upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/arm/mach-keystone/clock.c

420 lines
9.9 KiB

// SPDX-License-Identifier: GPL-2.0+
/*
* Keystone2: pll initialization
*
* (C) Copyright 2012-2014
* Texas Instruments Incorporated, <www.ti.com>
*/
#include <common.h>
#include <asm/arch/clock.h>
#include <asm/arch/clock_defs.h>
/* DEV and ARM speed definitions as specified in DEVSPEED register */
int __weak speeds[DEVSPEED_NUMSPDS] = {
SPD1000,
SPD1200,
SPD1350,
SPD1400,
SPD1500,
SPD1400,
SPD1350,
SPD1200,
SPD1000,
SPD800,
};
const struct keystone_pll_regs keystone_pll_regs[] = {
[CORE_PLL] = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
[PASS_PLL] = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
[TETRIS_PLL] = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
[DDR3A_PLL] = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
[DDR3B_PLL] = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
[UART_PLL] = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
};
inline void pll_pa_clk_sel(void)
{
setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
}
static void wait_for_completion(const struct pll_init_data *data)
{
int i;
for (i = 0; i < 100; i++) {
sdelay(450);
if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
break;
}
}
static inline void bypass_main_pll(const struct pll_init_data *data)
{
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
PLLCTL_PLLEN_MASK);
/* 4 cycles of reference clock CLKIN*/
sdelay(340);
}
static void configure_mult_div(const struct pll_init_data *data)
{
u32 pllm, plld, bwadj;
pllm = data->pll_m - 1;
plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
/* Program Multiplier */
if (data->pll == MAIN_PLL)
pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_PLLM_MASK,
pllm << CFG_PLLCTL0_PLLM_SHIFT);
/* Program BWADJ */
bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_BWADJ_MASK,
(bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
CFG_PLLCTL0_BWADJ_MASK);
bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
CFG_PLLCTL1_BWADJ_MASK, bwadj);
/* Program Divider */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_PLLD_MASK, plld);
}
void configure_main_pll(const struct pll_init_data *data)
{
u32 tmp, pllod, i, alnctl_val = 0;
u32 *offset;
pllod = data->pll_od - 1;
/* 100 micro sec for stabilization */
sdelay(210000);
tmp = pllctl_reg_read(data->pll, secctl);
/* Check for Bypass */
if (tmp & SECCTL_BYPASS_MASK) {
setbits_le32(keystone_pll_regs[data->pll].reg1,
CFG_PLLCTL1_ENSAT_MASK);
bypass_main_pll(data);
/* Powerdown and powerup Main Pll */
pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
/* 5 micro sec */
sdelay(21000);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
} else {
bypass_main_pll(data);
}
configure_mult_div(data);
/* Program Output Divider */
pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
/* Program PLLDIVn */
wait_for_completion(data);
for (i = 0; i < PLLDIV_MAX; i++) {
if (i < 3)
offset = pllctl_reg(data->pll, div1) + i;
else
offset = pllctl_reg(data->pll, div4) + (i - 3);
if (divn_val[i] != -1) {
__raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
alnctl_val |= BIT(i);
}
}
if (alnctl_val) {
pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
/*
* Set GOSET bit in PLLCMD to initiate the GO operation
* to change the divide
*/
pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
wait_for_completion(data);
}
/* Reset PLL */
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
sdelay(21000); /* Wait for a minimum of 7 us*/
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
/* Enable PLL */
pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
}
void configure_secondary_pll(const struct pll_init_data *data)
{
int pllod = data->pll_od - 1;
/* Enable Glitch free bypass for ARM PLL */
if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
/* Enable Bypass mode */
setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
setbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_BYPASS_MASK);
configure_mult_div(data);
/* Program Output Divider */
clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_CLKOD_MASK,
(pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
CFG_PLLCTL0_CLKOD_MASK);
/* Reset PLL */
setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
/* Wait for 5 micro seconds */
sdelay(21000);
/* Select the Output of PASS PLL as input to PASS */
if (data->pll == PASS_PLL && cpu_is_k2hk())
pll_pa_clk_sel();
clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
/* Wait for 500 * REFCLK cucles * (PLLD + 1) */
sdelay(105000);
/* Switch to PLL mode */
clrbits_le32(keystone_pll_regs[data->pll].reg0,
CFG_PLLCTL0_BYPASS_MASK);
/* Select the Output of ARM PLL as input to ARM */
if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
}
void init_pll(const struct pll_init_data *data)
{
if (data->pll == MAIN_PLL)
configure_main_pll(data);
else
configure_secondary_pll(data);
/*
* This is required to provide a delay between multiple
* consequent PPL configurations
*/
sdelay(210000);
}
void init_plls(void)
{
struct pll_init_data *data;
int pll;
for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
data = get_pll_init_data(pll);
if (data)
init_pll(data);
}
}
static int get_max_speed(u32 val, u32 speed_supported, int *spds)
{
int speed;
/* Left most setbit gives the speed */
for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
if ((val & BIT(speed)) & speed_supported)
return spds[speed];
}
/* If no bit is set, return minimum speed */
if (cpu_is_k2g())
return SPD200;
else
return SPD800;
}
static inline u32 read_efuse_bootrom(void)
{
if (cpu_is_k2hk() && (cpu_revision() <= 1))
return __raw_readl(KS2_REV1_DEVSPEED);
else
return __raw_readl(KS2_EFUSE_BOOTROM);
}
int get_max_arm_speed(int *spds)
{
u32 armspeed = read_efuse_bootrom();
armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
DEVSPEED_ARMSPEED_SHIFT;
return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds);
}
int get_max_dev_speed(int *spds)
{
u32 devspeed = read_efuse_bootrom();
devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
DEVSPEED_DEVSPEED_SHIFT;
return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds);
}
/**
* pll_freq_get - get pll frequency
* @pll: pll identifier
*/
static unsigned long pll_freq_get(int pll)
{
unsigned long mult = 1, prediv = 1, output_div = 2;
unsigned long ret;
u32 tmp, reg;
if (pll == MAIN_PLL) {
ret = get_external_clk(sys_clk);
if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
/* PLL mode */
tmp = __raw_readl(KS2_MAINPLLCTL0);
prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
CFG_PLLCTL0_PLLM_SHIFT |
(pllctl_reg_read(pll, mult) &
PLLM_MULT_LO_MASK)) + 1;
output_div = ((pllctl_reg_read(pll, secctl) &
SECCTL_OP_DIV_MASK) >>
SECCTL_OP_DIV_SHIFT) + 1;
ret = ret / prediv / output_div * mult;
}
} else {
switch (pll) {
case PASS_PLL:
ret = get_external_clk(pa_clk);
reg = KS2_PASSPLLCTL0;
break;
case TETRIS_PLL:
ret = get_external_clk(tetris_clk);
reg = KS2_ARMPLLCTL0;
break;
case DDR3A_PLL:
ret = get_external_clk(ddr3a_clk);
reg = KS2_DDR3APLLCTL0;
break;
case DDR3B_PLL:
ret = get_external_clk(ddr3b_clk);
reg = KS2_DDR3BPLLCTL0;
break;
case UART_PLL:
ret = get_external_clk(uart_clk);
reg = KS2_UARTPLLCTL0;
break;
default:
return 0;
}
tmp = __raw_readl(reg);
if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
/* Bypass disabled */
prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
CFG_PLLCTL0_PLLM_SHIFT) + 1;
output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
CFG_PLLCTL0_CLKOD_SHIFT) + 1;
ret = ((ret / prediv) * mult) / output_div;
}
}
return ret;
}
unsigned long ks_clk_get_rate(unsigned int clk)
{
unsigned long freq = 0;
switch (clk) {
case core_pll_clk:
freq = pll_freq_get(CORE_PLL);
break;
case pass_pll_clk:
freq = pll_freq_get(PASS_PLL);
break;
case tetris_pll_clk:
if (!cpu_is_k2e())
freq = pll_freq_get(TETRIS_PLL);
break;
case ddr3a_pll_clk:
freq = pll_freq_get(DDR3A_PLL);
break;
case ddr3b_pll_clk:
if (cpu_is_k2hk())
freq = pll_freq_get(DDR3B_PLL);
break;
case uart_pll_clk:
if (cpu_is_k2g())
freq = pll_freq_get(UART_PLL);
break;
case sys_clk0_1_clk:
case sys_clk0_clk:
freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
break;
case sys_clk1_clk:
return pll_freq_get(CORE_PLL) / pll0div_read(2);
break;
case sys_clk2_clk:
freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
break;
case sys_clk3_clk:
freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
break;
case sys_clk0_2_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 2;
break;
case sys_clk0_3_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 3;
break;
case sys_clk0_4_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 4;
break;
case sys_clk0_6_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 6;
break;
case sys_clk0_8_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 8;
break;
case sys_clk0_12_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 12;
break;
case sys_clk0_24_clk:
freq = ks_clk_get_rate(sys_clk0_clk) / 24;
break;
case sys_clk1_3_clk:
freq = ks_clk_get_rate(sys_clk1_clk) / 3;
break;
case sys_clk1_4_clk:
freq = ks_clk_get_rate(sys_clk1_clk) / 4;
break;
case sys_clk1_6_clk:
freq = ks_clk_get_rate(sys_clk1_clk) / 6;
break;
case sys_clk1_12_clk:
freq = ks_clk_get_rate(sys_clk1_clk) / 12;
break;
default:
break;
}
return freq;
}