upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/powerpc/cpu/mpc85xx/fdt.c

804 lines
22 KiB

/*
* Copyright 2007-2011 Freescale Semiconductor, Inc.
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <libfdt.h>
#include <fdt_support.h>
#include <asm/processor.h>
#include <linux/ctype.h>
#include <asm/io.h>
#include <asm/fsl_portals.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
#include "../../../../drivers/qe/qe.h" /* For struct qe_firmware */
DECLARE_GLOBAL_DATA_PTR;
extern void ft_qe_setup(void *blob);
extern void ft_fixup_num_cores(void *blob);
extern void ft_srio_setup(void *blob);
#ifdef CONFIG_MP
#include "mp.h"
void ft_fixup_cpu(void *blob, u64 memory_limit)
{
int off;
phys_addr_t spin_tbl_addr = get_spin_phys_addr();
u32 bootpg = determine_mp_bootpg(NULL);
u32 id = get_my_id();
const char *enable_method;
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
if (reg) {
u32 phys_cpu_id = thread_to_core(*reg);
u64 val = phys_cpu_id * SIZE_BOOT_ENTRY + spin_tbl_addr;
val = cpu_to_fdt64(val);
if (*reg == id) {
fdt_setprop_string(blob, off, "status",
"okay");
} else {
fdt_setprop_string(blob, off, "status",
"disabled");
}
if (hold_cores_in_reset(0)) {
#ifdef CONFIG_FSL_CORENET
/* Cores held in reset, use BRR to release */
enable_method = "fsl,brr-holdoff";
#else
/* Cores held in reset, use EEBPCR to release */
enable_method = "fsl,eebpcr-holdoff";
#endif
} else {
/* Cores out of reset and in a spin-loop */
enable_method = "spin-table";
fdt_setprop(blob, off, "cpu-release-addr",
&val, sizeof(val));
}
fdt_setprop_string(blob, off, "enable-method",
enable_method);
} else {
printf ("cpu NULL\n");
}
off = fdt_node_offset_by_prop_value(blob, off,
"device_type", "cpu", 4);
}
/* Reserve the boot page so OSes dont use it */
if ((u64)bootpg < memory_limit) {
off = fdt_add_mem_rsv(blob, bootpg, (u64)4096);
if (off < 0)
printf("Failed to reserve memory for bootpg: %s\n",
fdt_strerror(off));
}
/* Reserve spin table page */
if (spin_tbl_addr < memory_limit) {
off = fdt_add_mem_rsv(blob,
(spin_tbl_addr & ~0xffful), 4096);
if (off < 0)
printf("Failed to reserve memory for spin table: %s\n",
fdt_strerror(off));
}
}
#endif
#ifdef CONFIG_SYS_FSL_CPC
static inline void ft_fixup_l3cache(void *blob, int off)
{
u32 line_size, num_ways, size, num_sets;
cpc_corenet_t *cpc = (void *)CONFIG_SYS_FSL_CPC_ADDR;
u32 cfg0 = in_be32(&cpc->cpccfg0);
size = CPC_CFG0_SZ_K(cfg0) * 1024 * CONFIG_SYS_NUM_CPC;
num_ways = CPC_CFG0_NUM_WAYS(cfg0);
line_size = CPC_CFG0_LINE_SZ(cfg0);
num_sets = size / (line_size * num_ways);
fdt_setprop(blob, off, "cache-unified", NULL, 0);
fdt_setprop_cell(blob, off, "cache-block-size", line_size);
fdt_setprop_cell(blob, off, "cache-size", size);
fdt_setprop_cell(blob, off, "cache-sets", num_sets);
fdt_setprop_cell(blob, off, "cache-level", 3);
#ifdef CONFIG_SYS_CACHE_STASHING
fdt_setprop_cell(blob, off, "cache-stash-id", 1);
#endif
}
#else
#define ft_fixup_l3cache(x, y)
#endif
#if defined(CONFIG_L2_CACHE)
/* return size in kilobytes */
static inline u32 l2cache_size(void)
{
volatile ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR;
volatile u32 l2siz_field = (l2cache->l2ctl >> 28) & 0x3;
u32 ver = SVR_SOC_VER(get_svr());
switch (l2siz_field) {
case 0x0:
break;
case 0x1:
if (ver == SVR_8540 || ver == SVR_8560 ||
ver == SVR_8541 || ver == SVR_8555)
return 128;
else
return 256;
break;
case 0x2:
if (ver == SVR_8540 || ver == SVR_8560 ||
ver == SVR_8541 || ver == SVR_8555)
return 256;
else
return 512;
break;
case 0x3:
return 1024;
break;
}
return 0;
}
static inline void ft_fixup_l2cache(void *blob)
{
int len, off;
u32 *ph;
struct cpu_type *cpu = identify_cpu(SVR_SOC_VER(get_svr()));
const u32 line_size = 32;
const u32 num_ways = 8;
const u32 size = l2cache_size() * 1024;
const u32 num_sets = size / (line_size * num_ways);
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
if (off < 0) {
debug("no cpu node fount\n");
return;
}
ph = (u32 *)fdt_getprop(blob, off, "next-level-cache", 0);
if (ph == NULL) {
debug("no next-level-cache property\n");
return ;
}
off = fdt_node_offset_by_phandle(blob, *ph);
if (off < 0) {
printf("%s: %s\n", __func__, fdt_strerror(off));
return ;
}
if (cpu) {
char buf[40];
if (isdigit(cpu->name[0])) {
/* MPCxxxx, where xxxx == 4-digit number */
len = sprintf(buf, "fsl,mpc%s-l2-cache-controller",
cpu->name) + 1;
} else {
/* Pxxxx or Txxxx, where xxxx == 4-digit number */
len = sprintf(buf, "fsl,%c%s-l2-cache-controller",
tolower(cpu->name[0]), cpu->name + 1) + 1;
}
/*
* append "cache" after the NULL character that the previous
* sprintf wrote. This is how a device tree stores multiple
* strings in a property.
*/
len += sprintf(buf + len, "cache") + 1;
fdt_setprop(blob, off, "compatible", buf, len);
}
fdt_setprop(blob, off, "cache-unified", NULL, 0);
fdt_setprop_cell(blob, off, "cache-block-size", line_size);
fdt_setprop_cell(blob, off, "cache-size", size);
fdt_setprop_cell(blob, off, "cache-sets", num_sets);
fdt_setprop_cell(blob, off, "cache-level", 2);
/* we dont bother w/L3 since no platform of this type has one */
}
#elif defined(CONFIG_BACKSIDE_L2_CACHE) || \
defined(CONFIG_SYS_FSL_QORIQ_CHASSIS2)
static inline void ft_fixup_l2cache(void *blob)
{
int off, l2_off, l3_off = -1;
u32 *ph;
#ifdef CONFIG_BACKSIDE_L2_CACHE
u32 l2cfg0 = mfspr(SPRN_L2CFG0);
#else
struct ccsr_cluster_l2 *l2cache =
(struct ccsr_cluster_l2 __iomem *)(CONFIG_SYS_FSL_CLUSTER_1_L2);
u32 l2cfg0 = in_be32(&l2cache->l2cfg0);
#endif
u32 size, line_size, num_ways, num_sets;
int has_l2 = 1;
/* P2040/P2040E has no L2, so dont set any L2 props */
if (SVR_SOC_VER(get_svr()) == SVR_P2040)
has_l2 = 0;
size = (l2cfg0 & 0x3fff) * 64 * 1024;
num_ways = ((l2cfg0 >> 14) & 0x1f) + 1;
line_size = (((l2cfg0 >> 23) & 0x3) + 1) * 32;
num_sets = size / (line_size * num_ways);
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
ph = (u32 *)fdt_getprop(blob, off, "next-level-cache", 0);
if (ph == NULL) {
debug("no next-level-cache property\n");
goto next;
}
l2_off = fdt_node_offset_by_phandle(blob, *ph);
if (l2_off < 0) {
printf("%s: %s\n", __func__, fdt_strerror(off));
goto next;
}
if (has_l2) {
#ifdef CONFIG_SYS_CACHE_STASHING
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
/* Only initialize every eighth thread */
if (reg && !((*reg) % 8))
#else
if (reg)
#endif
fdt_setprop_cell(blob, l2_off, "cache-stash-id",
(*reg * 2) + 32 + 1);
#endif
fdt_setprop(blob, l2_off, "cache-unified", NULL, 0);
fdt_setprop_cell(blob, l2_off, "cache-block-size",
line_size);
fdt_setprop_cell(blob, l2_off, "cache-size", size);
fdt_setprop_cell(blob, l2_off, "cache-sets", num_sets);
fdt_setprop_cell(blob, l2_off, "cache-level", 2);
fdt_setprop(blob, l2_off, "compatible", "cache", 6);
}
if (l3_off < 0) {
ph = (u32 *)fdt_getprop(blob, l2_off, "next-level-cache", 0);
if (ph == NULL) {
debug("no next-level-cache property\n");
goto next;
}
l3_off = *ph;
}
next:
off = fdt_node_offset_by_prop_value(blob, off,
"device_type", "cpu", 4);
}
if (l3_off > 0) {
l3_off = fdt_node_offset_by_phandle(blob, l3_off);
if (l3_off < 0) {
printf("%s: %s\n", __func__, fdt_strerror(off));
return ;
}
ft_fixup_l3cache(blob, l3_off);
}
}
#else
#define ft_fixup_l2cache(x)
#endif
static inline void ft_fixup_cache(void *blob)
{
int off;
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
u32 l1cfg0 = mfspr(SPRN_L1CFG0);
u32 l1cfg1 = mfspr(SPRN_L1CFG1);
u32 isize, iline_size, inum_sets, inum_ways;
u32 dsize, dline_size, dnum_sets, dnum_ways;
/* d-side config */
dsize = (l1cfg0 & 0x7ff) * 1024;
dnum_ways = ((l1cfg0 >> 11) & 0xff) + 1;
dline_size = (((l1cfg0 >> 23) & 0x3) + 1) * 32;
dnum_sets = dsize / (dline_size * dnum_ways);
fdt_setprop_cell(blob, off, "d-cache-block-size", dline_size);
fdt_setprop_cell(blob, off, "d-cache-size", dsize);
fdt_setprop_cell(blob, off, "d-cache-sets", dnum_sets);
#ifdef CONFIG_SYS_CACHE_STASHING
{
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
if (reg)
fdt_setprop_cell(blob, off, "cache-stash-id",
(*reg * 2) + 32 + 0);
}
#endif
/* i-side config */
isize = (l1cfg1 & 0x7ff) * 1024;
inum_ways = ((l1cfg1 >> 11) & 0xff) + 1;
iline_size = (((l1cfg1 >> 23) & 0x3) + 1) * 32;
inum_sets = isize / (iline_size * inum_ways);
fdt_setprop_cell(blob, off, "i-cache-block-size", iline_size);
fdt_setprop_cell(blob, off, "i-cache-size", isize);
fdt_setprop_cell(blob, off, "i-cache-sets", inum_sets);
off = fdt_node_offset_by_prop_value(blob, off,
"device_type", "cpu", 4);
}
ft_fixup_l2cache(blob);
}
void fdt_add_enet_stashing(void *fdt)
{
do_fixup_by_compat(fdt, "gianfar", "bd-stash", NULL, 0, 1);
do_fixup_by_compat_u32(fdt, "gianfar", "rx-stash-len", 96, 1);
do_fixup_by_compat_u32(fdt, "gianfar", "rx-stash-idx", 0, 1);
do_fixup_by_compat(fdt, "fsl,etsec2", "bd-stash", NULL, 0, 1);
do_fixup_by_compat_u32(fdt, "fsl,etsec2", "rx-stash-len", 96, 1);
do_fixup_by_compat_u32(fdt, "fsl,etsec2", "rx-stash-idx", 0, 1);
}
#if defined(CONFIG_SYS_DPAA_FMAN) || defined(CONFIG_SYS_DPAA_PME)
#ifdef CONFIG_SYS_DPAA_FMAN
static void ft_fixup_clks(void *blob, const char *compat, u32 offset,
unsigned long freq)
{
phys_addr_t phys = offset + CONFIG_SYS_CCSRBAR_PHYS;
int off = fdt_node_offset_by_compat_reg(blob, compat, phys);
if (off >= 0) {
off = fdt_setprop_cell(blob, off, "clock-frequency", freq);
if (off > 0)
printf("WARNING enable to set clock-frequency "
"for %s: %s\n", compat, fdt_strerror(off));
}
}
#endif
static void ft_fixup_dpaa_clks(void *blob)
{
sys_info_t sysinfo;
get_sys_info(&sysinfo);
#ifdef CONFIG_SYS_DPAA_FMAN
ft_fixup_clks(blob, "fsl,fman", CONFIG_SYS_FSL_FM1_OFFSET,
sysinfo.freqFMan[0]);
#if (CONFIG_SYS_NUM_FMAN == 2)
ft_fixup_clks(blob, "fsl,fman", CONFIG_SYS_FSL_FM2_OFFSET,
sysinfo.freqFMan[1]);
#endif
#endif
#ifdef CONFIG_SYS_DPAA_QBMAN
do_fixup_by_compat_u32(blob, "fsl,qman",
"clock-frequency", sysinfo.freqQMAN, 1);
#endif
#ifdef CONFIG_SYS_DPAA_PME
do_fixup_by_compat_u32(blob, "fsl,pme",
"clock-frequency", sysinfo.freqPME, 1);
#endif
}
#else
#define ft_fixup_dpaa_clks(x)
#endif
#ifdef CONFIG_QE
static void ft_fixup_qe_snum(void *blob)
{
unsigned int svr;
svr = mfspr(SPRN_SVR);
if (SVR_SOC_VER(svr) == SVR_8569) {
if(IS_SVR_REV(svr, 1, 0))
do_fixup_by_compat_u32(blob, "fsl,qe",
"fsl,qe-num-snums", 46, 1);
else
do_fixup_by_compat_u32(blob, "fsl,qe",
"fsl,qe-num-snums", 76, 1);
}
}
#endif
/**
* fdt_fixup_fman_firmware -- insert the Fman firmware into the device tree
*
* The binding for an Fman firmware node is documented in
* Documentation/powerpc/dts-bindings/fsl/dpaa/fman.txt. This node contains
* the actual Fman firmware binary data. The operating system is expected to
* be able to parse the binary data to determine any attributes it needs.
*/
#ifdef CONFIG_SYS_DPAA_FMAN
void fdt_fixup_fman_firmware(void *blob)
{
int rc, fmnode, fwnode = -1;
uint32_t phandle;
struct qe_firmware *fmanfw;
const struct qe_header *hdr;
unsigned int length;
uint32_t crc;
const char *p;
/* The first Fman we find will contain the actual firmware. */
fmnode = fdt_node_offset_by_compatible(blob, -1, "fsl,fman");
if (fmnode < 0)
/* Exit silently if there are no Fman devices */
return;
/* If we already have a firmware node, then also exit silently. */
if (fdt_node_offset_by_compatible(blob, -1, "fsl,fman-firmware") > 0)
return;
/* If the environment variable is not set, then exit silently */
p = getenv("fman_ucode");
if (!p)
return;
fmanfw = (struct qe_firmware *) simple_strtoul(p, NULL, 0);
if (!fmanfw)
return;
hdr = &fmanfw->header;
length = be32_to_cpu(hdr->length);
/* Verify the firmware. */
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
(hdr->magic[2] != 'F')) {
printf("Data at %p is not an Fman firmware\n", fmanfw);
return;
}
if (length > CONFIG_SYS_QE_FMAN_FW_LENGTH) {
printf("Fman firmware at %p is too large (size=%u)\n",
fmanfw, length);
return;
}
length -= sizeof(u32); /* Subtract the size of the CRC */
crc = be32_to_cpu(*(u32 *)((void *)fmanfw + length));
if (crc != crc32_no_comp(0, (void *)fmanfw, length)) {
printf("Fman firmware at %p has invalid CRC\n", fmanfw);
return;
}
/* Increase the size of the fdt to make room for the node. */
rc = fdt_increase_size(blob, fmanfw->header.length);
if (rc < 0) {
printf("Unable to make room for Fman firmware: %s\n",
fdt_strerror(rc));
return;
}
/* Create the firmware node. */
fwnode = fdt_add_subnode(blob, fmnode, "fman-firmware");
if (fwnode < 0) {
char s[64];
fdt_get_path(blob, fmnode, s, sizeof(s));
printf("Could not add firmware node to %s: %s\n", s,
fdt_strerror(fwnode));
return;
}
rc = fdt_setprop_string(blob, fwnode, "compatible", "fsl,fman-firmware");
if (rc < 0) {
char s[64];
fdt_get_path(blob, fwnode, s, sizeof(s));
printf("Could not add compatible property to node %s: %s\n", s,
fdt_strerror(rc));
return;
}
phandle = fdt_create_phandle(blob, fwnode);
if (!phandle) {
char s[64];
fdt_get_path(blob, fwnode, s, sizeof(s));
printf("Could not add phandle property to node %s: %s\n", s,
fdt_strerror(rc));
return;
}
rc = fdt_setprop(blob, fwnode, "fsl,firmware", fmanfw, fmanfw->header.length);
if (rc < 0) {
char s[64];
fdt_get_path(blob, fwnode, s, sizeof(s));
printf("Could not add firmware property to node %s: %s\n", s,
fdt_strerror(rc));
return;
}
/* Find all other Fman nodes and point them to the firmware node. */
while ((fmnode = fdt_node_offset_by_compatible(blob, fmnode, "fsl,fman")) > 0) {
rc = fdt_setprop_cell(blob, fmnode, "fsl,firmware-phandle", phandle);
if (rc < 0) {
char s[64];
fdt_get_path(blob, fmnode, s, sizeof(s));
printf("Could not add pointer property to node %s: %s\n",
s, fdt_strerror(rc));
return;
}
}
}
#else
#define fdt_fixup_fman_firmware(x)
#endif
#if defined(CONFIG_PPC_P4080)
static void fdt_fixup_usb(void *fdt)
{
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 rcwsr11 = in_be32(&gur->rcwsr[11]);
int off;
off = fdt_node_offset_by_compatible(fdt, -1, "fsl,mpc85xx-usb2-mph");
if ((rcwsr11 & FSL_CORENET_RCWSR11_EC1) !=
FSL_CORENET_RCWSR11_EC1_FM1_USB1)
fdt_status_disabled(fdt, off);
off = fdt_node_offset_by_compatible(fdt, -1, "fsl,mpc85xx-usb2-dr");
if ((rcwsr11 & FSL_CORENET_RCWSR11_EC2) !=
FSL_CORENET_RCWSR11_EC2_USB2)
fdt_status_disabled(fdt, off);
}
#else
#define fdt_fixup_usb(x)
#endif
void ft_cpu_setup(void *blob, bd_t *bd)
{
int off;
int val;
sys_info_t sysinfo;
/* delete crypto node if not on an E-processor */
if (!IS_E_PROCESSOR(get_svr()))
fdt_fixup_crypto_node(blob, 0);
fdt_fixup_ethernet(blob);
fdt_add_enet_stashing(blob);
do_fixup_by_prop_u32(blob, "device_type", "cpu", 4,
"timebase-frequency", get_tbclk(), 1);
do_fixup_by_prop_u32(blob, "device_type", "cpu", 4,
"bus-frequency", bd->bi_busfreq, 1);
get_sys_info(&sysinfo);
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
val = cpu_to_fdt32(sysinfo.freqProcessor[*reg]);
fdt_setprop(blob, off, "clock-frequency", &val, 4);
off = fdt_node_offset_by_prop_value(blob, off, "device_type",
"cpu", 4);
}
do_fixup_by_prop_u32(blob, "device_type", "soc", 4,
"bus-frequency", bd->bi_busfreq, 1);
do_fixup_by_compat_u32(blob, "fsl,pq3-localbus",
"bus-frequency", gd->lbc_clk, 1);
do_fixup_by_compat_u32(blob, "fsl,elbc",
"bus-frequency", gd->lbc_clk, 1);
#ifdef CONFIG_QE
ft_qe_setup(blob);
ft_fixup_qe_snum(blob);
#endif
fdt_fixup_fman_firmware(blob);
#ifdef CONFIG_SYS_NS16550
do_fixup_by_compat_u32(blob, "ns16550",
"clock-frequency", CONFIG_SYS_NS16550_CLK, 1);
#endif
#ifdef CONFIG_CPM2
do_fixup_by_compat_u32(blob, "fsl,cpm2-scc-uart",
"current-speed", bd->bi_baudrate, 1);
do_fixup_by_compat_u32(blob, "fsl,cpm2-brg",
"clock-frequency", bd->bi_brgfreq, 1);
#endif
#ifdef CONFIG_FSL_CORENET
do_fixup_by_compat_u32(blob, "fsl,qoriq-clockgen-1.0",
"clock-frequency", CONFIG_SYS_CLK_FREQ, 1);
#endif
fdt_fixup_memory(blob, (u64)bd->bi_memstart, (u64)bd->bi_memsize);
#ifdef CONFIG_MP
ft_fixup_cpu(blob, (u64)bd->bi_memstart + (u64)bd->bi_memsize);
ft_fixup_num_cores(blob);
#endif
ft_fixup_cache(blob);
#if defined(CONFIG_FSL_ESDHC)
fdt_fixup_esdhc(blob, bd);
#endif
ft_fixup_dpaa_clks(blob);
#if defined(CONFIG_SYS_BMAN_MEM_PHYS)
fdt_portal(blob, "fsl,bman-portal", "bman-portals",
(u64)CONFIG_SYS_BMAN_MEM_PHYS,
CONFIG_SYS_BMAN_MEM_SIZE);
fdt_fixup_bportals(blob);
#endif
#if defined(CONFIG_SYS_QMAN_MEM_PHYS)
fdt_portal(blob, "fsl,qman-portal", "qman-portals",
(u64)CONFIG_SYS_QMAN_MEM_PHYS,
CONFIG_SYS_QMAN_MEM_SIZE);
fdt_fixup_qportals(blob);
#endif
#ifdef CONFIG_SYS_SRIO
ft_srio_setup(blob);
#endif
/*
* system-clock = CCB clock/2
* Here gd->bus_clk = CCB clock
* We are using the system clock as 1588 Timer reference
* clock source select
*/
do_fixup_by_compat_u32(blob, "fsl,gianfar-ptp-timer",
"timer-frequency", gd->bus_clk/2, 1);
/*
* clock-freq should change to clock-frequency and
* flexcan-v1.0 should change to p1010-flexcan respectively
* in the future.
*/
do_fixup_by_compat_u32(blob, "fsl,flexcan-v1.0",
"clock_freq", gd->bus_clk/2, 1);
do_fixup_by_compat_u32(blob, "fsl,flexcan-v1.0",
"clock-frequency", gd->bus_clk/2, 1);
do_fixup_by_compat_u32(blob, "fsl,p1010-flexcan",
"clock-frequency", gd->bus_clk/2, 1);
fdt_fixup_usb(blob);
}
/*
* For some CCSR devices, we only have the virtual address, not the physical
* address. This is because we map CCSR as a whole, so we typically don't need
* a macro for the physical address of any device within CCSR. In this case,
* we calculate the physical address of that device using it's the difference
* between the virtual address of the device and the virtual address of the
* beginning of CCSR.
*/
#define CCSR_VIRT_TO_PHYS(x) \
(CONFIG_SYS_CCSRBAR_PHYS + ((x) - CONFIG_SYS_CCSRBAR))
static void msg(const char *name, uint64_t uaddr, uint64_t daddr)
{
printf("Warning: U-Boot configured %s at address %llx,\n"
"but the device tree has it at %llx\n", name, uaddr, daddr);
}
/*
* Verify the device tree
*
* This function compares several CONFIG_xxx macros that contain physical
* addresses with the corresponding nodes in the device tree, to see if
* the physical addresses are all correct. For example, if
* CONFIG_SYS_NS16550_COM1 is defined, then it contains the virtual address
* of the first UART. We convert this to a physical address and compare
* that with the physical address of the first ns16550-compatible node
* in the device tree. If they don't match, then we display a warning.
*
* Returns 1 on success, 0 on failure
*/
int ft_verify_fdt(void *fdt)
{
uint64_t addr = 0;
int aliases;
int off;
/* First check the CCSR base address */
off = fdt_node_offset_by_prop_value(fdt, -1, "device_type", "soc", 4);
if (off > 0)
addr = fdt_get_base_address(fdt, off);
if (!addr) {
printf("Warning: could not determine base CCSR address in "
"device tree\n");
/* No point in checking anything else */
return 0;
}
if (addr != CONFIG_SYS_CCSRBAR_PHYS) {
msg("CCSR", CONFIG_SYS_CCSRBAR_PHYS, addr);
/* No point in checking anything else */
return 0;
}
/*
* Check some nodes via aliases. We assume that U-Boot and the device
* tree enumerate the devices equally. E.g. the first serial port in
* U-Boot is the same as "serial0" in the device tree.
*/
aliases = fdt_path_offset(fdt, "/aliases");
if (aliases > 0) {
#ifdef CONFIG_SYS_NS16550_COM1
if (!fdt_verify_alias_address(fdt, aliases, "serial0",
CCSR_VIRT_TO_PHYS(CONFIG_SYS_NS16550_COM1)))
return 0;
#endif
#ifdef CONFIG_SYS_NS16550_COM2
if (!fdt_verify_alias_address(fdt, aliases, "serial1",
CCSR_VIRT_TO_PHYS(CONFIG_SYS_NS16550_COM2)))
return 0;
#endif
}
/*
* The localbus node is typically a root node, even though the lbc
* controller is part of CCSR. If we were to put the lbc node under
* the SOC node, then the 'ranges' property in the lbc node would
* translate through the 'ranges' property of the parent SOC node, and
* we don't want that. Since it's a separate node, it's possible for
* the 'reg' property to be wrong, so check it here. For now, we
* only check for "fsl,elbc" nodes.
*/
#ifdef CONFIG_SYS_LBC_ADDR
off = fdt_node_offset_by_compatible(fdt, -1, "fsl,elbc");
if (off > 0) {
const u32 *reg = fdt_getprop(fdt, off, "reg", NULL);
if (reg) {
uint64_t uaddr = CCSR_VIRT_TO_PHYS(CONFIG_SYS_LBC_ADDR);
addr = fdt_translate_address(fdt, off, reg);
if (uaddr != addr) {
msg("the localbus", uaddr, addr);
return 0;
}
}
}
#endif
return 1;
}