
|
|
bool find_req_seq, struct udevice **devp);
|
|
|
|
/**
|
|
* device_get_child_by_seq() - Get a child device based on a sequence
|
|
*
|
|
* If an active device has this sequence it will be returned. If there is no
|
|
* such device then this will check for a device that is requesting this
|
|
* sequence.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @parent: Parent device
|
|
* @seq: Sequence number to find (0=first)
|
|
* @devp: Returns pointer to device (there is only one per for each seq)
|
|
* Set to NULL if none is found
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int device_get_child_by_seq(struct udevice *parent, int seq,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* device_find_child_by_of_offset() - Find a child device based on FDT offset
|
|
*
|
|
* Locates a child device by its device tree offset.
|
|
*
|
|
* @parent: Parent device
|
|
* @of_offset: Device tree offset to find
|
|
* @devp: Returns pointer to device if found, otherwise this is set to NULL
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* device_get_child_by_of_offset() - Get a child device based on FDT offset
|
|
*
|
|
* Locates a child device by its device tree offset.
|
|
*
|
|
* The device is probed to activate it ready for use.
|
|
*
|
|
* @parent: Parent device
|
|
* @of_offset: Device tree offset to find
|
|
* @devp: Returns pointer to device if found, otherwise this is set to NULL
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
int device_get_child_by_of_offset(struct udevice *parent, int seq,
|
|
struct udevice **devp);
|
|
|
|
/**
|
|
* device_find_first_child() - Find the first child of a device
|
|
*
|
|
* @parent: Parent device to search
|
|
* @devp: Returns first child device, or NULL if none
|
|
* @return 0
|
|
*/
|
|
int device_find_first_child(struct udevice *parent, struct udevice **devp);
|
|
|
|
/**
|
|
* device_find_first_child() - Find the first child of a device
|
|
*
|
|
* @devp: Pointer to previous child device on entry. Returns pointer to next
|
|
* child device, or NULL if none
|
|
* @return 0
|
|
*/
|
|
int device_find_next_child(struct udevice **devp);
|
|
|
|
/**
|
|
* dev_get_addr() - Get the reg property of a device
|
|
*
|
|
* @dev: Pointer to a device
|
|
*
|
|
* @return addr
|
|
*/
|
|
fdt_addr_t dev_get_addr(struct udevice *dev);
|
|
|
|
/**
|
|
* device_has_children() - check if a device has any children
|
|
*
|
|
* @dev: Device to check
|
|
* @return true if the device has one or more children
|
|
*/
|
|
bool device_has_children(struct udevice *dev);
|
|
|
|
/**
|
|
* device_has_active_children() - check if a device has any active children
|
|
*
|
|
* @dev: Device to check
|
|
* @return true if the device has one or more children and at least one of
|
|
* them is active (probed).
|
|
*/
|
|
bool device_has_active_children(struct udevice *dev);
|
|
|
|
/**
|
|
* device_is_last_sibling() - check if a device is the last sibling
|
|
*
|
|
* This function can be useful for display purposes, when special action needs
|
|
* to be taken when displaying the last sibling. This can happen when a tree
|
|
* view of devices is being displayed.
|
|
*
|
|
* @dev: Device to check
|
|
* @return true if there are no more siblings after this one - i.e. is it
|
|
* last in the list.
|
|
*/
|
|
bool device_is_last_sibling(struct udevice *dev);
|
|
|
|
#endif
|
|
|