upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/freescale/corenet_ds/eth_p4080.c

481 lines
12 KiB

/*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <netdev.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/cache.h>
#include <asm/immap_85xx.h>
#include <asm/fsl_law.h>
#include <asm/fsl_ddr_sdram.h>
#include <asm/fsl_serdes.h>
#include <asm/fsl_portals.h>
#include <asm/fsl_liodn.h>
#include <malloc.h>
#include <fm_eth.h>
#include <fsl_mdio.h>
#include <miiphy.h>
#include <phy.h>
#include "../common/ngpixis.h"
#include "../common/fman.h"
#include <asm/fsl_dtsec.h>
#define EMI_NONE 0xffffffff
#define EMI_MASK 0xf0000000
#define EMI1_RGMII 0x0
#define EMI1_SLOT3 0x80000000 /* bank1 EFGH */
#define EMI1_SLOT4 0x40000000 /* bank2 ABCD */
#define EMI1_SLOT5 0xc0000000 /* bank3 ABCD */
#define EMI2_SLOT4 0x10000000 /* bank2 ABCD */
#define EMI2_SLOT5 0x30000000 /* bank3 ABCD */
#define EMI1_MASK 0xc0000000
#define EMI2_MASK 0x30000000
#define PHY_BASE_ADDR 0x00
#define PHY_BASE_ADDR_SLOT5 0x10
static int mdio_mux[NUM_FM_PORTS];
static char *mdio_names[16] = {
"P4080DS_MDIO0",
"P4080DS_MDIO1",
NULL,
"P4080DS_MDIO3",
"P4080DS_MDIO4",
NULL, NULL, NULL,
"P4080DS_MDIO8",
NULL, NULL, NULL,
"P4080DS_MDIO12",
NULL, NULL, NULL,
};
/*
* Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
* that the mapping must be determined dynamically, or that the lane maps to
* something other than a board slot.
*/
static u8 lane_to_slot[] = {
1, 1, 2, 2, 3, 3, 3, 3, 6, 6, 4, 4, 4, 4, 5, 5, 5, 5
};
static char *p4080ds_mdio_name_for_muxval(u32 muxval)
{
return mdio_names[(muxval & EMI_MASK) >> 28];
}
struct mii_dev *mii_dev_for_muxval(u32 muxval)
{
struct mii_dev *bus;
char *name = p4080ds_mdio_name_for_muxval(muxval);
if (!name) {
printf("No bus for muxval %x\n", muxval);
return NULL;
}
bus = miiphy_get_dev_by_name(name);
if (!bus) {
printf("No bus by name %s\n", name);
return NULL;
}
return bus;
}
#if defined(CONFIG_SYS_P4080_ERRATUM_SERDES9) && defined(CONFIG_PHY_TERANETICS)
int board_phy_config(struct phy_device *phydev)
{
if (phydev->drv->config)
phydev->drv->config(phydev);
if (phydev->drv->uid == PHY_UID_TN2020) {
unsigned long timeout = 1 * 1000; /* 1 seconds */
enum srds_prtcl device;
/*
* Wait for the XAUI to come out of reset. This is when it
* starts transmitting alignment signals.
*/
while (--timeout) {
int reg = phy_read(phydev, MDIO_MMD_PHYXS, MDIO_CTRL1);
if (reg < 0) {
printf("TN2020: Error reading from PHY at "
"address %u\n", phydev->addr);
break;
}
/*
* Note that we've never actually seen
* MDIO_CTRL1_RESET set to 1.
*/
if ((reg & MDIO_CTRL1_RESET) == 0)
break;
udelay(1000);
}
if (!timeout) {
printf("TN2020: Timeout waiting for PHY at address %u "
" to reset.\n", phydev->addr);
}
switch (phydev->addr) {
case CONFIG_SYS_FM1_10GEC1_PHY_ADDR:
device = XAUI_FM1;
break;
case CONFIG_SYS_FM2_10GEC1_PHY_ADDR:
device = XAUI_FM2;
break;
default:
device = NONE;
}
serdes_reset_rx(device);
}
return 0;
}
#endif
struct p4080ds_mdio {
u32 muxval;
struct mii_dev *realbus;
};
static void p4080ds_mux_mdio(u32 muxval)
{
ccsr_gpio_t *pgpio = (void *)(CONFIG_SYS_MPC85xx_GPIO_ADDR);
uint gpioval = in_be32(&pgpio->gpdat) & ~(EMI_MASK);
gpioval |= muxval;
out_be32(&pgpio->gpdat, gpioval);
}
static int p4080ds_mdio_read(struct mii_dev *bus, int addr, int devad,
int regnum)
{
struct p4080ds_mdio *priv = bus->priv;
p4080ds_mux_mdio(priv->muxval);
return priv->realbus->read(priv->realbus, addr, devad, regnum);
}
static int p4080ds_mdio_write(struct mii_dev *bus, int addr, int devad,
int regnum, u16 value)
{
struct p4080ds_mdio *priv = bus->priv;
p4080ds_mux_mdio(priv->muxval);
return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
}
static int p4080ds_mdio_reset(struct mii_dev *bus)
{
struct p4080ds_mdio *priv = bus->priv;
return priv->realbus->reset(priv->realbus);
}
static int p4080ds_mdio_init(char *realbusname, u32 muxval)
{
struct p4080ds_mdio *pmdio;
struct mii_dev *bus = mdio_alloc();
if (!bus) {
printf("Failed to allocate P4080DS MDIO bus\n");
return -1;
}
pmdio = malloc(sizeof(*pmdio));
if (!pmdio) {
printf("Failed to allocate P4080DS private data\n");
free(bus);
return -1;
}
bus->read = p4080ds_mdio_read;
bus->write = p4080ds_mdio_write;
bus->reset = p4080ds_mdio_reset;
sprintf(bus->name, p4080ds_mdio_name_for_muxval(muxval));
pmdio->realbus = miiphy_get_dev_by_name(realbusname);
if (!pmdio->realbus) {
printf("No bus with name %s\n", realbusname);
free(bus);
free(pmdio);
return -1;
}
pmdio->muxval = muxval;
bus->priv = pmdio;
return mdio_register(bus);
}
void board_ft_fman_fixup_port(void *blob, char * prop, phys_addr_t pa,
enum fm_port port, int offset)
{
if (mdio_mux[port] == EMI1_RGMII)
fdt_set_phy_handle(blob, prop, pa, "phy_rgmii");
if (mdio_mux[port] == EMI1_SLOT3) {
int idx = port - FM2_DTSEC1 + 5;
char phy[16];
sprintf(phy, "phy%d_slot3", idx);
fdt_set_phy_handle(blob, prop, pa, phy);
}
}
void fdt_fixup_board_enet(void *fdt)
{
int i;
/*
* P4080DS can be configured in many different ways, supporting a number
* of combinations of ethernet devices and phy types. In order to
* have just one device tree for all of those configurations, we fix up
* the tree here. By default, the device tree configures FM1 and FM2
* for SGMII, and configures XAUI on both 10G interfaces. So we have
* a number of different variables to track:
*
* 1) Whether the device is configured at all. Whichever devices are
* not enabled should be disabled by setting the "status" property
* to "disabled".
* 2) What the PHY interface is. If this is an RGMII connection,
* we should change the "phy-connection-type" property to
* "rgmii"
* 3) Which PHY is being used. Because the MDIO buses are muxed,
* we need to redirect the "phy-handle" property to point at the
* PHY on the right slot/bus.
*/
/* We've got six MDIO nodes that may or may not need to exist */
fdt_status_disabled_by_alias(fdt, "emi1_slot3");
fdt_status_disabled_by_alias(fdt, "emi1_slot4");
fdt_status_disabled_by_alias(fdt, "emi1_slot5");
fdt_status_disabled_by_alias(fdt, "emi2_slot4");
fdt_status_disabled_by_alias(fdt, "emi2_slot5");
for (i = 0; i < NUM_FM_PORTS; i++) {
switch (mdio_mux[i]) {
case EMI1_SLOT3:
fdt_status_okay_by_alias(fdt, "emi1_slot3");
break;
case EMI1_SLOT4:
fdt_status_okay_by_alias(fdt, "emi1_slot4");
break;
case EMI1_SLOT5:
fdt_status_okay_by_alias(fdt, "emi1_slot5");
break;
case EMI2_SLOT4:
fdt_status_okay_by_alias(fdt, "emi2_slot4");
break;
case EMI2_SLOT5:
fdt_status_okay_by_alias(fdt, "emi2_slot5");
break;
}
}
}
int board_eth_init(bd_t *bis)
{
#ifdef CONFIG_FMAN_ENET
ccsr_gpio_t *pgpio = (void *)(CONFIG_SYS_MPC85xx_GPIO_ADDR);
int i;
struct fsl_pq_mdio_info dtsec_mdio_info;
struct tgec_mdio_info tgec_mdio_info;
struct mii_dev *bus;
/* Initialize the mdio_mux array so we can recognize empty elements */
for (i = 0; i < NUM_FM_PORTS; i++)
mdio_mux[i] = EMI_NONE;
/* The first 4 GPIOs are outputs to control MDIO bus muxing */
out_be32(&pgpio->gpdir, EMI_MASK);
dtsec_mdio_info.regs =
(struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
/* Register the 1G MDIO bus */
fsl_pq_mdio_init(bis, &dtsec_mdio_info);
tgec_mdio_info.regs =
(struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
/* Register the 10G MDIO bus */
fm_tgec_mdio_init(bis, &tgec_mdio_info);
/* Register the 6 muxing front-ends to the MDIO buses */
p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_RGMII);
p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT3);
p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT4);
p4080ds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT5);
p4080ds_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME, EMI2_SLOT4);
p4080ds_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME, EMI2_SLOT5);
fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
fm_info_set_phy_address(FM1_DTSEC3, CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
#if (CONFIG_SYS_NUM_FMAN == 2)
fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC3_PHY_ADDR);
fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC4_PHY_ADDR);
fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
#endif
for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
int idx = i - FM1_DTSEC1, lane, slot;
switch (fm_info_get_enet_if(i)) {
case PHY_INTERFACE_MODE_SGMII:
lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
if (lane < 0)
break;
slot = lane_to_slot[lane];
switch (slot) {
case 3:
mdio_mux[i] = EMI1_SLOT3;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
case 4:
mdio_mux[i] = EMI1_SLOT4;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
case 5:
mdio_mux[i] = EMI1_SLOT5;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
};
break;
case PHY_INTERFACE_MODE_RGMII:
fm_info_set_phy_address(i, 0);
mdio_mux[i] = EMI1_RGMII;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
default:
break;
}
}
bus = mii_dev_for_muxval(EMI1_SLOT5);
set_sgmii_phy(bus, FM1_DTSEC1,
CONFIG_SYS_NUM_FM1_DTSEC, PHY_BASE_ADDR_SLOT5);
for (i = FM1_10GEC1; i < FM1_10GEC1 + CONFIG_SYS_NUM_FM1_10GEC; i++) {
int idx = i - FM1_10GEC1, lane, slot;
switch (fm_info_get_enet_if(i)) {
case PHY_INTERFACE_MODE_XGMII:
lane = serdes_get_first_lane(XAUI_FM1 + idx);
if (lane < 0)
break;
slot = lane_to_slot[lane];
switch (slot) {
case 4:
mdio_mux[i] = EMI2_SLOT4;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
case 5:
mdio_mux[i] = EMI2_SLOT5;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
};
break;
default:
break;
}
}
#if (CONFIG_SYS_NUM_FMAN == 2)
for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
int idx = i - FM2_DTSEC1, lane, slot;
switch (fm_info_get_enet_if(i)) {
case PHY_INTERFACE_MODE_SGMII:
lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
if (lane < 0)
break;
slot = lane_to_slot[lane];
switch (slot) {
case 3:
mdio_mux[i] = EMI1_SLOT3;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
case 4:
mdio_mux[i] = EMI1_SLOT4;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
case 5:
mdio_mux[i] = EMI1_SLOT5;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
};
break;
case PHY_INTERFACE_MODE_RGMII:
fm_info_set_phy_address(i, 0);
mdio_mux[i] = EMI1_RGMII;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
default:
break;
}
}
bus = mii_dev_for_muxval(EMI1_SLOT3);
set_sgmii_phy(bus, FM2_DTSEC1, CONFIG_SYS_NUM_FM2_DTSEC, PHY_BASE_ADDR);
bus = mii_dev_for_muxval(EMI1_SLOT4);
set_sgmii_phy(bus, FM2_DTSEC1, CONFIG_SYS_NUM_FM2_DTSEC, PHY_BASE_ADDR);
for (i = FM2_10GEC1; i < FM2_10GEC1 + CONFIG_SYS_NUM_FM2_10GEC; i++) {
int idx = i - FM2_10GEC1, lane, slot;
switch (fm_info_get_enet_if(i)) {
case PHY_INTERFACE_MODE_XGMII:
lane = serdes_get_first_lane(XAUI_FM2 + idx);
if (lane < 0)
break;
slot = lane_to_slot[lane];
switch (slot) {
case 4:
mdio_mux[i] = EMI2_SLOT4;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
case 5:
mdio_mux[i] = EMI2_SLOT5;
fm_info_set_mdio(i,
mii_dev_for_muxval(mdio_mux[i]));
break;
};
break;
default:
break;
}
}
#endif
cpu_eth_init(bis);
#endif /* CONFIG_FMAN_ENET */
return pci_eth_init(bis);
}