upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/video/tegra.c

654 lines
18 KiB

/*
* Copyright (c) 2011 The Chromium OS Authors.
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <pwm.h>
#include <video.h>
#include <asm/system.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/funcmux.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/pwm.h>
#include <asm/arch/display.h>
#include <asm/arch-tegra/timer.h>
DECLARE_GLOBAL_DATA_PTR;
/* These are the stages we go throuh in enabling the LCD */
enum stage_t {
STAGE_START,
STAGE_PANEL_VDD,
STAGE_LVDS,
STAGE_BACKLIGHT_VDD,
STAGE_PWM,
STAGE_BACKLIGHT_EN,
STAGE_DONE,
};
#define FDT_LCD_TIMINGS 4
enum {
FDT_LCD_TIMING_REF_TO_SYNC,
FDT_LCD_TIMING_SYNC_WIDTH,
FDT_LCD_TIMING_BACK_PORCH,
FDT_LCD_TIMING_FRONT_PORCH,
FDT_LCD_TIMING_COUNT,
};
enum lcd_cache_t {
FDT_LCD_CACHE_OFF = 0,
FDT_LCD_CACHE_WRITE_THROUGH = 1 << 0,
FDT_LCD_CACHE_WRITE_BACK = 1 << 1,
FDT_LCD_CACHE_FLUSH = 1 << 2,
FDT_LCD_CACHE_WRITE_BACK_FLUSH = FDT_LCD_CACHE_WRITE_BACK |
FDT_LCD_CACHE_FLUSH,
};
/* Information about the display controller */
struct tegra_lcd_priv {
enum stage_t stage; /* Current stage we are at */
unsigned long timer_next; /* Time we can move onto next stage */
int width; /* width in pixels */
int height; /* height in pixels */
/*
* log2 of number of bpp, in general, unless it bpp is 24 in which
* case this field holds 24 also! This is a U-Boot thing.
*/
int log2_bpp;
struct disp_ctlr *disp; /* Display controller to use */
fdt_addr_t frame_buffer; /* Address of frame buffer */
unsigned pixel_clock; /* Pixel clock in Hz */
uint horiz_timing[FDT_LCD_TIMING_COUNT]; /* Horizontal timing */
uint vert_timing[FDT_LCD_TIMING_COUNT]; /* Vertical timing */
struct udevice *pwm;
int pwm_channel; /* PWM channel to use for backlight */
enum lcd_cache_t cache_type;
struct gpio_desc backlight_en; /* GPIO for backlight enable */
struct gpio_desc lvds_shutdown; /* GPIO for lvds shutdown */
struct gpio_desc backlight_vdd; /* GPIO for backlight vdd */
struct gpio_desc panel_vdd; /* GPIO for panel vdd */
/*
* Panel required timings
* Timing 1: delay between panel_vdd-rise and data-rise
* Timing 2: delay between data-rise and backlight_vdd-rise
* Timing 3: delay between backlight_vdd and pwm-rise
* Timing 4: delay between pwm-rise and backlight_en-rise
*/
uint panel_timings[FDT_LCD_TIMINGS];
};
enum {
/* Maximum LCD size we support */
LCD_MAX_WIDTH = 1366,
LCD_MAX_HEIGHT = 768,
LCD_MAX_LOG2_BPP = VIDEO_BPP16,
};
static void update_window(struct dc_ctlr *dc, struct disp_ctl_win *win)
{
unsigned h_dda, v_dda;
unsigned long val;
val = readl(&dc->cmd.disp_win_header);
val |= WINDOW_A_SELECT;
writel(val, &dc->cmd.disp_win_header);
writel(win->fmt, &dc->win.color_depth);
clrsetbits_le32(&dc->win.byte_swap, BYTE_SWAP_MASK,
BYTE_SWAP_NOSWAP << BYTE_SWAP_SHIFT);
val = win->out_x << H_POSITION_SHIFT;
val |= win->out_y << V_POSITION_SHIFT;
writel(val, &dc->win.pos);
val = win->out_w << H_SIZE_SHIFT;
val |= win->out_h << V_SIZE_SHIFT;
writel(val, &dc->win.size);
val = (win->w * win->bpp / 8) << H_PRESCALED_SIZE_SHIFT;
val |= win->h << V_PRESCALED_SIZE_SHIFT;
writel(val, &dc->win.prescaled_size);
writel(0, &dc->win.h_initial_dda);
writel(0, &dc->win.v_initial_dda);
h_dda = (win->w * 0x1000) / max(win->out_w - 1, 1U);
v_dda = (win->h * 0x1000) / max(win->out_h - 1, 1U);
val = h_dda << H_DDA_INC_SHIFT;
val |= v_dda << V_DDA_INC_SHIFT;
writel(val, &dc->win.dda_increment);
writel(win->stride, &dc->win.line_stride);
writel(0, &dc->win.buf_stride);
val = WIN_ENABLE;
if (win->bpp < 24)
val |= COLOR_EXPAND;
writel(val, &dc->win.win_opt);
writel((unsigned long)win->phys_addr, &dc->winbuf.start_addr);
writel(win->x, &dc->winbuf.addr_h_offset);
writel(win->y, &dc->winbuf.addr_v_offset);
writel(0xff00, &dc->win.blend_nokey);
writel(0xff00, &dc->win.blend_1win);
val = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
val |= GENERAL_UPDATE | WIN_A_UPDATE;
writel(val, &dc->cmd.state_ctrl);
}
static void write_pair(struct tegra_lcd_priv *priv, int item, u32 *reg)
{
writel(priv->horiz_timing[item] |
(priv->vert_timing[item] << 16), reg);
}
static int update_display_mode(struct dc_disp_reg *disp,
struct tegra_lcd_priv *priv)
{
unsigned long val;
unsigned long rate;
unsigned long div;
writel(0x0, &disp->disp_timing_opt);
write_pair(priv, FDT_LCD_TIMING_REF_TO_SYNC, &disp->ref_to_sync);
write_pair(priv, FDT_LCD_TIMING_SYNC_WIDTH, &disp->sync_width);
write_pair(priv, FDT_LCD_TIMING_BACK_PORCH, &disp->back_porch);
write_pair(priv, FDT_LCD_TIMING_FRONT_PORCH, &disp->front_porch);
writel(priv->width | (priv->height << 16), &disp->disp_active);
val = DE_SELECT_ACTIVE << DE_SELECT_SHIFT;
val |= DE_CONTROL_NORMAL << DE_CONTROL_SHIFT;
writel(val, &disp->data_enable_opt);
val = DATA_FORMAT_DF1P1C << DATA_FORMAT_SHIFT;
val |= DATA_ALIGNMENT_MSB << DATA_ALIGNMENT_SHIFT;
val |= DATA_ORDER_RED_BLUE << DATA_ORDER_SHIFT;
writel(val, &disp->disp_interface_ctrl);
/*
* The pixel clock divider is in 7.1 format (where the bottom bit
* represents 0.5). Here we calculate the divider needed to get from
* the display clock (typically 600MHz) to the pixel clock. We round
* up or down as requried.
*/
rate = clock_get_periph_rate(PERIPH_ID_DISP1, CLOCK_ID_CGENERAL);
div = ((rate * 2 + priv->pixel_clock / 2) / priv->pixel_clock) - 2;
debug("Display clock %lu, divider %lu\n", rate, div);
writel(0x00010001, &disp->shift_clk_opt);
val = PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT;
val |= div << SHIFT_CLK_DIVIDER_SHIFT;
writel(val, &disp->disp_clk_ctrl);
return 0;
}
/* Start up the display and turn on power to PWMs */
static void basic_init(struct dc_cmd_reg *cmd)
{
u32 val;
writel(0x00000100, &cmd->gen_incr_syncpt_ctrl);
writel(0x0000011a, &cmd->cont_syncpt_vsync);
writel(0x00000000, &cmd->int_type);
writel(0x00000000, &cmd->int_polarity);
writel(0x00000000, &cmd->int_mask);
writel(0x00000000, &cmd->int_enb);
val = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE;
val |= PW3_ENABLE | PW4_ENABLE | PM0_ENABLE;
val |= PM1_ENABLE;
writel(val, &cmd->disp_pow_ctrl);
val = readl(&cmd->disp_cmd);
val |= CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT;
writel(val, &cmd->disp_cmd);
}
static void basic_init_timer(struct dc_disp_reg *disp)
{
writel(0x00000020, &disp->mem_high_pri);
writel(0x00000001, &disp->mem_high_pri_timer);
}
static const u32 rgb_enb_tab[PIN_REG_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
};
static const u32 rgb_polarity_tab[PIN_REG_COUNT] = {
0x00000000,
0x01000000,
0x00000000,
0x00000000,
};
static const u32 rgb_data_tab[PIN_REG_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
};
static const u32 rgb_sel_tab[PIN_OUTPUT_SEL_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00210222,
0x00002200,
0x00020000,
};
static void rgb_enable(struct dc_com_reg *com)
{
int i;
for (i = 0; i < PIN_REG_COUNT; i++) {
writel(rgb_enb_tab[i], &com->pin_output_enb[i]);
writel(rgb_polarity_tab[i], &com->pin_output_polarity[i]);
writel(rgb_data_tab[i], &com->pin_output_data[i]);
}
for (i = 0; i < PIN_OUTPUT_SEL_COUNT; i++)
writel(rgb_sel_tab[i], &com->pin_output_sel[i]);
}
static int setup_window(struct disp_ctl_win *win,
struct tegra_lcd_priv *priv)
{
win->x = 0;
win->y = 0;
win->w = priv->width;
win->h = priv->height;
win->out_x = 0;
win->out_y = 0;
win->out_w = priv->width;
win->out_h = priv->height;
win->phys_addr = priv->frame_buffer;
win->stride = priv->width * (1 << priv->log2_bpp) / 8;
debug("%s: depth = %d\n", __func__, priv->log2_bpp);
switch (priv->log2_bpp) {
case 5:
case 24:
win->fmt = COLOR_DEPTH_R8G8B8A8;
win->bpp = 32;
break;
case 4:
win->fmt = COLOR_DEPTH_B5G6R5;
win->bpp = 16;
break;
default:
debug("Unsupported LCD bit depth");
return -1;
}
return 0;
}
static void debug_timing(const char *name, unsigned int timing[])
{
#ifdef DEBUG
int i;
debug("%s timing: ", name);
for (i = 0; i < FDT_LCD_TIMING_COUNT; i++)
debug("%d ", timing[i]);
debug("\n");
#endif
}
/**
* Register a new display based on device tree configuration.
*
* The frame buffer can be positioned by U-Boot or overriden by the fdt.
* You should pass in the U-Boot address here, and check the contents of
* struct tegra_lcd_priv to see what was actually chosen.
*
* @param blob Device tree blob
* @param priv Driver's private data
* @param default_lcd_base Default address of LCD frame buffer
* @return 0 if ok, -1 on error (unsupported bits per pixel)
*/
static int tegra_display_probe(const void *blob, struct tegra_lcd_priv *priv,
void *default_lcd_base)
{
struct disp_ctl_win window;
struct dc_ctlr *dc;
priv->frame_buffer = (u32)default_lcd_base;
dc = (struct dc_ctlr *)priv->disp;
/*
* A header file for clock constants was NAKed upstream.
* TODO: Put this into the FDT and fdt_lcd struct when we have clock
* support there
*/
clock_start_periph_pll(PERIPH_ID_HOST1X, CLOCK_ID_PERIPH,
144 * 1000000);
clock_start_periph_pll(PERIPH_ID_DISP1, CLOCK_ID_CGENERAL,
600 * 1000000);
basic_init(&dc->cmd);
basic_init_timer(&dc->disp);
rgb_enable(&dc->com);
if (priv->pixel_clock)
update_display_mode(&dc->disp, priv);
if (setup_window(&window, priv))
return -1;
update_window(dc, &window);
return 0;
}
/**
* Handle the next stage of device init
*/
static int handle_stage(const void *blob, struct tegra_lcd_priv *priv)
{
debug("%s: stage %d\n", __func__, priv->stage);
/* do the things for this stage */
switch (priv->stage) {
case STAGE_START:
/*
* It is possible that the FDT has requested that the LCD be
* disabled. We currently don't support this. It would require
* changes to U-Boot LCD subsystem to have LCD support
* compiled in but not used. An easier option might be to
* still have a frame buffer, but leave the backlight off and
* remove all mention of lcd in the stdout environment
* variable.
*/
funcmux_select(PERIPH_ID_DISP1, FUNCMUX_DEFAULT);
break;
case STAGE_PANEL_VDD:
if (dm_gpio_is_valid(&priv->panel_vdd))
dm_gpio_set_value(&priv->panel_vdd, 1);
break;
case STAGE_LVDS:
if (dm_gpio_is_valid(&priv->lvds_shutdown))
dm_gpio_set_value(&priv->lvds_shutdown, 1);
break;
case STAGE_BACKLIGHT_VDD:
if (dm_gpio_is_valid(&priv->backlight_vdd))
dm_gpio_set_value(&priv->backlight_vdd, 1);
break;
case STAGE_PWM:
/* Enable PWM at 15/16 high, 32768 Hz with divider 1 */
pinmux_set_func(PMUX_PINGRP_GPU, PMUX_FUNC_PWM);
pinmux_tristate_disable(PMUX_PINGRP_GPU);
pwm_set_config(priv->pwm, priv->pwm_channel, 0xdf, 0xff);
pwm_set_enable(priv->pwm, priv->pwm_channel, true);
break;
case STAGE_BACKLIGHT_EN:
if (dm_gpio_is_valid(&priv->backlight_en))
dm_gpio_set_value(&priv->backlight_en, 1);
break;
case STAGE_DONE:
break;
}
/* set up timer for next stage */
priv->timer_next = timer_get_us();
if (priv->stage < FDT_LCD_TIMINGS)
priv->timer_next += priv->panel_timings[priv->stage] * 1000;
/* move to next stage */
priv->stage++;
return 0;
}
/**
* Perform the next stage of the LCD init if it is time to do so.
*
* LCD init can be time-consuming because of the number of delays we need
* while waiting for the backlight power supply, etc. This function can
* be called at various times during U-Boot operation to advance the
* initialization of the LCD to the next stage if sufficient time has
* passed since the last stage. It keeps track of what stage it is up to
* and the time that it is permitted to move to the next stage.
*
* The final call should have wait=1 to complete the init.
*
* @param blob fdt blob containing LCD information
* @param wait 1 to wait until all init is complete, and then return
* 0 to return immediately, potentially doing nothing if it is
* not yet time for the next init.
*/
static int tegra_lcd_check_next_stage(const void *blob,
struct tegra_lcd_priv *priv, int wait)
{
if (priv->stage == STAGE_DONE)
return 0;
do {
/* wait if we need to */
debug("%s: stage %d\n", __func__, priv->stage);
if (priv->stage != STAGE_START) {
int delay = priv->timer_next - timer_get_us();
if (delay > 0) {
if (wait)
udelay(delay);
else
return 0;
}
}
if (handle_stage(blob, priv))
return -1;
} while (wait && priv->stage != STAGE_DONE);
if (priv->stage == STAGE_DONE)
debug("%s: LCD init complete\n", __func__);
return 0;
}
static int tegra_lcd_probe(struct udevice *dev)
{
struct video_uc_platdata *plat = dev_get_uclass_platdata(dev);
struct video_priv *uc_priv = dev_get_uclass_priv(dev);
struct tegra_lcd_priv *priv = dev_get_priv(dev);
const void *blob = gd->fdt_blob;
int type = DCACHE_OFF;
/* Initialize the Tegra display controller */
if (tegra_display_probe(blob, priv, (void *)plat->base)) {
printf("%s: Failed to probe display driver\n", __func__);
return -1;
}
tegra_lcd_check_next_stage(blob, priv, 1);
/* Set up the LCD caching as requested */
if (priv->cache_type & FDT_LCD_CACHE_WRITE_THROUGH)
type = DCACHE_WRITETHROUGH;
else if (priv->cache_type & FDT_LCD_CACHE_WRITE_BACK)
type = DCACHE_WRITEBACK;
mmu_set_region_dcache_behaviour(priv->frame_buffer, plat->size, type);
/* Enable flushing after LCD writes if requested */
video_set_flush_dcache(dev, priv->cache_type & FDT_LCD_CACHE_FLUSH);
uc_priv->xsize = priv->width;
uc_priv->ysize = priv->height;
uc_priv->bpix = priv->log2_bpp;
debug("LCD frame buffer at %pa, size %x\n", &priv->frame_buffer,
plat->size);
return 0;
}
static int tegra_lcd_ofdata_to_platdata(struct udevice *dev)
{
struct tegra_lcd_priv *priv = dev_get_priv(dev);
struct fdtdec_phandle_args args;
const void *blob = gd->fdt_blob;
int node = dev->of_offset;
int front, back, ref;
int panel_node;
int rgb;
int bpp, bit;
int ret;
priv->disp = (struct disp_ctlr *)dev_get_addr(dev);
if (!priv->disp) {
debug("%s: No display controller address\n", __func__);
return -EINVAL;
}
rgb = fdt_subnode_offset(blob, node, "rgb");
panel_node = fdtdec_lookup_phandle(blob, rgb, "nvidia,panel");
if (panel_node < 0) {
debug("%s: Cannot find panel information\n", __func__);
return -EINVAL;
}
priv->width = fdtdec_get_int(blob, panel_node, "xres", -1);
priv->height = fdtdec_get_int(blob, panel_node, "yres", -1);
priv->pixel_clock = fdtdec_get_int(blob, panel_node, "clock", 0);
if (!priv->pixel_clock || priv->width == -1 || priv->height == -1) {
debug("%s: Pixel parameters missing\n", __func__);
return -EINVAL;
}
back = fdtdec_get_int(blob, panel_node, "left-margin", -1);
front = fdtdec_get_int(blob, panel_node, "right-margin", -1);
ref = fdtdec_get_int(blob, panel_node, "hsync-len", -1);
if ((back | front | ref) == -1) {
debug("%s: Horizontal parameters missing\n", __func__);
return -EINVAL;
}
/* Use a ref-to-sync of 1 always, and take this from the front porch */
priv->horiz_timing[FDT_LCD_TIMING_REF_TO_SYNC] = 1;
priv->horiz_timing[FDT_LCD_TIMING_SYNC_WIDTH] = ref;
priv->horiz_timing[FDT_LCD_TIMING_BACK_PORCH] = back;
priv->horiz_timing[FDT_LCD_TIMING_FRONT_PORCH] = front -
priv->horiz_timing[FDT_LCD_TIMING_REF_TO_SYNC];
debug_timing("horiz", priv->horiz_timing);
back = fdtdec_get_int(blob, panel_node, "upper-margin", -1);
front = fdtdec_get_int(blob, panel_node, "lower-margin", -1);
ref = fdtdec_get_int(blob, panel_node, "vsync-len", -1);
if ((back | front | ref) == -1) {
debug("%s: Vertical parameters missing\n", __func__);
return -EINVAL;
}
priv->vert_timing[FDT_LCD_TIMING_REF_TO_SYNC] = 1;
priv->vert_timing[FDT_LCD_TIMING_SYNC_WIDTH] = ref;
priv->vert_timing[FDT_LCD_TIMING_BACK_PORCH] = back;
priv->vert_timing[FDT_LCD_TIMING_FRONT_PORCH] = front -
priv->vert_timing[FDT_LCD_TIMING_REF_TO_SYNC];
debug_timing("vert", priv->vert_timing);
bpp = fdtdec_get_int(blob, panel_node, "nvidia,bits-per-pixel", -1);
bit = ffs(bpp) - 1;
if (bpp == (1 << bit))
priv->log2_bpp = bit;
else
priv->log2_bpp = bpp;
if (bpp == -1) {
debug("%s: Pixel bpp parameters missing\n", __func__);
return -EINVAL;
}
if (fdtdec_parse_phandle_with_args(blob, panel_node, "nvidia,pwm",
"#pwm-cells", 0, 0, &args)) {
debug("%s: Unable to decode PWM\n", __func__);
return -EINVAL;
}
ret = uclass_get_device_by_of_offset(UCLASS_PWM, args.node, &priv->pwm);
if (ret) {
debug("%s: Unable to find PWM\n", __func__);
return -EINVAL;
}
priv->pwm_channel = args.args[0];
priv->cache_type = fdtdec_get_int(blob, panel_node, "nvidia,cache-type",
FDT_LCD_CACHE_WRITE_BACK_FLUSH);
/* These GPIOs are all optional */
gpio_request_by_name_nodev(blob, panel_node,
"nvidia,backlight-enable-gpios", 0,
&priv->backlight_en, GPIOD_IS_OUT);
gpio_request_by_name_nodev(blob, panel_node,
"nvidia,lvds-shutdown-gpios", 0,
&priv->lvds_shutdown, GPIOD_IS_OUT);
gpio_request_by_name_nodev(blob, panel_node,
"nvidia,backlight-vdd-gpios", 0,
&priv->backlight_vdd, GPIOD_IS_OUT);
gpio_request_by_name_nodev(blob, panel_node,
"nvidia,panel-vdd-gpios", 0,
&priv->panel_vdd, GPIOD_IS_OUT);
if (fdtdec_get_int_array(blob, panel_node, "nvidia,panel-timings",
priv->panel_timings, FDT_LCD_TIMINGS))
return -EINVAL;
return 0;
}
static int tegra_lcd_bind(struct udevice *dev)
{
struct video_uc_platdata *plat = dev_get_uclass_platdata(dev);
const void *blob = gd->fdt_blob;
int node = dev->of_offset;
int rgb;
rgb = fdt_subnode_offset(blob, node, "rgb");
if ((rgb < 0) || !fdtdec_get_is_enabled(blob, rgb))
return -ENODEV;
plat->size = LCD_MAX_WIDTH * LCD_MAX_HEIGHT *
(1 << LCD_MAX_LOG2_BPP) / 8;
return 0;
}
static const struct video_ops tegra_lcd_ops = {
};
static const struct udevice_id tegra_lcd_ids[] = {
{ .compatible = "nvidia,tegra20-dc" },
{ }
};
U_BOOT_DRIVER(tegra_lcd) = {
.name = "tegra_lcd",
.id = UCLASS_VIDEO,
.of_match = tegra_lcd_ids,
.ops = &tegra_lcd_ops,
.bind = tegra_lcd_bind,
.probe = tegra_lcd_probe,
.ofdata_to_platdata = tegra_lcd_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct tegra_lcd_priv),
};