upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/ddr/marvell/a38x/ddr3_training_leveling.c

1836 lines
55 KiB

/*
* Copyright (C) Marvell International Ltd. and its affiliates
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "ddr3_init.h"
#define WL_ITERATION_NUM 10
#define ONE_CLOCK_ERROR_SHIFT 2
#define ALIGN_ERROR_SHIFT -2
static u32 pup_mask_table[] = {
0x000000ff,
0x0000ff00,
0x00ff0000,
0xff000000
};
static struct write_supp_result wr_supp_res[MAX_INTERFACE_NUM][MAX_BUS_NUM];
static int ddr3_tip_dynamic_write_leveling_seq(u32 dev_num);
static int ddr3_tip_dynamic_read_leveling_seq(u32 dev_num);
static int ddr3_tip_dynamic_per_bit_read_leveling_seq(u32 dev_num);
static int ddr3_tip_wl_supp_align_err_shift(u32 dev_num, u32 if_id, u32 bus_id,
u32 bus_id_delta);
static int ddr3_tip_wl_supp_align_phase_shift(u32 dev_num, u32 if_id,
u32 bus_id, u32 offset,
u32 bus_id_delta);
static int ddr3_tip_xsb_compare_test(u32 dev_num, u32 if_id, u32 bus_id,
u32 edge_offset, u32 bus_id_delta);
static int ddr3_tip_wl_supp_one_clk_err_shift(u32 dev_num, u32 if_id,
u32 bus_id, u32 bus_id_delta);
u32 hws_ddr3_tip_max_cs_get(void)
{
u32 c_cs;
static u32 max_cs;
struct hws_topology_map *tm = ddr3_get_topology_map();
if (!max_cs) {
for (c_cs = 0; c_cs < NUM_OF_CS; c_cs++) {
VALIDATE_ACTIVE(tm->
interface_params[0].as_bus_params[0].
cs_bitmask, c_cs);
max_cs++;
}
}
return max_cs;
}
/*****************************************************************************
Dynamic read leveling
******************************************************************************/
int ddr3_tip_dynamic_read_leveling(u32 dev_num, u32 freq)
{
u32 data, mask;
u32 max_cs = hws_ddr3_tip_max_cs_get();
u32 bus_num, if_id, cl_val;
enum hws_speed_bin speed_bin_index;
/* save current CS value */
u32 cs_enable_reg_val[MAX_INTERFACE_NUM] = { 0 };
int is_any_pup_fail = 0;
u32 data_read[MAX_INTERFACE_NUM + 1] = { 0 };
u8 rl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM];
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
struct hws_topology_map *tm = ddr3_get_topology_map();
if (rl_version == 0) {
/* OLD RL machine */
data = 0x40;
data |= (1 << 20);
/* TBD multi CS */
CHECK_STATUS(ddr3_tip_if_write(
dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, TRAINING_REG,
data, 0x11ffff));
CHECK_STATUS(ddr3_tip_if_write(
dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE,
TRAINING_PATTERN_BASE_ADDRESS_REG,
0, 0xfffffff8));
CHECK_STATUS(ddr3_tip_if_write(
dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, TRAINING_REG,
(u32)(1 << 31), (u32)(1 << 31)));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
(u32)(1 << 31), TRAINING_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("RL: DDR3 poll failed(1) IF %d\n",
if_id));
training_result[training_stage][if_id] =
TEST_FAILED;
if (debug_mode == 0)
return MV_FAIL;
}
}
/* read read-leveling result */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, data_read, 1 << 30));
/* exit read leveling mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x8, 0x9));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_1_REG, 1 << 16, 1 << 16));
/* disable RL machine all Trn_CS[3:0] , [16:0] */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, 0, 0xf1ffff));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if ((data_read[if_id] & (1 << 30)) == 0) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("\n_read Leveling failed for IF %d\n",
if_id));
training_result[training_stage][if_id] =
TEST_FAILED;
if (debug_mode == 0)
return MV_FAIL;
}
}
return MV_OK;
}
/* NEW RL machine */
for (effective_cs = 0; effective_cs < NUM_OF_CS; effective_cs++)
for (bus_num = 0; bus_num < MAX_BUS_NUM; bus_num++)
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++)
rl_values[effective_cs][bus_num][if_id] = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
/* save current cs enable reg val */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, cs_enable_reg_val,
MASK_ALL_BITS));
/* enable single cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, (1 << 3), (1 << 3)));
}
ddr3_tip_reset_fifo_ptr(dev_num);
/*
* Phase 1: Load pattern (using ODPG)
*
* enter Read Leveling mode
* only 27 bits are masked
* assuming non multi-CS configuration
* write to CS = 0 for the non multi CS configuration, note
* that the results shall be read back to the required CS !!!
*/
/* BUS count is 0 shifted 26 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0x3, 0x3));
CHECK_STATUS(ddr3_tip_configure_odpg
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0,
pattern_table[PATTERN_RL].num_of_phases_tx, 0,
pattern_table[PATTERN_RL].num_of_phases_rx, 0, 0,
effective_cs, STRESS_NONE, DURATION_SINGLE));
/* load pattern to ODPG */
ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, PATTERN_RL,
pattern_table[PATTERN_RL].
start_addr);
/*
* Phase 2: ODPG to Read Leveling mode
*/
/* General Training Opcode register */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_WRITE_READ_MODE_ENABLE_REG, 0,
MASK_ALL_BITS));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_CONTROL_REG,
(0x301b01 | effective_cs << 2), 0x3c3fef));
/* Object1 opcode register 0 & 1 */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
speed_bin_index =
tm->interface_params[if_id].speed_bin_index;
cl_val =
cas_latency_table[speed_bin_index].cl_val[freq];
data = (cl_val << 17) | (0x3 << 25);
mask = (0xff << 9) | (0x1f << 17) | (0x3 << 25);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ODPG_OBJ1_OPCODE_REG, data, mask));
}
/* Set iteration count to max value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_OPCODE_1_REG, 0xd00, 0xd00));
/*
* Phase 2: Mask config
*/
ddr3_tip_dynamic_read_leveling_seq(dev_num);
/*
* Phase 3: Read Leveling execution
*/
/* temporary jira dunit=14751 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_1_REG, 0, (u32)(1 << 31)));
/* configure phy reset value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_3_REG, (0x7f << 24),
(u32)(0xff << 24)));
/* data pup rd reset enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CONFIGURATION_REG, 0, (1 << 30)));
/* data pup rd reset disable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CONFIGURATION_REG, (1 << 30), (1 << 30)));
/* training SW override & training RL mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x1, 0x9));
/* training enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (1 << 24) | (1 << 20),
(1 << 24) | (1 << 20)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (u32)(1 << 31), (u32)(1 << 31)));
/********* trigger training *******************/
/* Trigger, poll on status and disable ODPG */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_TRIGGER_REG, 0x1, 0x1));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_STATUS_REG, 0x1, 0x1));
/* check for training done + results pass */
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0x2, 0x2,
ODPG_TRAINING_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("Training Done Failed\n"));
return MV_FAIL;
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST,
if_id,
ODPG_TRAINING_TRIGGER_REG, data_read,
0x4));
data = data_read[if_id];
if (data != 0x0) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("Training Result Failed\n"));
}
}
/*disable ODPG - Back to functional mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_ENABLE_REG, 0x1 << ODPG_DISABLE_OFFS,
(0x1 << ODPG_DISABLE_OFFS)));
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0x0, 0x1,
ODPG_ENABLE_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("ODPG disable failed "));
return MV_FAIL;
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0, MASK_ALL_BITS));
/* double loop on bus, pup */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* check training done */
is_any_pup_fail = 0;
for (bus_num = 0;
bus_num < tm->num_of_bus_per_interface;
bus_num++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_num);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST,
if_id, (1 << 25), (1 << 25),
mask_results_pup_reg_map[bus_num],
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("\n_r_l: DDR3 poll failed(2) for bus %d",
bus_num));
is_any_pup_fail = 1;
} else {
/* read result per pup */
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_pup_reg_map
[bus_num], data_read,
0xff));
rl_values[effective_cs][bus_num]
[if_id] = (u8)data_read[if_id];
}
}
if (is_any_pup_fail == 1) {
training_result[training_stage][if_id] =
TEST_FAILED;
if (debug_mode == 0)
return MV_FAIL;
}
}
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("RL exit read leveling\n"));
/*
* Phase 3: Exit Read Leveling
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, (1 << 3), (1 << 3)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_1_REG, (1 << 16), (1 << 16)));
/* set ODPG to functional */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0x0, MASK_ALL_BITS));
/*
* Copy the result from the effective CS search to the
* real Functional CS
*/
/*ddr3_tip_write_cs_result(dev_num, RL_PHY_REG); */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0x0, MASK_ALL_BITS));
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
/* double loop on bus, pup */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0;
bus_num < tm->num_of_bus_per_interface;
bus_num++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_num);
/* read result per pup from arry */
data = rl_values[effective_cs][bus_num][if_id];
data = (data & 0x1f) |
(((data & 0xe0) >> 5) << 6);
ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
RL_PHY_REG +
((effective_cs ==
0) ? 0x0 : 0x4), data);
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* restore cs enable value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, cs_enable_reg_val[if_id],
MASK_ALL_BITS));
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_write_additional_odt_setting
(dev_num, if_id));
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
/*
* Legacy Dynamic write leveling
*/
int ddr3_tip_legacy_dynamic_write_leveling(u32 dev_num)
{
u32 c_cs, if_id, cs_mask = 0;
u32 max_cs = hws_ddr3_tip_max_cs_get();
struct hws_topology_map *tm = ddr3_get_topology_map();
/*
* In TRAINIUNG reg (0x15b0) write 0x80000008 | cs_mask:
* Trn_start
* cs_mask = 0x1 <<20 Trn_CS0 - CS0 is included in the DDR3 training
* cs_mask = 0x1 <<21 Trn_CS1 - CS1 is included in the DDR3 training
* cs_mask = 0x1 <<22 Trn_CS2 - CS2 is included in the DDR3 training
* cs_mask = 0x1 <<23 Trn_CS3 - CS3 is included in the DDR3 training
* Trn_auto_seq = write leveling
*/
for (c_cs = 0; c_cs < max_cs; c_cs++)
cs_mask = cs_mask | 1 << (20 + c_cs);
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, 0,
TRAINING_REG, (0x80000008 | cs_mask),
0xffffffff));
mdelay(20);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
(u32)0x80000000, TRAINING_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("polling failed for Old WL result\n"));
return MV_FAIL;
}
}
return MV_OK;
}
/*
* Legacy Dynamic read leveling
*/
int ddr3_tip_legacy_dynamic_read_leveling(u32 dev_num)
{
u32 c_cs, if_id, cs_mask = 0;
u32 max_cs = hws_ddr3_tip_max_cs_get();
struct hws_topology_map *tm = ddr3_get_topology_map();
/*
* In TRAINIUNG reg (0x15b0) write 0x80000040 | cs_mask:
* Trn_start
* cs_mask = 0x1 <<20 Trn_CS0 - CS0 is included in the DDR3 training
* cs_mask = 0x1 <<21 Trn_CS1 - CS1 is included in the DDR3 training
* cs_mask = 0x1 <<22 Trn_CS2 - CS2 is included in the DDR3 training
* cs_mask = 0x1 <<23 Trn_CS3 - CS3 is included in the DDR3 training
* Trn_auto_seq = Read Leveling using training pattern
*/
for (c_cs = 0; c_cs < max_cs; c_cs++)
cs_mask = cs_mask | 1 << (20 + c_cs);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, 0, TRAINING_REG,
(0x80000040 | cs_mask), 0xffffffff));
mdelay(100);
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
(u32)0x80000000, TRAINING_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("polling failed for Old RL result\n"));
return MV_FAIL;
}
}
return MV_OK;
}
/*
* Dynamic per bit read leveling
*/
int ddr3_tip_dynamic_per_bit_read_leveling(u32 dev_num, u32 freq)
{
u32 data, mask;
u32 bus_num, if_id, cl_val, bit_num;
u32 curr_numb, curr_min_delay;
int adll_array[3] = { 0, -0xa, 0x14 };
u32 phyreg3_arr[MAX_INTERFACE_NUM][MAX_BUS_NUM];
enum hws_speed_bin speed_bin_index;
int is_any_pup_fail = 0;
int break_loop = 0;
u32 cs_enable_reg_val[MAX_INTERFACE_NUM]; /* save current CS value */
u32 data_read[MAX_INTERFACE_NUM];
int per_bit_rl_pup_status[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u32 data2_write[MAX_INTERFACE_NUM][MAX_BUS_NUM];
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
struct hws_topology_map *tm = ddr3_get_topology_map();
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0;
bus_num <= tm->num_of_bus_per_interface; bus_num++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_num);
per_bit_rl_pup_status[if_id][bus_num] = 0;
data2_write[if_id][bus_num] = 0;
/* read current value of phy register 0x3 */
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
READ_CENTRALIZATION_PHY_REG,
&phyreg3_arr[if_id][bus_num]));
}
}
/* NEW RL machine */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
/* save current cs enable reg val */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, &cs_enable_reg_val[if_id],
MASK_ALL_BITS));
/* enable single cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, (1 << 3), (1 << 3)));
}
ddr3_tip_reset_fifo_ptr(dev_num);
for (curr_numb = 0; curr_numb < 3; curr_numb++) {
/*
* Phase 1: Load pattern (using ODPG)
*
* enter Read Leveling mode
* only 27 bits are masked
* assuming non multi-CS configuration
* write to CS = 0 for the non multi CS configuration, note that
* the results shall be read back to the required CS !!!
*/
/* BUS count is 0 shifted 26 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0x3, 0x3));
CHECK_STATUS(ddr3_tip_configure_odpg
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0,
pattern_table[PATTERN_TEST].num_of_phases_tx, 0,
pattern_table[PATTERN_TEST].num_of_phases_rx, 0,
0, 0, STRESS_NONE, DURATION_SINGLE));
/* load pattern to ODPG */
ddr3_tip_load_pattern_to_odpg(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, PATTERN_TEST,
pattern_table[PATTERN_TEST].
start_addr);
/*
* Phase 2: ODPG to Read Leveling mode
*/
/* General Training Opcode register */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_WRITE_READ_MODE_ENABLE_REG, 0,
MASK_ALL_BITS));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_CONTROL_REG, 0x301b01, 0x3c3fef));
/* Object1 opcode register 0 & 1 */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
speed_bin_index =
tm->interface_params[if_id].speed_bin_index;
cl_val =
cas_latency_table[speed_bin_index].cl_val[freq];
data = (cl_val << 17) | (0x3 << 25);
mask = (0xff << 9) | (0x1f << 17) | (0x3 << 25);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ODPG_OBJ1_OPCODE_REG, data, mask));
}
/* Set iteration count to max value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_OPCODE_1_REG, 0xd00, 0xd00));
/*
* Phase 2: Mask config
*/
ddr3_tip_dynamic_per_bit_read_leveling_seq(dev_num);
/*
* Phase 3: Read Leveling execution
*/
/* temporary jira dunit=14751 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_1_REG, 0, (u32)(1 << 31)));
/* configure phy reset value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_DBG_3_REG, (0x7f << 24),
(u32)(0xff << 24)));
/* data pup rd reset enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CONFIGURATION_REG, 0, (1 << 30)));
/* data pup rd reset disable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
SDRAM_CONFIGURATION_REG, (1 << 30), (1 << 30)));
/* training SW override & training RL mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x1, 0x9));
/* training enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (1 << 24) | (1 << 20),
(1 << 24) | (1 << 20)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_REG, (u32)(1 << 31), (u32)(1 << 31)));
/********* trigger training *******************/
/* Trigger, poll on status and disable ODPG */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_TRIGGER_REG, 0x1, 0x1));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_STATUS_REG, 0x1, 0x1));
/*check for training done + results pass */
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0x2, 0x2,
ODPG_TRAINING_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("Training Done Failed\n"));
return MV_FAIL;
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST,
if_id,
ODPG_TRAINING_TRIGGER_REG, data_read,
0x4));
data = data_read[if_id];
if (data != 0x0) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("Training Result Failed\n"));
}
}
/*disable ODPG - Back to functional mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_ENABLE_REG, 0x1 << ODPG_DISABLE_OFFS,
(0x1 << ODPG_DISABLE_OFFS)));
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0x0, 0x1,
ODPG_ENABLE_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("ODPG disable failed "));
return MV_FAIL;
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0, MASK_ALL_BITS));
/* double loop on bus, pup */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* check training done */
for (bus_num = 0;
bus_num < tm->num_of_bus_per_interface;
bus_num++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_num);
if (per_bit_rl_pup_status[if_id][bus_num]
== 0) {
curr_min_delay = 0;
for (bit_num = 0; bit_num < 8;
bit_num++) {
if (ddr3_tip_if_polling
(dev_num,
ACCESS_TYPE_UNICAST,
if_id, (1 << 25),
(1 << 25),
mask_results_dq_reg_map
[bus_num * 8 + bit_num],
MAX_POLLING_ITERATIONS) !=
MV_OK) {
DEBUG_LEVELING
(DEBUG_LEVEL_ERROR,
("\n_r_l: DDR3 poll failed(2) for bus %d bit %d\n",
bus_num,
bit_num));
} else {
/* read result per pup */
CHECK_STATUS
(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_dq_reg_map
[bus_num * 8 +
bit_num],
data_read,
MASK_ALL_BITS));
data =
(data_read
[if_id] &
0x1f) |
((data_read
[if_id] &
0xe0) << 1);
if (curr_min_delay == 0)
curr_min_delay =
data;
else if (data <
curr_min_delay)
curr_min_delay =
data;
if (data > data2_write[if_id][bus_num])
data2_write
[if_id]
[bus_num] =
data;
}
}
if (data2_write[if_id][bus_num] <=
(curr_min_delay +
MAX_DQ_READ_LEVELING_DELAY)) {
per_bit_rl_pup_status[if_id]
[bus_num] = 1;
}
}
}
}
/* check if there is need to search new phyreg3 value */
if (curr_numb < 2) {
/* if there is DLL that is not checked yet */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1;
if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0;
bus_num < tm->num_of_bus_per_interface;
bus_num++) {
VALIDATE_ACTIVE(tm->bus_act_mask,
bus_num);
if (per_bit_rl_pup_status[if_id]
[bus_num] != 1) {
/* go to next ADLL value */
CHECK_STATUS
(ddr3_tip_bus_write
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
READ_CENTRALIZATION_PHY_REG,
(phyreg3_arr[if_id]
[bus_num] +
adll_array[curr_numb])));
break_loop = 1;
break;
}
}
if (break_loop)
break;
}
} /* if (curr_numb < 2) */
if (!break_loop)
break;
} /* for ( curr_numb = 0; curr_numb <3; curr_numb++) */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0; bus_num < tm->num_of_bus_per_interface;
bus_num++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_num);
if (per_bit_rl_pup_status[if_id][bus_num] == 1)
ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
RL_PHY_REG +
CS_REG_VALUE(effective_cs),
data2_write[if_id]
[bus_num]);
else
is_any_pup_fail = 1;
}
/* TBD flow does not support multi CS */
/*
* cs_bitmask = tm->interface_params[if_id].
* as_bus_params[bus_num].cs_bitmask;
*/
/* divide by 4 is used for retrieving the CS number */
/*
* TBD BC2 - what is the PHY address for other
* CS ddr3_tip_write_cs_result() ???
*/
/*
* find what should be written to PHY
* - max delay that is less than threshold
*/
if (is_any_pup_fail == 1) {
training_result[training_stage][if_id] = TEST_FAILED;
if (debug_mode == 0)
return MV_FAIL;
}
}
DEBUG_LEVELING(DEBUG_LEVEL_INFO, ("RL exit read leveling\n"));
/*
* Phase 3: Exit Read Leveling
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, (1 << 3), (1 << 3)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_1_REG, (1 << 16), (1 << 16)));
/* set ODPG to functional */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0x0, MASK_ALL_BITS));
/*
* Copy the result from the effective CS search to the real
* Functional CS
*/
ddr3_tip_write_cs_result(dev_num, RL_PHY_REG);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_DATA_CONTROL_REG, 0x0, MASK_ALL_BITS));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* restore cs enable value */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, cs_enable_reg_val[if_id],
MASK_ALL_BITS));
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_write_additional_odt_setting
(dev_num, if_id));
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
int ddr3_tip_calc_cs_mask(u32 dev_num, u32 if_id, u32 effective_cs,
u32 *cs_mask)
{
u32 all_bus_cs = 0, same_bus_cs;
u32 bus_cnt;
struct hws_topology_map *tm = ddr3_get_topology_map();
*cs_mask = same_bus_cs = CS_BIT_MASK;
/*
* In some of the devices (such as BC2), the CS is per pup and there
* for mixed mode is valid on like other devices where CS configuration
* is per interface.
* In order to know that, we do 'Or' and 'And' operation between all
* CS (of the pups).
* If they are they are not the same then it's mixed mode so all CS
* should be configured (when configuring the MRS)
*/
for (bus_cnt = 0; bus_cnt < tm->num_of_bus_per_interface; bus_cnt++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt);
all_bus_cs |= tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
same_bus_cs &= tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
/* cs enable is active low */
*cs_mask &= ~tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
}
if (all_bus_cs == same_bus_cs)
*cs_mask = (*cs_mask | (~(1 << effective_cs))) & CS_BIT_MASK;
return MV_OK;
}
/*
* Dynamic write leveling
*/
int ddr3_tip_dynamic_write_leveling(u32 dev_num)
{
u32 reg_data = 0, iter, if_id, bus_cnt;
u32 cs_enable_reg_val[MAX_INTERFACE_NUM] = { 0 };
u32 cs_mask[MAX_INTERFACE_NUM];
u32 read_data_sample_delay_vals[MAX_INTERFACE_NUM] = { 0 };
u32 read_data_ready_delay_vals[MAX_INTERFACE_NUM] = { 0 };
/* 0 for failure */
u32 res_values[MAX_INTERFACE_NUM * MAX_BUS_NUM] = { 0 };
u32 test_res = 0; /* 0 - success for all pup */
u32 data_read[MAX_INTERFACE_NUM];
u8 wl_values[NUM_OF_CS][MAX_BUS_NUM][MAX_INTERFACE_NUM];
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u32 cs_mask0[MAX_INTERFACE_NUM] = { 0 };
u32 max_cs = hws_ddr3_tip_max_cs_get();
struct hws_topology_map *tm = ddr3_get_topology_map();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
training_result[training_stage][if_id] = TEST_SUCCESS;
/* save Read Data Sample Delay */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
READ_DATA_SAMPLE_DELAY,
read_data_sample_delay_vals, MASK_ALL_BITS));
/* save Read Data Ready Delay */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
READ_DATA_READY_DELAY, read_data_ready_delay_vals,
MASK_ALL_BITS));
/* save current cs reg val */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, cs_enable_reg_val, MASK_ALL_BITS));
}
/*
* Phase 1: DRAM 2 Write Leveling mode
*/
/*Assert 10 refresh commands to DRAM to all CS */
for (iter = 0; iter < WL_ITERATION_NUM; iter++) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, SDRAM_OPERATION_REG,
(u32)((~(0xf) << 8) | 0x2), 0xf1f));
}
}
/* check controller back to normal */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f,
SDRAM_OPERATION_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("WL: DDR3 poll failed(3)"));
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
/*enable write leveling to all cs - Q off , WL n */
/* calculate interface cs mask */
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MRS1_CMD,
0x1000, 0x1080));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* cs enable is active low */
ddr3_tip_calc_cs_mask(dev_num, if_id, effective_cs,
&cs_mask[if_id]);
}
/* Enable Output buffer to relevant CS - Q on , WL on */
CHECK_STATUS(ddr3_tip_write_mrs_cmd
(dev_num, cs_mask, MRS1_CMD, 0x80, 0x1080));
/*enable odt for relevant CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
0x1498, (0x3 << (effective_cs * 2)), 0xf));
/*
* Phase 2: Set training IP to write leveling mode
*/
CHECK_STATUS(ddr3_tip_dynamic_write_leveling_seq(dev_num));
/*
* Phase 3: Trigger training
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_TRIGGER_REG, 0x1, 0x1));
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* training done */
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id,
(1 << 1), (1 << 1), ODPG_TRAINING_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL: DDR3 poll (4) failed (Data: 0x%x)\n",
reg_data));
}
#if !defined(CONFIG_ARMADA_38X) /*Disabled. JIRA #1498 */
else {
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST,
if_id,
ODPG_TRAINING_TRIGGER_REG,
&reg_data, (1 << 2)));
if (reg_data != 0) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL: WL failed IF %d reg_data=0x%x\n",
if_id, reg_data));
}
}
#endif
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* training done */
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id,
(1 << 1), (1 << 1), ODPG_TRAINING_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL: DDR3 poll (4) failed (Data: 0x%x)\n",
reg_data));
} else {
#if !defined(CONFIG_ARMADA_38X) /*Disabled. JIRA #1498 */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST,
if_id,
ODPG_TRAINING_STATUS_REG,
data_read, (1 << 2)));
reg_data = data_read[if_id];
if (reg_data != 0) {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL: WL failed IF %d reg_data=0x%x\n",
if_id, reg_data));
}
#endif
/* check for training completion per bus */
for (bus_cnt = 0;
bus_cnt < tm->num_of_bus_per_interface;
bus_cnt++) {
VALIDATE_ACTIVE(tm->bus_act_mask,
bus_cnt);
/* training status */
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_pup_reg_map
[bus_cnt], data_read,
(1 << 25)));
reg_data = data_read[if_id];
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL: IF %d BUS %d reg 0x%x\n",
if_id, bus_cnt, reg_data));
if (reg_data == 0) {
res_values[
(if_id *
tm->num_of_bus_per_interface)
+ bus_cnt] = 1;
}
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_pup_reg_map
[bus_cnt], data_read,
0xff));
/*
* Save the read value that should be
* write to PHY register
*/
wl_values[effective_cs]
[bus_cnt][if_id] =
(u8)data_read[if_id];
}
}
}
/*
* Phase 4: Exit write leveling mode
*/
/* disable DQs toggling */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
WR_LEVELING_DQS_PATTERN_REG, 0x0, 0x1));
/* Update MRS 1 (WL off) */
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask0, MRS1_CMD,
0x1000, 0x1080));
/* Update MRS 1 (return to functional mode - Q on , WL off) */
CHECK_STATUS(ddr3_tip_write_mrs_cmd
(dev_num, cs_mask0, MRS1_CMD, 0x0, 0x1080));
/* set phy to normal mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x5, 0x7));
/* exit sw override mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x4, 0x7));
}
/*
* Phase 5: Load WL values to each PHY
*/
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
test_res = 0;
for (bus_cnt = 0;
bus_cnt < tm->num_of_bus_per_interface;
bus_cnt++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt);
/* check if result == pass */
if (res_values
[(if_id *
tm->num_of_bus_per_interface) +
bus_cnt] == 0) {
/*
* read result control register
* according to pup
*/
reg_data =
wl_values[effective_cs][bus_cnt]
[if_id];
/*
* Write into write leveling register
* ([4:0] ADLL, [8:6] Phase, [15:10]
* (centralization) ADLL + 0x10)
*/
reg_data =
(reg_data & 0x1f) |
(((reg_data & 0xe0) >> 5) << 6) |
(((reg_data & 0x1f) +
phy_reg1_val) << 10);
ddr3_tip_bus_write(
dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_cnt,
DDR_PHY_DATA,
WL_PHY_REG +
effective_cs *
CS_REGISTER_ADDR_OFFSET,
reg_data);
} else {
test_res = 1;
/*
* read result control register
* according to pup
*/
CHECK_STATUS(ddr3_tip_if_read
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
mask_results_pup_reg_map
[bus_cnt], data_read,
0xff));
reg_data = data_read[if_id];
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL: IF %d BUS %d failed, reg 0x%x\n",
if_id, bus_cnt, reg_data));
}
}
if (test_res != 0) {
training_result[training_stage][if_id] =
TEST_FAILED;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
/*
* Copy the result from the effective CS search to the real
* Functional CS
*/
/* ddr3_tip_write_cs_result(dev_num, WL_PHY_REG); */
/* restore saved values */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
/* restore Read Data Sample Delay */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
READ_DATA_SAMPLE_DELAY,
read_data_sample_delay_vals[if_id],
MASK_ALL_BITS));
/* restore Read Data Ready Delay */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
READ_DATA_READY_DELAY,
read_data_ready_delay_vals[if_id],
MASK_ALL_BITS));
/* enable multi cs */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
CS_ENABLE_REG, cs_enable_reg_val[if_id],
MASK_ALL_BITS));
}
/* Disable modt0 for CS0 training - need to adjust for multy CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, 0x1498,
0x0, 0xf));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
/*
* Dynamic write leveling supplementary
*/
int ddr3_tip_dynamic_write_leveling_supp(u32 dev_num)
{
int adll_offset;
u32 if_id, bus_id, data, data_tmp;
int is_if_fail = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
is_if_fail = 0;
for (bus_id = 0; bus_id < GET_TOPOLOGY_NUM_OF_BUSES();
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
wr_supp_res[if_id][bus_id].is_pup_fail = 1;
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
WRITE_CENTRALIZATION_PHY_REG +
effective_cs * CS_REGISTER_ADDR_OFFSET,
&data));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: adll_offset=0 data delay = %d\n",
data));
if (ddr3_tip_wl_supp_align_phase_shift
(dev_num, if_id, bus_id, 0, 0) == MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d adll_offset=0 Success !\n",
if_id, bus_id));
continue;
}
/* change adll */
adll_offset = 5;
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WRITE_CENTRALIZATION_PHY_REG +
effective_cs * CS_REGISTER_ADDR_OFFSET,
data + adll_offset));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
WRITE_CENTRALIZATION_PHY_REG +
effective_cs * CS_REGISTER_ADDR_OFFSET,
&data_tmp));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: adll_offset= %d data delay = %d\n",
adll_offset, data_tmp));
if (ddr3_tip_wl_supp_align_phase_shift
(dev_num, if_id, bus_id, adll_offset, 0) == MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d adll_offset= %d Success !\n",
if_id, bus_id, adll_offset));
continue;
}
/* change adll */
adll_offset = -5;
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, bus_id, DDR_PHY_DATA,
WRITE_CENTRALIZATION_PHY_REG +
effective_cs * CS_REGISTER_ADDR_OFFSET,
data + adll_offset));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
WRITE_CENTRALIZATION_PHY_REG +
effective_cs * CS_REGISTER_ADDR_OFFSET,
&data_tmp));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: adll_offset= %d data delay = %d\n",
adll_offset, data_tmp));
if (ddr3_tip_wl_supp_align_phase_shift
(dev_num, if_id, bus_id, adll_offset, 0) == MV_OK) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d adll_offset= %d Success !\n",
if_id, bus_id, adll_offset));
continue;
} else {
DEBUG_LEVELING(
DEBUG_LEVEL_ERROR,
("WL Supp: IF %d bus_id %d Failed !\n",
if_id, bus_id));
is_if_fail = 1;
}
}
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("WL Supp: IF %d bus_id %d is_pup_fail %d\n",
if_id, bus_id, is_if_fail));
if (is_if_fail == 1) {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("WL Supp: IF %d failed\n", if_id));
training_result[training_stage][if_id] = TEST_FAILED;
} else {
training_result[training_stage][if_id] = TEST_SUCCESS;
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (training_result[training_stage][if_id] == TEST_FAILED)
return MV_FAIL;
}
return MV_OK;
}
/*
* Phase Shift
*/
static int ddr3_tip_wl_supp_align_phase_shift(u32 dev_num, u32 if_id,
u32 bus_id, u32 offset,
u32 bus_id_delta)
{
wr_supp_res[if_id][bus_id].stage = PHASE_SHIFT;
if (ddr3_tip_xsb_compare_test(dev_num, if_id, bus_id,
0, bus_id_delta) == MV_OK) {
wr_supp_res[if_id][bus_id].is_pup_fail = 0;
return MV_OK;
} else if (ddr3_tip_xsb_compare_test(dev_num, if_id, bus_id,
ONE_CLOCK_ERROR_SHIFT,
bus_id_delta) == MV_OK) {
/* 1 clock error */
wr_supp_res[if_id][bus_id].stage = CLOCK_SHIFT;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("Supp: 1 error clock for if %d pup %d with ofsset %d success\n",
if_id, bus_id, offset));
ddr3_tip_wl_supp_one_clk_err_shift(dev_num, if_id, bus_id, 0);
wr_supp_res[if_id][bus_id].is_pup_fail = 0;
return MV_OK;
} else if (ddr3_tip_xsb_compare_test(dev_num, if_id, bus_id,
ALIGN_ERROR_SHIFT,
bus_id_delta) == MV_OK) {
/* align error */
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("Supp: align error for if %d pup %d with ofsset %d success\n",
if_id, bus_id, offset));
wr_supp_res[if_id][bus_id].stage = ALIGN_SHIFT;
ddr3_tip_wl_supp_align_err_shift(dev_num, if_id, bus_id, 0);
wr_supp_res[if_id][bus_id].is_pup_fail = 0;
return MV_OK;
} else {
wr_supp_res[if_id][bus_id].is_pup_fail = 1;
return MV_FAIL;
}
}
/*
* Compare Test
*/
static int ddr3_tip_xsb_compare_test(u32 dev_num, u32 if_id, u32 bus_id,
u32 edge_offset, u32 bus_id_delta)
{
u32 num_of_succ_byte_compare, word_in_pattern, abs_offset;
u32 word_offset, i;
u32 read_pattern[TEST_PATTERN_LENGTH * 2];
struct pattern_info *pattern_table = ddr3_tip_get_pattern_table();
u32 pattern_test_pattern_table[8];
for (i = 0; i < 8; i++) {
pattern_test_pattern_table[i] =
pattern_table_get_word(dev_num, PATTERN_TEST, (u8)i);
}
/* extern write, than read and compare */
CHECK_STATUS(ddr3_tip_ext_write
(dev_num, if_id,
(pattern_table[PATTERN_TEST].start_addr +
((SDRAM_CS_SIZE + 1) * effective_cs)), 1,
pattern_test_pattern_table));
CHECK_STATUS(ddr3_tip_reset_fifo_ptr(dev_num));
CHECK_STATUS(ddr3_tip_ext_read
(dev_num, if_id,
(pattern_table[PATTERN_TEST].start_addr +
((SDRAM_CS_SIZE + 1) * effective_cs)), 1, read_pattern));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: IF %d bus_id %d 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
if_id, bus_id, read_pattern[0], read_pattern[1],
read_pattern[2], read_pattern[3], read_pattern[4],
read_pattern[5], read_pattern[6], read_pattern[7]));
/* compare byte per pup */
num_of_succ_byte_compare = 0;
for (word_in_pattern = start_xsb_offset;
word_in_pattern < (TEST_PATTERN_LENGTH * 2); word_in_pattern++) {
word_offset = word_in_pattern + edge_offset;
if ((word_offset > (TEST_PATTERN_LENGTH * 2 - 1)) ||
(word_offset < 0))
continue;
if ((read_pattern[word_in_pattern] & pup_mask_table[bus_id]) ==
(pattern_test_pattern_table[word_offset] &
pup_mask_table[bus_id]))
num_of_succ_byte_compare++;
}
abs_offset = (edge_offset > 0) ? edge_offset : -edge_offset;
if (num_of_succ_byte_compare == ((TEST_PATTERN_LENGTH * 2) -
abs_offset - start_xsb_offset)) {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: IF %d bus_id %d num_of_succ_byte_compare %d - Success\n",
if_id, bus_id, num_of_succ_byte_compare));
return MV_OK;
} else {
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: IF %d bus_id %d num_of_succ_byte_compare %d - Fail !\n",
if_id, bus_id, num_of_succ_byte_compare));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: expected 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
pattern_test_pattern_table[0],
pattern_test_pattern_table[1],
pattern_test_pattern_table[2],
pattern_test_pattern_table[3],
pattern_test_pattern_table[4],
pattern_test_pattern_table[5],
pattern_test_pattern_table[6],
pattern_test_pattern_table[7]));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: recieved 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
read_pattern[0], read_pattern[1],
read_pattern[2], read_pattern[3],
read_pattern[4], read_pattern[5],
read_pattern[6], read_pattern[7]));
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("XSB-compt: IF %d bus_id %d num_of_succ_byte_compare %d - Fail !\n",
if_id, bus_id, num_of_succ_byte_compare));
return MV_FAIL;
}
}
/*
* Clock error shift - function moves the write leveling delay 1cc forward
*/
static int ddr3_tip_wl_supp_one_clk_err_shift(u32 dev_num, u32 if_id,
u32 bus_id, u32 bus_id_delta)
{
int phase, adll;
u32 data;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE, ("One_clk_err_shift\n"));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA, WL_PHY_REG, &data));
phase = ((data >> 6) & 0x7);
adll = data & 0x1f;
DEBUG_LEVELING(DEBUG_LEVEL_TRACE,
("One_clk_err_shift: IF %d bus_id %d phase %d adll %d\n",
if_id, bus_id, phase, adll));
if ((phase == 0) || (phase == 1)) {
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_id,
DDR_PHY_DATA, 0, (phase + 2), 0x1f));
} else if (phase == 2) {
if (adll < 6) {
data = (3 << 6) + (0x1f);
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
bus_id, DDR_PHY_DATA, 0, data,
(0x7 << 6 | 0x1f)));
data = 0x2f;
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
bus_id, DDR_PHY_DATA, 1, data, 0x3f));
}
} else {
/* phase 3 */
return MV_FAIL;
}
return MV_OK;
}
/*
* Align error shift
*/
static int ddr3_tip_wl_supp_align_err_shift(u32 dev_num, u32 if_id,
u32 bus_id, u32 bus_id_delta)
{
int phase, adll;
u32 data;
/* Shift WL result 1 phase back */
CHECK_STATUS(ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA, WL_PHY_REG,
&data));
phase = ((data >> 6) & 0x7);
adll = data & 0x1f;
DEBUG_LEVELING(
DEBUG_LEVEL_TRACE,
("Wl_supp_align_err_shift: IF %d bus_id %d phase %d adll %d\n",
if_id, bus_id, phase, adll));
if (phase < 2) {
if (adll > 0x1a) {
if (phase == 0)
return MV_FAIL;
if (phase == 1) {
data = 0;
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, bus_id, DDR_PHY_DATA,
0, data, (0x7 << 6 | 0x1f)));
data = 0xf;
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, bus_id, DDR_PHY_DATA,
1, data, 0x1f));
return MV_OK;
}
} else {
return MV_FAIL;
}
} else if ((phase == 2) || (phase == 3)) {
phase = phase - 2;
data = (phase << 6) + (adll & 0x1f);
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_id,
DDR_PHY_DATA, 0, data, (0x7 << 6 | 0x1f)));
return MV_OK;
} else {
DEBUG_LEVELING(DEBUG_LEVEL_ERROR,
("Wl_supp_align_err_shift: unexpected phase\n"));
return MV_FAIL;
}
return MV_OK;
}
/*
* Dynamic write leveling sequence
*/
static int ddr3_tip_dynamic_write_leveling_seq(u32 dev_num)
{
u32 bus_id, dq_id;
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
struct hws_topology_map *tm = ddr3_get_topology_map();
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x1, 0x5));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_WRITE_LEVELING_REG, 0x50, 0xff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_WRITE_LEVELING_REG, 0x5c, 0xff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_TRAINING_CONTROL_REG, 0x381b82, 0x3c3faf));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_OBJ1_OPCODE_REG, (0x3 << 25), (0x3ffff << 9)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_OBJ1_ITER_CNT_REG, 0x80, 0xffff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ODPG_WRITE_LEVELING_DONE_CNTR_REG, 0x14, 0xff));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
TRAINING_WRITE_LEVELING_REG, 0xff5c, 0xffff));
/* mask PBS */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x1 << 24,
0x1 << 24));
}
/* Mask all results */
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface; bus_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0x1 << 24,
0x1 << 24));
}
/* Unmask only wanted */
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface; bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0, 0x1 << 24));
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
WR_LEVELING_DQS_PATTERN_REG, 0x1, 0x1));
return MV_OK;
}
/*
* Dynamic read leveling sequence
*/
static int ddr3_tip_dynamic_read_leveling_seq(u32 dev_num)
{
u32 bus_id, dq_id;
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
struct hws_topology_map *tm = ddr3_get_topology_map();
/* mask PBS */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x1 << 24,
0x1 << 24));
}
/* Mask all results */
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface; bus_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0x1 << 24,
0x1 << 24));
}
/* Unmask only wanted */
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface; bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0, 0x1 << 24));
}
return MV_OK;
}
/*
* Dynamic read leveling sequence
*/
static int ddr3_tip_dynamic_per_bit_read_leveling_seq(u32 dev_num)
{
u32 bus_id, dq_id;
u16 *mask_results_pup_reg_map = ddr3_tip_get_mask_results_pup_reg_map();
u16 *mask_results_dq_reg_map = ddr3_tip_get_mask_results_dq_reg();
struct hws_topology_map *tm = ddr3_get_topology_map();
/* mask PBS */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x1 << 24,
0x1 << 24));
}
/* Mask all results */
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface; bus_id++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_pup_reg_map[bus_id], 0x1 << 24,
0x1 << 24));
}
/* Unmask only wanted */
for (dq_id = 0; dq_id < MAX_DQ_NUM; dq_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, dq_id / 8);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
mask_results_dq_reg_map[dq_id], 0x0 << 24,
0x1 << 24));
}
return MV_OK;
}
/*
* Print write leveling supplementary results
*/
int ddr3_tip_print_wl_supp_result(u32 dev_num)
{
u32 bus_id = 0, if_id = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("I/F0 PUP0 Result[0 - success, 1-fail] ...\n"));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface;
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("%d ,", wr_supp_res[if_id]
[bus_id].is_pup_fail));
}
}
DEBUG_LEVELING(
DEBUG_LEVEL_INFO,
("I/F0 PUP0 Stage[0-phase_shift, 1-clock_shift, 2-align_shift] ...\n"));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface;
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
DEBUG_LEVELING(DEBUG_LEVEL_INFO,
("%d ,", wr_supp_res[if_id]
[bus_id].stage));
}
}
return MV_OK;
}