upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mmc/sunxi_mmc.c

495 lines
12 KiB

/*
* (C) Copyright 2007-2011
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
* Aaron <leafy.myeh@allwinnertech.com>
*
* MMC driver for allwinner sunxi platform.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <errno.h>
#include <malloc.h>
#include <mmc.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cpu.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc.h>
#include <asm-generic/gpio.h>
struct sunxi_mmc_host {
unsigned mmc_no;
uint32_t *mclkreg;
unsigned fatal_err;
struct sunxi_mmc *reg;
struct mmc_config cfg;
};
/* support 4 mmc hosts */
struct sunxi_mmc_host mmc_host[4];
static int sunxi_mmc_getcd_gpio(int sdc_no)
{
switch (sdc_no) {
case 0: return sunxi_name_to_gpio(CONFIG_MMC0_CD_PIN);
case 1: return sunxi_name_to_gpio(CONFIG_MMC1_CD_PIN);
case 2: return sunxi_name_to_gpio(CONFIG_MMC2_CD_PIN);
case 3: return sunxi_name_to_gpio(CONFIG_MMC3_CD_PIN);
}
return -EINVAL;
}
static int mmc_resource_init(int sdc_no)
{
struct sunxi_mmc_host *mmchost = &mmc_host[sdc_no];
struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
int cd_pin, ret = 0;
debug("init mmc %d resource\n", sdc_no);
switch (sdc_no) {
case 0:
mmchost->reg = (struct sunxi_mmc *)SUNXI_MMC0_BASE;
mmchost->mclkreg = &ccm->sd0_clk_cfg;
break;
case 1:
mmchost->reg = (struct sunxi_mmc *)SUNXI_MMC1_BASE;
mmchost->mclkreg = &ccm->sd1_clk_cfg;
break;
case 2:
mmchost->reg = (struct sunxi_mmc *)SUNXI_MMC2_BASE;
mmchost->mclkreg = &ccm->sd2_clk_cfg;
break;
case 3:
mmchost->reg = (struct sunxi_mmc *)SUNXI_MMC3_BASE;
mmchost->mclkreg = &ccm->sd3_clk_cfg;
break;
default:
printf("Wrong mmc number %d\n", sdc_no);
return -1;
}
mmchost->mmc_no = sdc_no;
cd_pin = sunxi_mmc_getcd_gpio(sdc_no);
if (cd_pin >= 0) {
ret = gpio_request(cd_pin, "mmc_cd");
if (!ret) {
sunxi_gpio_set_pull(cd_pin, SUNXI_GPIO_PULL_UP);
ret = gpio_direction_input(cd_pin);
}
}
return ret;
}
static int mmc_set_mod_clk(struct sunxi_mmc_host *mmchost, unsigned int hz)
{
unsigned int pll, pll_hz, div, n, oclk_dly, sclk_dly;
if (hz <= 24000000) {
pll = CCM_MMC_CTRL_OSCM24;
pll_hz = 24000000;
} else {
#ifdef CONFIG_MACH_SUN9I
pll = CCM_MMC_CTRL_PLL_PERIPH0;
pll_hz = clock_get_pll4_periph0();
#else
pll = CCM_MMC_CTRL_PLL6;
pll_hz = clock_get_pll6();
#endif
}
div = pll_hz / hz;
if (pll_hz % hz)
div++;
n = 0;
while (div > 16) {
n++;
div = (div + 1) / 2;
}
if (n > 3) {
printf("mmc %u error cannot set clock to %u\n",
mmchost->mmc_no, hz);
return -1;
}
/* determine delays */
if (hz <= 400000) {
oclk_dly = 0;
sclk_dly = 0;
} else if (hz <= 25000000) {
oclk_dly = 0;
sclk_dly = 5;
#ifdef CONFIG_MACH_SUN9I
} else if (hz <= 50000000) {
oclk_dly = 5;
sclk_dly = 4;
} else {
/* hz > 50000000 */
oclk_dly = 2;
sclk_dly = 4;
#else
} else if (hz <= 50000000) {
oclk_dly = 3;
sclk_dly = 4;
} else {
/* hz > 50000000 */
oclk_dly = 1;
sclk_dly = 4;
#endif
}
writel(CCM_MMC_CTRL_ENABLE | pll | CCM_MMC_CTRL_SCLK_DLY(sclk_dly) |
CCM_MMC_CTRL_N(n) | CCM_MMC_CTRL_OCLK_DLY(oclk_dly) |
CCM_MMC_CTRL_M(div), mmchost->mclkreg);
debug("mmc %u set mod-clk req %u parent %u n %u m %u rate %u\n",
mmchost->mmc_no, hz, pll_hz, 1u << n, div,
pll_hz / (1u << n) / div);
return 0;
}
static int mmc_clk_io_on(int sdc_no)
{
struct sunxi_mmc_host *mmchost = &mmc_host[sdc_no];
struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
debug("init mmc %d clock and io\n", sdc_no);
/* config ahb clock */
setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MMC(sdc_no));
#ifdef CONFIG_SUNXI_GEN_SUN6I
/* unassert reset */
setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MMC(sdc_no));
#endif
#if defined(CONFIG_MACH_SUN9I)
/* sun9i has a mmc-common module, also set the gate and reset there */
writel(SUNXI_MMC_COMMON_CLK_GATE | SUNXI_MMC_COMMON_RESET,
SUNXI_MMC_COMMON_BASE + 4 * sdc_no);
#endif
return mmc_set_mod_clk(mmchost, 24000000);
}
static int mmc_update_clk(struct mmc *mmc)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
unsigned int cmd;
unsigned timeout_msecs = 2000;
cmd = SUNXI_MMC_CMD_START |
SUNXI_MMC_CMD_UPCLK_ONLY |
SUNXI_MMC_CMD_WAIT_PRE_OVER;
writel(cmd, &mmchost->reg->cmd);
while (readl(&mmchost->reg->cmd) & SUNXI_MMC_CMD_START) {
if (!timeout_msecs--)
return -1;
udelay(1000);
}
/* clock update sets various irq status bits, clear these */
writel(readl(&mmchost->reg->rint), &mmchost->reg->rint);
return 0;
}
static int mmc_config_clock(struct mmc *mmc)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
unsigned rval = readl(&mmchost->reg->clkcr);
/* Disable Clock */
rval &= ~SUNXI_MMC_CLK_ENABLE;
writel(rval, &mmchost->reg->clkcr);
if (mmc_update_clk(mmc))
return -1;
/* Set mod_clk to new rate */
if (mmc_set_mod_clk(mmchost, mmc->clock))
return -1;
/* Clear internal divider */
rval &= ~SUNXI_MMC_CLK_DIVIDER_MASK;
writel(rval, &mmchost->reg->clkcr);
/* Re-enable Clock */
rval |= SUNXI_MMC_CLK_ENABLE;
writel(rval, &mmchost->reg->clkcr);
if (mmc_update_clk(mmc))
return -1;
return 0;
}
static void sunxi_mmc_set_ios(struct mmc *mmc)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
debug("set ios: bus_width: %x, clock: %d\n",
mmc->bus_width, mmc->clock);
/* Change clock first */
if (mmc->clock && mmc_config_clock(mmc) != 0) {
mmchost->fatal_err = 1;
return;
}
/* Change bus width */
if (mmc->bus_width == 8)
writel(0x2, &mmchost->reg->width);
else if (mmc->bus_width == 4)
writel(0x1, &mmchost->reg->width);
else
writel(0x0, &mmchost->reg->width);
}
static int sunxi_mmc_core_init(struct mmc *mmc)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
/* Reset controller */
writel(SUNXI_MMC_GCTRL_RESET, &mmchost->reg->gctrl);
udelay(1000);
return 0;
}
static int mmc_trans_data_by_cpu(struct mmc *mmc, struct mmc_data *data)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
const int reading = !!(data->flags & MMC_DATA_READ);
const uint32_t status_bit = reading ? SUNXI_MMC_STATUS_FIFO_EMPTY :
SUNXI_MMC_STATUS_FIFO_FULL;
unsigned i;
unsigned *buff = (unsigned int *)(reading ? data->dest : data->src);
unsigned byte_cnt = data->blocksize * data->blocks;
unsigned timeout_msecs = byte_cnt >> 8;
if (timeout_msecs < 2000)
timeout_msecs = 2000;
/* Always read / write data through the CPU */
setbits_le32(&mmchost->reg->gctrl, SUNXI_MMC_GCTRL_ACCESS_BY_AHB);
for (i = 0; i < (byte_cnt >> 2); i++) {
while (readl(&mmchost->reg->status) & status_bit) {
if (!timeout_msecs--)
return -1;
udelay(1000);
}
if (reading)
buff[i] = readl(&mmchost->reg->fifo);
else
writel(buff[i], &mmchost->reg->fifo);
}
return 0;
}
static int mmc_rint_wait(struct mmc *mmc, unsigned int timeout_msecs,
unsigned int done_bit, const char *what)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
unsigned int status;
do {
status = readl(&mmchost->reg->rint);
if (!timeout_msecs-- ||
(status & SUNXI_MMC_RINT_INTERRUPT_ERROR_BIT)) {
debug("%s timeout %x\n", what,
status & SUNXI_MMC_RINT_INTERRUPT_ERROR_BIT);
return TIMEOUT;
}
udelay(1000);
} while (!(status & done_bit));
return 0;
}
static int sunxi_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
unsigned int cmdval = SUNXI_MMC_CMD_START;
unsigned int timeout_msecs;
int error = 0;
unsigned int status = 0;
unsigned int bytecnt = 0;
if (mmchost->fatal_err)
return -1;
if (cmd->resp_type & MMC_RSP_BUSY)
debug("mmc cmd %d check rsp busy\n", cmd->cmdidx);
if (cmd->cmdidx == 12)
return 0;
if (!cmd->cmdidx)
cmdval |= SUNXI_MMC_CMD_SEND_INIT_SEQ;
if (cmd->resp_type & MMC_RSP_PRESENT)
cmdval |= SUNXI_MMC_CMD_RESP_EXPIRE;
if (cmd->resp_type & MMC_RSP_136)
cmdval |= SUNXI_MMC_CMD_LONG_RESPONSE;
if (cmd->resp_type & MMC_RSP_CRC)
cmdval |= SUNXI_MMC_CMD_CHK_RESPONSE_CRC;
if (data) {
if ((u32) data->dest & 0x3) {
error = -1;
goto out;
}
cmdval |= SUNXI_MMC_CMD_DATA_EXPIRE|SUNXI_MMC_CMD_WAIT_PRE_OVER;
if (data->flags & MMC_DATA_WRITE)
cmdval |= SUNXI_MMC_CMD_WRITE;
if (data->blocks > 1)
cmdval |= SUNXI_MMC_CMD_AUTO_STOP;
writel(data->blocksize, &mmchost->reg->blksz);
writel(data->blocks * data->blocksize, &mmchost->reg->bytecnt);
}
debug("mmc %d, cmd %d(0x%08x), arg 0x%08x\n", mmchost->mmc_no,
cmd->cmdidx, cmdval | cmd->cmdidx, cmd->cmdarg);
writel(cmd->cmdarg, &mmchost->reg->arg);
if (!data)
writel(cmdval | cmd->cmdidx, &mmchost->reg->cmd);
/*
* transfer data and check status
* STATREG[2] : FIFO empty
* STATREG[3] : FIFO full
*/
if (data) {
int ret = 0;
bytecnt = data->blocksize * data->blocks;
debug("trans data %d bytes\n", bytecnt);
writel(cmdval | cmd->cmdidx, &mmchost->reg->cmd);
ret = mmc_trans_data_by_cpu(mmc, data);
if (ret) {
error = readl(&mmchost->reg->rint) & \
SUNXI_MMC_RINT_INTERRUPT_ERROR_BIT;
error = TIMEOUT;
goto out;
}
}
error = mmc_rint_wait(mmc, 1000, SUNXI_MMC_RINT_COMMAND_DONE, "cmd");
if (error)
goto out;
if (data) {
timeout_msecs = 120;
debug("cacl timeout %x msec\n", timeout_msecs);
error = mmc_rint_wait(mmc, timeout_msecs,
data->blocks > 1 ?
SUNXI_MMC_RINT_AUTO_COMMAND_DONE :
SUNXI_MMC_RINT_DATA_OVER,
"data");
if (error)
goto out;
}
if (cmd->resp_type & MMC_RSP_BUSY) {
timeout_msecs = 2000;
do {
status = readl(&mmchost->reg->status);
if (!timeout_msecs--) {
debug("busy timeout\n");
error = TIMEOUT;
goto out;
}
udelay(1000);
} while (status & SUNXI_MMC_STATUS_CARD_DATA_BUSY);
}
if (cmd->resp_type & MMC_RSP_136) {
cmd->response[0] = readl(&mmchost->reg->resp3);
cmd->response[1] = readl(&mmchost->reg->resp2);
cmd->response[2] = readl(&mmchost->reg->resp1);
cmd->response[3] = readl(&mmchost->reg->resp0);
debug("mmc resp 0x%08x 0x%08x 0x%08x 0x%08x\n",
cmd->response[3], cmd->response[2],
cmd->response[1], cmd->response[0]);
} else {
cmd->response[0] = readl(&mmchost->reg->resp0);
debug("mmc resp 0x%08x\n", cmd->response[0]);
}
out:
if (error < 0) {
writel(SUNXI_MMC_GCTRL_RESET, &mmchost->reg->gctrl);
mmc_update_clk(mmc);
}
writel(0xffffffff, &mmchost->reg->rint);
writel(readl(&mmchost->reg->gctrl) | SUNXI_MMC_GCTRL_FIFO_RESET,
&mmchost->reg->gctrl);
return error;
}
static int sunxi_mmc_getcd(struct mmc *mmc)
{
struct sunxi_mmc_host *mmchost = mmc->priv;
int cd_pin;
cd_pin = sunxi_mmc_getcd_gpio(mmchost->mmc_no);
if (cd_pin < 0)
return 1;
return !gpio_get_value(cd_pin);
}
int sunxi_mmc_has_egon_boot_signature(struct mmc *mmc)
{
char *buf = malloc(512);
int valid_signature = 0;
if (buf == NULL)
panic("Failed to allocate memory\n");
if (mmc_getcd(mmc) && mmc_init(mmc) == 0 &&
mmc->block_dev.block_read(&mmc->block_dev, 16, 1, buf) == 1 &&
strncmp(&buf[4], "eGON.BT0", 8) == 0)
valid_signature = 1;
free(buf);
return valid_signature;
}
static const struct mmc_ops sunxi_mmc_ops = {
.send_cmd = sunxi_mmc_send_cmd,
.set_ios = sunxi_mmc_set_ios,
.init = sunxi_mmc_core_init,
.getcd = sunxi_mmc_getcd,
};
struct mmc *sunxi_mmc_init(int sdc_no)
{
struct mmc_config *cfg = &mmc_host[sdc_no].cfg;
memset(&mmc_host[sdc_no], 0, sizeof(struct sunxi_mmc_host));
cfg->name = "SUNXI SD/MMC";
cfg->ops = &sunxi_mmc_ops;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
cfg->host_caps = MMC_MODE_4BIT;
cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
cfg->f_min = 400000;
cfg->f_max = 52000000;
if (mmc_resource_init(sdc_no) != 0)
return NULL;
mmc_clk_io_on(sdc_no);
return mmc_create(cfg, &mmc_host[sdc_no]);
}