upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/cpu/ppc4xx/4xx_pcie.c

1171 lines
31 KiB

/*
* (C) Copyright 2006 - 2008
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright (c) 2005 Cisco Systems. All rights reserved.
* Roland Dreier <rolandd@cisco.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <pci.h>
#include <ppc4xx.h>
#include <asm/processor.h>
#include <asm-ppc/io.h>
#if (defined(CONFIG_440SPE) || defined(CONFIG_405EX) || \
defined(CONFIG_460EX) || defined(CONFIG_460GT)) && \
defined(CONFIG_PCI)
#include <asm/4xx_pcie.h>
enum {
PTYPE_ENDPOINT = 0x0,
PTYPE_LEGACY_ENDPOINT = 0x1,
PTYPE_ROOT_PORT = 0x4,
LNKW_X1 = 0x1,
LNKW_X4 = 0x4,
LNKW_X8 = 0x8
};
static int validate_endpoint(struct pci_controller *hose)
{
if (hose->cfg_data == (u8 *)CFG_PCIE0_CFGBASE)
return (is_end_point(0));
else if (hose->cfg_data == (u8 *)CFG_PCIE1_CFGBASE)
return (is_end_point(1));
#if CFG_PCIE_NR_PORTS > 2
else if (hose->cfg_data == (u8 *)CFG_PCIE2_CFGBASE)
return (is_end_point(2));
#endif
return 0;
}
static u8* pcie_get_base(struct pci_controller *hose, unsigned int devfn)
{
u8 *base = (u8*)hose->cfg_data;
/* use local configuration space for the first bus */
if (PCI_BUS(devfn) == 0) {
if (hose->cfg_data == (u8*)CFG_PCIE0_CFGBASE)
base = (u8*)CFG_PCIE0_XCFGBASE;
if (hose->cfg_data == (u8*)CFG_PCIE1_CFGBASE)
base = (u8*)CFG_PCIE1_XCFGBASE;
#if CFG_PCIE_NR_PORTS > 2
if (hose->cfg_data == (u8*)CFG_PCIE2_CFGBASE)
base = (u8*)CFG_PCIE2_XCFGBASE;
#endif
}
return base;
}
static void pcie_dmer_disable(void)
{
mtdcr (DCRN_PEGPL_CFG(DCRN_PCIE0_BASE),
mfdcr (DCRN_PEGPL_CFG(DCRN_PCIE0_BASE)) | GPL_DMER_MASK_DISA);
mtdcr (DCRN_PEGPL_CFG(DCRN_PCIE1_BASE),
mfdcr (DCRN_PEGPL_CFG(DCRN_PCIE1_BASE)) | GPL_DMER_MASK_DISA);
#if CFG_PCIE_NR_PORTS > 2
mtdcr (DCRN_PEGPL_CFG(DCRN_PCIE2_BASE),
mfdcr (DCRN_PEGPL_CFG(DCRN_PCIE2_BASE)) | GPL_DMER_MASK_DISA);
#endif
}
static void pcie_dmer_enable(void)
{
mtdcr (DCRN_PEGPL_CFG (DCRN_PCIE0_BASE),
mfdcr (DCRN_PEGPL_CFG(DCRN_PCIE0_BASE)) & ~GPL_DMER_MASK_DISA);
mtdcr (DCRN_PEGPL_CFG (DCRN_PCIE1_BASE),
mfdcr (DCRN_PEGPL_CFG(DCRN_PCIE1_BASE)) & ~GPL_DMER_MASK_DISA);
#if CFG_PCIE_NR_PORTS > 2
mtdcr (DCRN_PEGPL_CFG (DCRN_PCIE2_BASE),
mfdcr (DCRN_PEGPL_CFG(DCRN_PCIE2_BASE)) & ~GPL_DMER_MASK_DISA);
#endif
}
static int pcie_read_config(struct pci_controller *hose, unsigned int devfn,
int offset, int len, u32 *val) {
u8 *address;
*val = 0;
if (validate_endpoint(hose))
return 0; /* No upstream config access */
/*
* Bus numbers are relative to hose->first_busno
*/
devfn -= PCI_BDF(hose->first_busno, 0, 0);
/*
* NOTICE: configuration space ranges are currenlty mapped only for
* the first 16 buses, so such limit must be imposed. In case more
* buses are required the TLB settings in board/amcc/<board>/init.S
* need to be altered accordingly (one bus takes 1 MB of memory space).
*/
if (PCI_BUS(devfn) >= 16)
return 0;
/*
* Only single device/single function is supported for the primary and
* secondary buses of the 440SPe host bridge.
*/
if ((!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 0))) &&
((PCI_BUS(devfn) == 0) || (PCI_BUS(devfn) == 1)))
return 0;
address = pcie_get_base(hose, devfn);
offset += devfn << 4;
/*
* Reading from configuration space of non-existing device can
* generate transaction errors. For the read duration we suppress
* assertion of machine check exceptions to avoid those.
*/
pcie_dmer_disable ();
debug("%s: cfg_data=%08x offset=%08x\n", __func__, hose->cfg_data, offset);
switch (len) {
case 1:
*val = in_8(hose->cfg_data + offset);
break;
case 2:
*val = in_le16((u16 *)(hose->cfg_data + offset));
break;
default:
*val = in_le32((u32*)(hose->cfg_data + offset));
break;
}
pcie_dmer_enable ();
return 0;
}
static int pcie_write_config(struct pci_controller *hose, unsigned int devfn,
int offset, int len, u32 val) {
u8 *address;
if (validate_endpoint(hose))
return 0; /* No upstream config access */
/*
* Bus numbers are relative to hose->first_busno
*/
devfn -= PCI_BDF(hose->first_busno, 0, 0);
/*
* Same constraints as in pcie_read_config().
*/
if (PCI_BUS(devfn) >= 16)
return 0;
if ((!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 0))) &&
((PCI_BUS(devfn) == 0) || (PCI_BUS(devfn) == 1)))
return 0;
address = pcie_get_base(hose, devfn);
offset += devfn << 4;
/*
* Suppress MCK exceptions, similar to pcie_read_config()
*/
pcie_dmer_disable ();
switch (len) {
case 1:
out_8(hose->cfg_data + offset, val);
break;
case 2:
out_le16((u16 *)(hose->cfg_data + offset), val);
break;
default:
out_le32((u32 *)(hose->cfg_data + offset), val);
break;
}
pcie_dmer_enable ();
return 0;
}
int pcie_read_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 *val)
{
u32 v;
int rv;
rv = pcie_read_config(hose, dev, offset, 1, &v);
*val = (u8)v;
return rv;
}
int pcie_read_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 *val)
{
u32 v;
int rv;
rv = pcie_read_config(hose, dev, offset, 2, &v);
*val = (u16)v;
return rv;
}
int pcie_read_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 *val)
{
u32 v;
int rv;
rv = pcie_read_config(hose, dev, offset, 3, &v);
*val = (u32)v;
return rv;
}
int pcie_write_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 val)
{
return pcie_write_config(hose,(u32)dev,offset,1,val);
}
int pcie_write_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 val)
{
return pcie_write_config(hose,(u32)dev,offset,2,(u32 )val);
}
int pcie_write_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 val)
{
return pcie_write_config(hose,(u32)dev,offset,3,(u32 )val);
}
#if defined(CONFIG_440SPE)
static void ppc4xx_setup_utl(u32 port) {
volatile void *utl_base = NULL;
/*
* Map UTL registers
*/
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_REGBAH(PCIE0), 0x0000000c);
mtdcr(DCRN_PEGPL_REGBAL(PCIE0), 0x20000000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001);
mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0x68782800);
break;
case 1:
mtdcr(DCRN_PEGPL_REGBAH(PCIE1), 0x0000000c);
mtdcr(DCRN_PEGPL_REGBAL(PCIE1), 0x20001000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001);
mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0x68782800);
break;
case 2:
mtdcr(DCRN_PEGPL_REGBAH(PCIE2), 0x0000000c);
mtdcr(DCRN_PEGPL_REGBAL(PCIE2), 0x20002000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE2), 0x00007001);
mtdcr(DCRN_PEGPL_SPECIAL(PCIE2), 0x68782800);
break;
}
utl_base = (unsigned int *)(CFG_PCIE_BASE + 0x1000 * port);
/*
* Set buffer allocations and then assert VRB and TXE.
*/
out_be32(utl_base + PEUTL_OUTTR, 0x08000000);
out_be32(utl_base + PEUTL_INTR, 0x02000000);
out_be32(utl_base + PEUTL_OPDBSZ, 0x10000000);
out_be32(utl_base + PEUTL_PBBSZ, 0x53000000);
out_be32(utl_base + PEUTL_IPHBSZ, 0x08000000);
out_be32(utl_base + PEUTL_IPDBSZ, 0x10000000);
out_be32(utl_base + PEUTL_RCIRQEN, 0x00f00000);
out_be32(utl_base + PEUTL_PCTL, 0x80800066);
}
static int check_error(void)
{
u32 valPE0, valPE1, valPE2;
int err = 0;
/* SDR0_PEGPLLLCT1 reset */
if (!(valPE0 = SDR_READ(PESDR0_PLLLCT1) & 0x01000000))
printf("PCIE: SDR0_PEGPLLLCT1 reset error 0x%x\n", valPE0);
valPE0 = SDR_READ(PESDR0_RCSSET);
valPE1 = SDR_READ(PESDR1_RCSSET);
valPE2 = SDR_READ(PESDR2_RCSSET);
/* SDR0_PExRCSSET rstgu */
if (!(valPE0 & 0x01000000) ||
!(valPE1 & 0x01000000) ||
!(valPE2 & 0x01000000)) {
printf("PCIE: SDR0_PExRCSSET rstgu error\n");
err = -1;
}
/* SDR0_PExRCSSET rstdl */
if (!(valPE0 & 0x00010000) ||
!(valPE1 & 0x00010000) ||
!(valPE2 & 0x00010000)) {
printf("PCIE: SDR0_PExRCSSET rstdl error\n");
err = -1;
}
/* SDR0_PExRCSSET rstpyn */
if ((valPE0 & 0x00001000) ||
(valPE1 & 0x00001000) ||
(valPE2 & 0x00001000)) {
printf("PCIE: SDR0_PExRCSSET rstpyn error\n");
err = -1;
}
/* SDR0_PExRCSSET hldplb */
if ((valPE0 & 0x10000000) ||
(valPE1 & 0x10000000) ||
(valPE2 & 0x10000000)) {
printf("PCIE: SDR0_PExRCSSET hldplb error\n");
err = -1;
}
/* SDR0_PExRCSSET rdy */
if ((valPE0 & 0x00100000) ||
(valPE1 & 0x00100000) ||
(valPE2 & 0x00100000)) {
printf("PCIE: SDR0_PExRCSSET rdy error\n");
err = -1;
}
/* SDR0_PExRCSSET shutdown */
if ((valPE0 & 0x00000100) ||
(valPE1 & 0x00000100) ||
(valPE2 & 0x00000100)) {
printf("PCIE: SDR0_PExRCSSET shutdown error\n");
err = -1;
}
return err;
}
/*
* Initialize PCI Express core
*/
int ppc4xx_init_pcie(void)
{
int time_out = 20;
/* Set PLL clock receiver to LVPECL */
SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) | 1 << 28);
if (check_error())
return -1;
if (!(SDR_READ(PESDR0_PLLLCT2) & 0x10000))
{
printf("PCIE: PESDR_PLLCT2 resistance calibration failed (0x%08x)\n",
SDR_READ(PESDR0_PLLLCT2));
return -1;
}
/* De-assert reset of PCIe PLL, wait for lock */
SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) & ~(1 << 24));
udelay(3);
while (time_out) {
if (!(SDR_READ(PESDR0_PLLLCT3) & 0x10000000)) {
time_out--;
udelay(1);
} else
break;
}
if (!time_out) {
printf("PCIE: VCO output not locked\n");
return -1;
}
return 0;
}
#endif
#if defined(CONFIG_460EX) || defined(CONFIG_460GT)
static void ppc4xx_setup_utl(u32 port)
{
volatile void *utl_base = NULL;
/*
* Map UTL registers at 0x0801_n000 (4K 0xfff mask) PEGPLn_REGMSK
*/
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_REGBAH(PCIE0), U64_TO_U32_HIGH(CFG_PCIE0_UTLBASE));
mtdcr(DCRN_PEGPL_REGBAL(PCIE0), U64_TO_U32_LOW(CFG_PCIE0_UTLBASE));
mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001); /* BAM 11100000=4KB */
mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0);
break;
case 1:
mtdcr(DCRN_PEGPL_REGBAH(PCIE1), U64_TO_U32_HIGH(CFG_PCIE0_UTLBASE));
mtdcr(DCRN_PEGPL_REGBAL(PCIE1), U64_TO_U32_LOW(CFG_PCIE0_UTLBASE)
+ 0x1000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001); /* BAM 11100000=4KB */
mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0);
break;
}
utl_base = (unsigned int *)(CFG_PCIE_BASE + 0x1000 * port);
/*
* Set buffer allocations and then assert VRB and TXE.
*/
out_be32(utl_base + PEUTL_PBCTL, 0x0800000c); /* PLBME, CRRE */
out_be32(utl_base + PEUTL_OUTTR, 0x08000000);
out_be32(utl_base + PEUTL_INTR, 0x02000000);
out_be32(utl_base + PEUTL_OPDBSZ, 0x04000000); /* OPD = 512 Bytes */
out_be32(utl_base + PEUTL_PBBSZ, 0x00000000); /* Max 512 Bytes */
out_be32(utl_base + PEUTL_IPHBSZ, 0x02000000);
out_be32(utl_base + PEUTL_IPDBSZ, 0x04000000); /* IPD = 512 Bytes */
out_be32(utl_base + PEUTL_RCIRQEN, 0x00f00000);
out_be32(utl_base + PEUTL_PCTL, 0x80800066); /* VRB,TXE,timeout=default */
}
/*
* TODO: double check PCI express SDR based on the latest user manual
* Some registers specified here no longer exist.. has to be
* updated based on the final EAS spec.
*/
static int check_error(void)
{
u32 valPE0, valPE1;
int err = 0;
valPE0 = SDR_READ(SDRN_PESDR_RCSSET(0));
valPE1 = SDR_READ(SDRN_PESDR_RCSSET(1));
/* SDR0_PExRCSSET rstgu */
if (!(valPE0 & PESDRx_RCSSET_RSTGU) || !(valPE1 & PESDRx_RCSSET_RSTGU)) {
printf("PCIE: SDR0_PExRCSSET rstgu error\n");
err = -1;
}
/* SDR0_PExRCSSET rstdl */
if (!(valPE0 & PESDRx_RCSSET_RSTDL) || !(valPE1 & PESDRx_RCSSET_RSTDL)) {
printf("PCIE: SDR0_PExRCSSET rstdl error\n");
err = -1;
}
/* SDR0_PExRCSSET rstpyn */
if ((valPE0 & PESDRx_RCSSET_RSTPYN) || (valPE1 & PESDRx_RCSSET_RSTPYN)) {
printf("PCIE: SDR0_PExRCSSET rstpyn error\n");
err = -1;
}
/* SDR0_PExRCSSET hldplb */
if ((valPE0 & PESDRx_RCSSET_HLDPLB) || (valPE1 & PESDRx_RCSSET_HLDPLB)) {
printf("PCIE: SDR0_PExRCSSET hldplb error\n");
err = -1;
}
/* SDR0_PExRCSSET rdy */
if ((valPE0 & PESDRx_RCSSET_RDY) || (valPE1 & PESDRx_RCSSET_RDY)) {
printf("PCIE: SDR0_PExRCSSET rdy error\n");
err = -1;
}
return err;
}
/*
* Initialize PCI Express core as described in User Manual
* TODO: double check PE SDR PLL Register with the updated user manual.
*/
int ppc4xx_init_pcie(void)
{
if (check_error())
return -1;
return 0;
}
#endif /* CONFIG_460EX */
#if defined(CONFIG_405EX)
static void ppc4xx_setup_utl(u32 port)
{
u32 utl_base;
/*
* Map UTL registers at 0xef4f_n000 (4K 0xfff mask) PEGPLn_REGMSK
*/
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_REGBAH(PCIE0), 0x00000000);
mtdcr(DCRN_PEGPL_REGBAL(PCIE0), CFG_PCIE0_UTLBASE);
mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001); /* 4k region, valid */
mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0);
break;
case 1:
mtdcr(DCRN_PEGPL_REGBAH(PCIE1), 0x00000000);
mtdcr(DCRN_PEGPL_REGBAL(PCIE1), CFG_PCIE1_UTLBASE);
mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001); /* 4k region, valid */
mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0);
break;
}
utl_base = (port==0) ? CFG_PCIE0_UTLBASE : CFG_PCIE1_UTLBASE;
/*
* Set buffer allocations and then assert VRB and TXE.
*/
out_be32((u32 *)(utl_base + PEUTL_OUTTR), 0x02000000);
out_be32((u32 *)(utl_base + PEUTL_INTR), 0x02000000);
out_be32((u32 *)(utl_base + PEUTL_OPDBSZ), 0x04000000);
out_be32((u32 *)(utl_base + PEUTL_PBBSZ), 0x21000000);
out_be32((u32 *)(utl_base + PEUTL_IPHBSZ), 0x02000000);
out_be32((u32 *)(utl_base + PEUTL_IPDBSZ), 0x04000000);
out_be32((u32 *)(utl_base + PEUTL_RCIRQEN), 0x00f00000);
out_be32((u32 *)(utl_base + PEUTL_PCTL), 0x80800066);
out_be32((u32 *)(utl_base + PEUTL_PBCTL), 0x0800000c);
out_be32((u32 *)(utl_base + PEUTL_RCSTA),
in_be32((u32 *)(utl_base + PEUTL_RCSTA)) | 0x000040000);
}
int ppc4xx_init_pcie(void)
{
/*
* Nothing to do on 405EX
*/
return 0;
}
#endif /* CONFIG_405EX */
/*
* Board-specific pcie initialization
* Platform code can reimplement ppc4xx_init_pcie_port_hw() if needed
*/
/*
* Initialize various parts of the PCI Express core for our port:
*
* - Set as a root port and enable max width
* (PXIE0 -> X8, PCIE1 and PCIE2 -> X4).
* - Set up UTL configuration.
* - Increase SERDES drive strength to levels suggested by AMCC.
* - De-assert RSTPYN, RSTDL and RSTGU.
*
* NOTICE for 440SPE revB chip: PESDRn_UTLSET2 is not set - we leave it
* with default setting 0x11310000. The register has new fields,
* PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core
* hang.
*/
#if defined(CONFIG_440SPE)
int __ppc4xx_init_pcie_port_hw(int port, int rootport)
{
u32 val = 1 << 24;
u32 utlset1;
if (rootport) {
val = PTYPE_ROOT_PORT << 20;
utlset1 = 0x21222222;
} else {
val = PTYPE_LEGACY_ENDPOINT << 20;
utlset1 = 0x20222222;
}
if (port == 0)
val |= LNKW_X8 << 12;
else
val |= LNKW_X4 << 12;
SDR_WRITE(SDRN_PESDR_DLPSET(port), val);
SDR_WRITE(SDRN_PESDR_UTLSET1(port), utlset1);
if (!ppc440spe_revB())
SDR_WRITE(SDRN_PESDR_UTLSET2(port), 0x11000000);
SDR_WRITE(SDRN_PESDR_HSSL0SET1(port), 0x35000000);
SDR_WRITE(SDRN_PESDR_HSSL1SET1(port), 0x35000000);
SDR_WRITE(SDRN_PESDR_HSSL2SET1(port), 0x35000000);
SDR_WRITE(SDRN_PESDR_HSSL3SET1(port), 0x35000000);
if (port == 0) {
SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000);
}
SDR_WRITE(SDRN_PESDR_RCSSET(port), (SDR_READ(SDRN_PESDR_RCSSET(port)) &
~(1 << 24 | 1 << 16)) | 1 << 12);
return 0;
}
#endif /* CONFIG_440SPE */
#if defined(CONFIG_460EX) || defined(CONFIG_460GT)
int __ppc4xx_init_pcie_port_hw(int port, int rootport)
{
u32 val;
u32 utlset1;
if (rootport)
val = PTYPE_ROOT_PORT << 20;
else
val = PTYPE_LEGACY_ENDPOINT << 20;
if (port == 0) {
val |= LNKW_X1 << 12;
utlset1 = 0x20000000;
} else {
val |= LNKW_X4 << 12;
utlset1 = 0x20101101;
}
SDR_WRITE(SDRN_PESDR_DLPSET(port), val);
SDR_WRITE(SDRN_PESDR_UTLSET1(port), utlset1);
SDR_WRITE(SDRN_PESDR_UTLSET2(port), 0x01210000);
switch (port) {
case 0:
SDR_WRITE(PESDR0_L0CDRCTL, 0x00003230);
SDR_WRITE(PESDR0_L0DRV, 0x00000130);
SDR_WRITE(PESDR0_L0CLK, 0x00000006);
SDR_WRITE(PESDR0_PHY_CTL_RST,0x10000000);
break;
case 1:
SDR_WRITE(PESDR1_L0CDRCTL, 0x00003230);
SDR_WRITE(PESDR1_L1CDRCTL, 0x00003230);
SDR_WRITE(PESDR1_L2CDRCTL, 0x00003230);
SDR_WRITE(PESDR1_L3CDRCTL, 0x00003230);
SDR_WRITE(PESDR1_L0DRV, 0x00000130);
SDR_WRITE(PESDR1_L1DRV, 0x00000130);
SDR_WRITE(PESDR1_L2DRV, 0x00000130);
SDR_WRITE(PESDR1_L3DRV, 0x00000130);
SDR_WRITE(PESDR1_L0CLK, 0x00000006);
SDR_WRITE(PESDR1_L1CLK, 0x00000006);
SDR_WRITE(PESDR1_L2CLK, 0x00000006);
SDR_WRITE(PESDR1_L3CLK, 0x00000006);
SDR_WRITE(PESDR1_PHY_CTL_RST,0x10000000);
break;
}
SDR_WRITE(SDRN_PESDR_RCSSET(port), SDR_READ(SDRN_PESDR_RCSSET(port)) |
(PESDRx_RCSSET_RSTGU | PESDRx_RCSSET_RSTPYN));
/* Poll for PHY reset */
switch (port) {
case 0:
while (!(SDR_READ(PESDR0_RSTSTA) & 0x1))
udelay(10);
break;
case 1:
while (!(SDR_READ(PESDR1_RSTSTA) & 0x1))
udelay(10);
break;
}
SDR_WRITE(SDRN_PESDR_RCSSET(port),
(SDR_READ(SDRN_PESDR_RCSSET(port)) &
~(PESDRx_RCSSET_RSTGU | PESDRx_RCSSET_RSTDL)) |
PESDRx_RCSSET_RSTPYN);
return 0;
}
#endif /* CONFIG_440SPE */
#if defined(CONFIG_405EX)
int __ppc4xx_init_pcie_port_hw(int port, int rootport)
{
u32 val;
if (rootport)
val = 0x00401000;
else
val = 0x00101000;
SDR_WRITE(SDRN_PESDR_DLPSET(port), val);
SDR_WRITE(SDRN_PESDR_UTLSET1(port), 0x00000000);
SDR_WRITE(SDRN_PESDR_UTLSET2(port), 0x01010000);
SDR_WRITE(SDRN_PESDR_PHYSET1(port), 0x720F0000);
SDR_WRITE(SDRN_PESDR_PHYSET2(port), 0x70600003);
/* Assert the PE0_PHY reset */
SDR_WRITE(SDRN_PESDR_RCSSET(port), 0x01010000);
udelay(1000);
/* deassert the PE0_hotreset */
if (is_end_point(port))
SDR_WRITE(SDRN_PESDR_RCSSET(port), 0x01111000);
else
SDR_WRITE(SDRN_PESDR_RCSSET(port), 0x01101000);
/* poll for phy !reset */
while (!(SDR_READ(SDRN_PESDR_PHYSTA(port)) & 0x00001000))
;
/* deassert the PE0_gpl_utl_reset */
SDR_WRITE(SDRN_PESDR_RCSSET(port), 0x00101000);
if (port == 0)
mtdcr(DCRN_PEGPL_CFG(PCIE0), 0x10000000); /* guarded on */
else
mtdcr(DCRN_PEGPL_CFG(PCIE1), 0x10000000); /* guarded on */
return 0;
}
#endif /* CONFIG_405EX */
int ppc4xx_init_pcie_port_hw(int port, int rootport)
__attribute__((weak, alias("__ppc4xx_init_pcie_port_hw")));
/*
* We map PCI Express configuration access into the 512MB regions
*
* NOTICE: revB is very strict about PLB real addressess and ranges to
* be mapped for config space; it seems to only work with d_nnnn_nnnn
* range (hangs the core upon config transaction attempts when set
* otherwise) while revA uses c_nnnn_nnnn.
*
* For 440SPe revA:
* PCIE0: 0xc_4000_0000
* PCIE1: 0xc_8000_0000
* PCIE2: 0xc_c000_0000
*
* For 440SPe revB:
* PCIE0: 0xd_0000_0000
* PCIE1: 0xd_2000_0000
* PCIE2: 0xd_4000_0000
*
* For 405EX:
* PCIE0: 0xa000_0000
* PCIE1: 0xc000_0000
*
* For 460EX/GT:
* PCIE0: 0xd_0000_0000
* PCIE1: 0xd_2000_0000
*/
static inline u64 ppc4xx_get_cfgaddr(int port)
{
#if defined(CONFIG_405EX)
if (port == 0)
return (u64)CFG_PCIE0_CFGBASE;
else
return (u64)CFG_PCIE1_CFGBASE;
#endif
#if defined(CONFIG_440SPE)
if (ppc440spe_revB()) {
switch (port) {
default: /* to satisfy compiler */
case 0:
return 0x0000000d00000000ULL;
case 1:
return 0x0000000d20000000ULL;
case 2:
return 0x0000000d40000000ULL;
}
} else {
switch (port) {
default: /* to satisfy compiler */
case 0:
return 0x0000000c40000000ULL;
case 1:
return 0x0000000c80000000ULL;
case 2:
return 0x0000000cc0000000ULL;
}
}
#endif
#if defined(CONFIG_460EX) || defined(CONFIG_460GT)
if (port == 0)
return 0x0000000d00000000ULL;
else
return 0x0000000d20000000ULL;
#endif
}
/*
* 4xx boards as end point and root point setup
* and
* testing inbound and out bound windows
*
* 4xx boards can be plugged into another 4xx boards or you can get PCI-E
* cable which can be used to setup loop back from one port to another port.
* Please rememeber that unless there is a endpoint plugged in to root port it
* will not initialize. It is the same in case of endpoint , unless there is
* root port attached it will not initialize.
*
* In this release of software all the PCI-E ports are configured as either
* endpoint or rootpoint.In future we will have support for selective ports
* setup as endpoint and root point in single board.
*
* Once your board came up as root point , you can verify by reading
* /proc/bus/pci/devices. Where you can see the configuration registers
* of end point device attached to the port.
*
* Enpoint cofiguration can be verified by connecting 4xx board to any
* host or another 4xx board. Then try to scan the device. In case of
* linux use "lspci" or appripriate os command.
*
* How do I verify the inbound and out bound windows ? (4xx to 4xx)
* in this configuration inbound and outbound windows are setup to access
* sram memroy area. SRAM is at 0x4 0000 0000 , on PLB bus. This address
* is mapped at 0x90000000. From u-boot prompt write data 0xb000 0000,
* This is waere your POM(PLB out bound memory window) mapped. then
* read the data from other 4xx board's u-boot prompt at address
* 0x9000 0000(SRAM). Data should match.
* In case of inbound , write data to u-boot command prompt at 0xb000 0000
* which is mapped to 0x4 0000 0000. Now on rootpoint yucca u-boot prompt check
* data at 0x9000 0000(SRAM).Data should match.
*/
int ppc4xx_init_pcie_port(int port, int rootport)
{
static int core_init;
volatile u32 val = 0;
int attempts;
u64 addr;
u32 low, high;
if (!core_init) {
if (ppc4xx_init_pcie())
return -1;
++core_init;
}
/*
* Initialize various parts of the PCI Express core for our port
*/
ppc4xx_init_pcie_port_hw(port, rootport);
/*
* Notice: the following delay has critical impact on device
* initialization - if too short (<50ms) the link doesn't get up.
*/
mdelay(100);
val = SDR_READ(SDRN_PESDR_RCSSTS(port));
if (val & (1 << 20)) {
printf("PCIE%d: PGRST failed %08x\n", port, val);
return -1;
}
/*
* Verify link is up
*/
val = SDR_READ(SDRN_PESDR_LOOP(port));
if (!(val & 0x00001000)) {
printf("PCIE%d: link is not up.\n", port);
return -1;
}
/*
* Setup UTL registers - but only on revA!
* We use default settings for revB chip.
*/
if (!ppc440spe_revB())
ppc4xx_setup_utl(port);
/*
* We map PCI Express configuration access into the 512MB regions
*/
addr = ppc4xx_get_cfgaddr(port);
low = U64_TO_U32_LOW(addr);
high = U64_TO_U32_HIGH(addr);
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), high);
mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), low);
mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */
break;
case 1:
mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), high);
mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), low);
mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */
break;
#if CFG_PCIE_NR_PORTS > 2
case 2:
mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), high);
mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), low);
mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */
break;
#endif
}
/*
* Check for VC0 active and assert RDY.
*/
attempts = 10;
while(!(SDR_READ(SDRN_PESDR_RCSSTS(port)) & (1 << 16))) {
if (!(attempts--)) {
printf("PCIE%d: VC0 not active\n", port);
return -1;
}
mdelay(1000);
}
SDR_WRITE(SDRN_PESDR_RCSSET(port),
SDR_READ(SDRN_PESDR_RCSSET(port)) | 1 << 20);
mdelay(100);
return 0;
}
int ppc4xx_init_pcie_rootport(int port)
{
return ppc4xx_init_pcie_port(port, 1);
}
int ppc4xx_init_pcie_endport(int port)
{
return ppc4xx_init_pcie_port(port, 0);
}
void ppc4xx_setup_pcie_rootpoint(struct pci_controller *hose, int port)
{
volatile void *mbase = NULL;
volatile void *rmbase = NULL;
pci_set_ops(hose,
pcie_read_config_byte,
pcie_read_config_word,
pcie_read_config_dword,
pcie_write_config_byte,
pcie_write_config_word,
pcie_write_config_dword);
switch (port) {
case 0:
mbase = (u32 *)CFG_PCIE0_XCFGBASE;
rmbase = (u32 *)CFG_PCIE0_CFGBASE;
hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE;
break;
case 1:
mbase = (u32 *)CFG_PCIE1_XCFGBASE;
rmbase = (u32 *)CFG_PCIE1_CFGBASE;
hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE;
break;
#if CFG_PCIE_NR_PORTS > 2
case 2:
mbase = (u32 *)CFG_PCIE2_XCFGBASE;
rmbase = (u32 *)CFG_PCIE2_CFGBASE;
hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE;
break;
#endif
}
/*
* Set bus numbers on our root port
*/
out_8((u8 *)mbase + PCI_PRIMARY_BUS, 0);
out_8((u8 *)mbase + PCI_SECONDARY_BUS, 1);
out_8((u8 *)mbase + PCI_SUBORDINATE_BUS, 1);
/*
* Set up outbound translation to hose->mem_space from PLB
* addresses at an offset of 0xd_0000_0000. We set the low
* bits of the mask to 11 to turn off splitting into 8
* subregions and to enable the outbound translation.
*/
out_le32(mbase + PECFG_POM0LAH, 0x00000000);
out_le32(mbase + PECFG_POM0LAL, CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
debug("PECFG_POM0LA=%08x.%08x\n", in_le32(mbase + PECFG_POM0LAH),
in_le32(mbase + PECFG_POM0LAL));
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), CFG_PCIE_ADDR_HIGH);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0),
~(CFG_PCIE_MEMSIZE - 1) | 3);
debug("0:PEGPL_OMR1BA=%08x.%08x MSK=%08x.%08x\n",
mfdcr(DCRN_PEGPL_OMR1BAH(PCIE0)),
mfdcr(DCRN_PEGPL_OMR1BAL(PCIE0)),
mfdcr(DCRN_PEGPL_OMR1MSKH(PCIE0)),
mfdcr(DCRN_PEGPL_OMR1MSKL(PCIE0)));
break;
case 1:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), CFG_PCIE_ADDR_HIGH);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1),
~(CFG_PCIE_MEMSIZE - 1) | 3);
debug("1:PEGPL_OMR1BA=%08x.%08x MSK=%08x.%08x\n",
mfdcr(DCRN_PEGPL_OMR1BAH(PCIE1)),
mfdcr(DCRN_PEGPL_OMR1BAL(PCIE1)),
mfdcr(DCRN_PEGPL_OMR1MSKH(PCIE1)),
mfdcr(DCRN_PEGPL_OMR1MSKL(PCIE1)));
break;
#if CFG_PCIE_NR_PORTS > 2
case 2:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), CFG_PCIE_ADDR_HIGH);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2),
~(CFG_PCIE_MEMSIZE - 1) | 3);
debug("2:PEGPL_OMR1BA=%08x.%08x MSK=%08x.%08x\n",
mfdcr(DCRN_PEGPL_OMR1BAH(PCIE2)),
mfdcr(DCRN_PEGPL_OMR1BAL(PCIE2)),
mfdcr(DCRN_PEGPL_OMR1MSKH(PCIE2)),
mfdcr(DCRN_PEGPL_OMR1MSKL(PCIE2)));
break;
#endif
}
/* Set up 16GB inbound memory window at 0 */
out_le32(mbase + PCI_BASE_ADDRESS_0, 0);
out_le32(mbase + PCI_BASE_ADDRESS_1, 0);
out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc);
out_le32(mbase + PECFG_BAR0LMPA, 0);
out_le32(mbase + PECFG_PIM01SAH, 0xffff0000);
out_le32(mbase + PECFG_PIM01SAL, 0x00000000);
out_le32(mbase + PECFG_PIM0LAL, 0);
out_le32(mbase + PECFG_PIM0LAH, 0);
out_le32(mbase + PECFG_PIM1LAL, 0x00000000);
out_le32(mbase + PECFG_PIM1LAH, 0x00000004);
out_le32(mbase + PECFG_PIMEN, 0x1);
/* Enable I/O, Mem, and Busmaster cycles */
out_le16((u16 *)(mbase + PCI_COMMAND),
in_le16((u16 *)(mbase + PCI_COMMAND)) |
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
/* Set Device and Vendor Id */
out_le16(mbase + 0x200, 0xaaa0 + port);
out_le16(mbase + 0x202, 0xbed0 + port);
/* Set Class Code to PCI-PCI bridge and Revision Id to 1 */
out_le32(mbase + 0x208, 0x06040001);
printf("PCIE%d: successfully set as root-complex\n", port);
}
int ppc4xx_setup_pcie_endpoint(struct pci_controller *hose, int port)
{
volatile void *mbase = NULL;
int attempts = 0;
pci_set_ops(hose,
pcie_read_config_byte,
pcie_read_config_word,
pcie_read_config_dword,
pcie_write_config_byte,
pcie_write_config_word,
pcie_write_config_dword);
switch (port) {
case 0:
mbase = (u32 *)CFG_PCIE0_XCFGBASE;
hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE;
break;
case 1:
mbase = (u32 *)CFG_PCIE1_XCFGBASE;
hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE;
break;
#if defined(CFG_PCIE2_CFGBASE)
case 2:
mbase = (u32 *)CFG_PCIE2_XCFGBASE;
hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE;
break;
#endif
}
/*
* Set up outbound translation to hose->mem_space from PLB
* addresses at an offset of 0xd_0000_0000. We set the low
* bits of the mask to 11 to turn off splitting into 8
* subregions and to enable the outbound translation.
*/
out_le32(mbase + PECFG_POM0LAH, 0x00001ff8);
out_le32(mbase + PECFG_POM0LAL, 0x00001000);
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), CFG_PCIE_ADDR_HIGH);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0),
~(CFG_PCIE_MEMSIZE - 1) | 3);
break;
case 1:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), CFG_PCIE_ADDR_HIGH);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1),
~(CFG_PCIE_MEMSIZE - 1) | 3);
break;
#if CFG_PCIE_NR_PORTS > 2
case 2:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), CFG_PCIE_ADDR_HIGH);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), CFG_PCIE_MEMBASE +
port * CFG_PCIE_MEMSIZE);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2),
~(CFG_PCIE_MEMSIZE - 1) | 3);
break;
#endif
}
/* Set up 64MB inbound memory window at 0 */
out_le32(mbase + PCI_BASE_ADDRESS_0, 0);
out_le32(mbase + PCI_BASE_ADDRESS_1, 0);
out_le32(mbase + PECFG_PIM01SAH, 0xffffffff);
out_le32(mbase + PECFG_PIM01SAL, 0xfc000000);
/* Setup BAR0 */
out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffff);
out_le32(mbase + PECFG_BAR0LMPA, 0xfc000000 | PCI_BASE_ADDRESS_MEM_TYPE_64);
/* Disable BAR1 & BAR2 */
out_le32(mbase + PECFG_BAR1MPA, 0);
out_le32(mbase + PECFG_BAR2HMPA, 0);
out_le32(mbase + PECFG_BAR2LMPA, 0);
out_le32(mbase + PECFG_PIM0LAL, U64_TO_U32_LOW(CFG_PCIE_INBOUND_BASE));
out_le32(mbase + PECFG_PIM0LAH, U64_TO_U32_HIGH(CFG_PCIE_INBOUND_BASE));
out_le32(mbase + PECFG_PIMEN, 0x1);
/* Enable I/O, Mem, and Busmaster cycles */
out_le16((u16 *)(mbase + PCI_COMMAND),
in_le16((u16 *)(mbase + PCI_COMMAND)) |
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
out_le16(mbase + 0x200, 0xcaad); /* Setting vendor ID */
out_le16(mbase + 0x202, 0xfeed); /* Setting device ID */
/* Set Class Code to Processor/PPC */
out_le32(mbase + 0x208, 0x0b200001);
attempts = 10;
while(!(SDR_READ(SDRN_PESDR_RCSSTS(port)) & (1 << 8))) {
if (!(attempts--)) {
printf("PCIE%d: BME not active\n", port);
return -1;
}
mdelay(1000);
}
printf("PCIE%d: successfully set as endpoint\n", port);
return 0;
}
#endif /* CONFIG_440SPE && CONFIG_PCI */