upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mtd/nand/diskonchip.c

1787 lines
50 KiB

/*
* drivers/mtd/nand/diskonchip.c
*
* (C) 2003 Red Hat, Inc.
* (C) 2004 Dan Brown <dan_brown@ieee.org>
* (C) 2004 Kalev Lember <kalev@smartlink.ee>
*
* Author: David Woodhouse <dwmw2@infradead.org>
* Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
* Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
*
* Error correction code lifted from the old docecc code
* Author: Fabrice Bellard (fabrice.bellard@netgem.com)
* Copyright (C) 2000 Netgem S.A.
* converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
*
* Interface to generic NAND code for M-Systems DiskOnChip devices
*
* $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
*/
#include <common.h>
#if !defined(CFG_NAND_LEGACY)
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/rslib.h>
#include <linux/moduleparam.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/doc2000.h>
#include <linux/mtd/compatmac.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/inftl.h>
/* Where to look for the devices? */
#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
#endif
static unsigned long __initdata doc_locations[] = {
#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
#else /* CONFIG_MTD_DOCPROBE_HIGH */
0xc8000, 0xca000, 0xcc000, 0xce000,
0xd0000, 0xd2000, 0xd4000, 0xd6000,
0xd8000, 0xda000, 0xdc000, 0xde000,
0xe0000, 0xe2000, 0xe4000, 0xe6000,
0xe8000, 0xea000, 0xec000, 0xee000,
#endif /* CONFIG_MTD_DOCPROBE_HIGH */
#elif defined(__PPC__)
0xe4000000,
#elif defined(CONFIG_MOMENCO_OCELOT)
0x2f000000,
0xff000000,
#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
0xff000000,
##else
#warning Unknown architecture for DiskOnChip. No default probe locations defined
#endif
0xffffffff };
static struct mtd_info *doclist = NULL;
struct doc_priv {
void __iomem *virtadr;
unsigned long physadr;
u_char ChipID;
u_char CDSNControl;
int chips_per_floor; /* The number of chips detected on each floor */
int curfloor;
int curchip;
int mh0_page;
int mh1_page;
struct mtd_info *nextdoc;
};
/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
MediaHeader. The spec says to just keep going, I think, but that's just
silly. */
#define MAX_MEDIAHEADER_SCAN 8
/* This is the syndrome computed by the HW ecc generator upon reading an empty
page, one with all 0xff for data and stored ecc code. */
static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
/* This is the ecc value computed by the HW ecc generator upon writing an empty
page, one with all 0xff for data. */
static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
#define INFTL_BBT_RESERVED_BLOCKS 4
#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
static void doc200x_select_chip(struct mtd_info *mtd, int chip);
static int debug=0;
module_param(debug, int, 0);
static int try_dword=1;
module_param(try_dword, int, 0);
static int no_ecc_failures=0;
module_param(no_ecc_failures, int, 0);
#ifdef CONFIG_MTD_PARTITIONS
static int no_autopart=0;
module_param(no_autopart, int, 0);
#endif
#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
static int inftl_bbt_write=1;
#else
static int inftl_bbt_write=0;
#endif
module_param(inftl_bbt_write, int, 0);
static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
module_param(doc_config_location, ulong, 0);
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
/* Sector size for HW ECC */
#define SECTOR_SIZE 512
/* The sector bytes are packed into NB_DATA 10 bit words */
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
/* Number of roots */
#define NROOTS 4
/* First consective root */
#define FCR 510
/* Number of symbols */
#define NN 1023
/* the Reed Solomon control structure */
static struct rs_control *rs_decoder;
/*
* The HW decoder in the DoC ASIC's provides us a error syndrome,
* which we must convert to a standard syndrom usable by the generic
* Reed-Solomon library code.
*
* Fabrice Bellard figured this out in the old docecc code. I added
* some comments, improved a minor bit and converted it to make use
* of the generic Reed-Solomon libary. tglx
*/
static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
{
int i, j, nerr, errpos[8];
uint8_t parity;
uint16_t ds[4], s[5], tmp, errval[8], syn[4];
/* Convert the ecc bytes into words */
ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
parity = ecc[1];
/* Initialize the syndrom buffer */
for (i = 0; i < NROOTS; i++)
s[i] = ds[0];
/*
* Evaluate
* s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
* where x = alpha^(FCR + i)
*/
for(j = 1; j < NROOTS; j++) {
if(ds[j] == 0)
continue;
tmp = rs->index_of[ds[j]];
for(i = 0; i < NROOTS; i++)
s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
}
/* Calc s[i] = s[i] / alpha^(v + i) */
for (i = 0; i < NROOTS; i++) {
if (syn[i])
syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
}
/* Call the decoder library */
nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
/* Incorrectable errors ? */
if (nerr < 0)
return nerr;
/*
* Correct the errors. The bitpositions are a bit of magic,
* but they are given by the design of the de/encoder circuit
* in the DoC ASIC's.
*/
for(i = 0;i < nerr; i++) {
int index, bitpos, pos = 1015 - errpos[i];
uint8_t val;
if (pos >= NB_DATA && pos < 1019)
continue;
if (pos < NB_DATA) {
/* extract bit position (MSB first) */
pos = 10 * (NB_DATA - 1 - pos) - 6;
/* now correct the following 10 bits. At most two bytes
can be modified since pos is even */
index = (pos >> 3) ^ 1;
bitpos = pos & 7;
if ((index >= 0 && index < SECTOR_SIZE) ||
index == (SECTOR_SIZE + 1)) {
val = (uint8_t) (errval[i] >> (2 + bitpos));
parity ^= val;
if (index < SECTOR_SIZE)
data[index] ^= val;
}
index = ((pos >> 3) + 1) ^ 1;
bitpos = (bitpos + 10) & 7;
if (bitpos == 0)
bitpos = 8;
if ((index >= 0 && index < SECTOR_SIZE) ||
index == (SECTOR_SIZE + 1)) {
val = (uint8_t)(errval[i] << (8 - bitpos));
parity ^= val;
if (index < SECTOR_SIZE)
data[index] ^= val;
}
}
}
/* If the parity is wrong, no rescue possible */
return parity ? -1 : nerr;
}
static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
{
volatile char dummy;
int i;
for (i = 0; i < cycles; i++) {
if (DoC_is_Millennium(doc))
dummy = ReadDOC(doc->virtadr, NOP);
else if (DoC_is_MillenniumPlus(doc))
dummy = ReadDOC(doc->virtadr, Mplus_NOP);
else
dummy = ReadDOC(doc->virtadr, DOCStatus);
}
}
#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(struct doc_priv *doc)
{
void __iomem *docptr = doc->virtadr;
unsigned long timeo = jiffies + (HZ * 10);
if(debug) printk("_DoC_WaitReady...\n");
/* Out-of-line routine to wait for chip response */
if (DoC_is_MillenniumPlus(doc)) {
while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
if (time_after(jiffies, timeo)) {
printk("_DoC_WaitReady timed out.\n");
return -EIO;
}
udelay(1);
cond_resched();
}
} else {
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
if (time_after(jiffies, timeo)) {
printk("_DoC_WaitReady timed out.\n");
return -EIO;
}
udelay(1);
cond_resched();
}
}
return 0;
}
static inline int DoC_WaitReady(struct doc_priv *doc)
{
void __iomem *docptr = doc->virtadr;
int ret = 0;
if (DoC_is_MillenniumPlus(doc)) {
DoC_Delay(doc, 4);
if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(doc);
} else {
DoC_Delay(doc, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(doc);
DoC_Delay(doc, 2);
}
if(debug) printk("DoC_WaitReady OK\n");
return ret;
}
static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
if(debug)printk("write_byte %02x\n", datum);
WriteDOC(datum, docptr, CDSNSlowIO);
WriteDOC(datum, docptr, 2k_CDSN_IO);
}
static u_char doc2000_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
u_char ret;
ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(doc, 2);
ret = ReadDOC(docptr, 2k_CDSN_IO);
if (debug) printk("read_byte returns %02x\n", ret);
return ret;
}
static void doc2000_writebuf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("writebuf of %d bytes: ", len);
for (i=0; i < len; i++) {
WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
if (debug) printk("\n");
}
static void doc2000_readbuf(struct mtd_info *mtd,
u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("readbuf of %d bytes: ", len);
for (i=0; i < len; i++) {
buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
}
}
static void doc2000_readbuf_dword(struct mtd_info *mtd,
u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug) printk("readbuf_dword of %d bytes: ", len);
if (unlikely((((unsigned long)buf)|len) & 3)) {
for (i=0; i < len; i++) {
*(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
}
} else {
for (i=0; i < len; i+=4) {
*(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
}
}
}
static int doc2000_verifybuf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
for (i=0; i < len; i++)
if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
return -EFAULT;
return 0;
}
static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
uint16_t ret;
doc200x_select_chip(mtd, nr);
doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_READID);
doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
this->write_byte(mtd, 0);
doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
ret = this->read_byte(mtd) << 8;
ret |= this->read_byte(mtd);
if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
/* First chip probe. See if we get same results by 32-bit access */
union {
uint32_t dword;
uint8_t byte[4];
} ident;
void __iomem *docptr = doc->virtadr;
doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
doc2000_write_byte(mtd, NAND_CMD_READID);
doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
doc2000_write_byte(mtd, 0);
doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
ident.dword = readl(docptr + DoC_2k_CDSN_IO);
if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
this->read_buf = &doc2000_readbuf_dword;
}
}
return ret;
}
static void __init doc2000_count_chips(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
uint16_t mfrid;
int i;
/* Max 4 chips per floor on DiskOnChip 2000 */
doc->chips_per_floor = 4;
/* Find out what the first chip is */
mfrid = doc200x_ident_chip(mtd, 0);
/* Find how many chips in each floor. */
for (i = 1; i < 4; i++) {
if (doc200x_ident_chip(mtd, i) != mfrid)
break;
}
doc->chips_per_floor = i;
printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
}
static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
struct doc_priv *doc = this->priv;
int status;
DoC_WaitReady(doc);
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
DoC_WaitReady(doc);
status = (int)this->read_byte(mtd);
return status;
}
static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
WriteDOC(datum, docptr, CDSNSlowIO);
WriteDOC(datum, docptr, Mil_CDSN_IO);
WriteDOC(datum, docptr, WritePipeTerm);
}
static u_char doc2001_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
/*ReadDOC(docptr, CDSNSlowIO); */
/* 11.4.5 -- delay twice to allow extended length cycle */
DoC_Delay(doc, 2);
ReadDOC(docptr, ReadPipeInit);
/*return ReadDOC(docptr, Mil_CDSN_IO); */
return ReadDOC(docptr, LastDataRead);
}
static void doc2001_writebuf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
for (i=0; i < len; i++)
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
/* Terminate write pipeline */
WriteDOC(0x00, docptr, WritePipeTerm);
}
static void doc2001_readbuf(struct mtd_info *mtd,
u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
/* Start read pipeline */
ReadDOC(docptr, ReadPipeInit);
for (i=0; i < len-1; i++)
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
/* Terminate read pipeline */
buf[i] = ReadDOC(docptr, LastDataRead);
}
static int doc2001_verifybuf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
/* Start read pipeline */
ReadDOC(docptr, ReadPipeInit);
for (i=0; i < len-1; i++)
if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
ReadDOC(docptr, LastDataRead);
return i;
}
if (buf[i] != ReadDOC(docptr, LastDataRead))
return i;
return 0;
}
static u_char doc2001plus_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
u_char ret;
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
ret = ReadDOC(docptr, Mplus_LastDataRead);
if (debug) printk("read_byte returns %02x\n", ret);
return ret;
}
static void doc2001plus_writebuf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("writebuf of %d bytes: ", len);
for (i=0; i < len; i++) {
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
if (debug) printk("\n");
}
static void doc2001plus_readbuf(struct mtd_info *mtd,
u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("readbuf of %d bytes: ", len);
/* Start read pipeline */
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
for (i=0; i < len-2; i++) {
buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
if (debug && i < 16)
printk("%02x ", buf[i]);
}
/* Terminate read pipeline */
buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
if (debug && i < 16)
printk("%02x ", buf[len-2]);
buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
if (debug && i < 16)
printk("%02x ", buf[len-1]);
if (debug) printk("\n");
}
static int doc2001plus_verifybuf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
if (debug)printk("verifybuf of %d bytes: ", len);
/* Start read pipeline */
ReadDOC(docptr, Mplus_ReadPipeInit);
ReadDOC(docptr, Mplus_ReadPipeInit);
for (i=0; i < len-2; i++)
if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
ReadDOC(docptr, Mplus_LastDataRead);
ReadDOC(docptr, Mplus_LastDataRead);
return i;
}
if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
return len-2;
if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
return len-1;
return 0;
}
static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int floor = 0;
if(debug)printk("select chip (%d)\n", chip);
if (chip == -1) {
/* Disable flash internally */
WriteDOC(0, docptr, Mplus_FlashSelect);
return;
}
floor = chip / doc->chips_per_floor;
chip -= (floor * doc->chips_per_floor);
/* Assert ChipEnable and deassert WriteProtect */
WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
doc->curchip = chip;
doc->curfloor = floor;
}
static void doc200x_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int floor = 0;
if(debug)printk("select chip (%d)\n", chip);
if (chip == -1)
return;
floor = chip / doc->chips_per_floor;
chip -= (floor * doc->chips_per_floor);
/* 11.4.4 -- deassert CE before changing chip */
doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
WriteDOC(floor, docptr, FloorSelect);
WriteDOC(chip, docptr, CDSNDeviceSelect);
doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
doc->curchip = chip;
doc->curfloor = floor;
}
static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
switch(cmd) {
case NAND_CTL_SETNCE:
doc->CDSNControl |= CDSN_CTRL_CE;
break;
case NAND_CTL_CLRNCE:
doc->CDSNControl &= ~CDSN_CTRL_CE;
break;
case NAND_CTL_SETCLE:
doc->CDSNControl |= CDSN_CTRL_CLE;
break;
case NAND_CTL_CLRCLE:
doc->CDSNControl &= ~CDSN_CTRL_CLE;
break;
case NAND_CTL_SETALE:
doc->CDSNControl |= CDSN_CTRL_ALE;
break;
case NAND_CTL_CLRALE:
doc->CDSNControl &= ~CDSN_CTRL_ALE;
break;
case NAND_CTL_SETWP:
doc->CDSNControl |= CDSN_CTRL_WP;
break;
case NAND_CTL_CLRWP:
doc->CDSNControl &= ~CDSN_CTRL_WP;
break;
}
if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
WriteDOC(doc->CDSNControl, docptr, CDSNControl);
/* 11.4.3 -- 4 NOPs after CSDNControl write */
DoC_Delay(doc, 4);
}
static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
/*
* Must terminate write pipeline before sending any commands
* to the device.
*/
if (command == NAND_CMD_PAGEPROG) {
WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
}
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->oobblock) {
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
WriteDOC(readcmd, docptr, Mplus_FlashCmd);
}
WriteDOC(command, docptr, Mplus_FlashCmd);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
if (column != -1 || page_addr != -1) {
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (this->options & NAND_BUSWIDTH_16)
column >>= 1;
WriteDOC(column, docptr, Mplus_FlashAddress);
}
if (page_addr != -1) {
WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
/* One more address cycle for higher density devices */
if (this->chipsize & 0x0c000000) {
WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
printk("high density\n");
}
}
WriteDOC(0, docptr, Mplus_WritePipeTerm);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
/* deassert ALE */
if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
WriteDOC(0, docptr, Mplus_FlashControl);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
udelay(this->chip_delay);
WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
WriteDOC(0, docptr, Mplus_WritePipeTerm);
while ( !(this->read_byte(mtd) & 0x40));
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
/* wait until command is processed */
while (!this->dev_ready(mtd));
}
static int doc200x_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
if (DoC_is_MillenniumPlus(doc)) {
/* 11.4.2 -- must NOP four times before checking FR/B# */
DoC_Delay(doc, 4);
if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
if(debug)
printk("not ready\n");
return 0;
}
if (debug)printk("was ready\n");
return 1;
} else {
/* 11.4.2 -- must NOP four times before checking FR/B# */
DoC_Delay(doc, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
if(debug)
printk("not ready\n");
return 0;
}
/* 11.4.2 -- Must NOP twice if it's ready */
DoC_Delay(doc, 2);
if (debug)printk("was ready\n");
return 1;
}
}
static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
/* This is our last resort if we couldn't find or create a BBT. Just
pretend all blocks are good. */
return 0;
}
static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
/* Prime the ECC engine */
switch(mode) {
case NAND_ECC_READ:
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
break;
case NAND_ECC_WRITE:
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
break;
}
}
static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
/* Prime the ECC engine */
switch(mode) {
case NAND_ECC_READ:
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
break;
case NAND_ECC_WRITE:
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
break;
}
}
/* This code is only called on write */
static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
unsigned char *ecc_code)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
int i;
int emptymatch = 1;
/* flush the pipeline */
if (DoC_is_2000(doc)) {
WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
WriteDOC(0, docptr, 2k_CDSN_IO);
WriteDOC(0, docptr, 2k_CDSN_IO);
WriteDOC(0, docptr, 2k_CDSN_IO);
WriteDOC(doc->CDSNControl, docptr, CDSNControl);
} else if (DoC_is_MillenniumPlus(doc)) {
WriteDOC(0, docptr, Mplus_NOP);
WriteDOC(0, docptr, Mplus_NOP);
WriteDOC(0, docptr, Mplus_NOP);
} else {
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
}
for (i = 0; i < 6; i++) {
if (DoC_is_MillenniumPlus(doc))
ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
else
ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
if (ecc_code[i] != empty_write_ecc[i])
emptymatch = 0;
}
if (DoC_is_MillenniumPlus(doc))
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
#if 0
/* If emptymatch=1, we might have an all-0xff data buffer. Check. */
if (emptymatch) {
/* Note: this somewhat expensive test should not be triggered
often. It could be optimized away by examining the data in
the writebuf routine, and remembering the result. */
for (i = 0; i < 512; i++) {
if (dat[i] == 0xff) continue;
emptymatch = 0;
break;
}
}
/* If emptymatch still =1, we do have an all-0xff data buffer.
Return all-0xff ecc value instead of the computed one, so
it'll look just like a freshly-erased page. */
if (emptymatch) memset(ecc_code, 0xff, 6);
#endif
return 0;
}
static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
int i, ret = 0;
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
void __iomem *docptr = doc->virtadr;
volatile u_char dummy;
int emptymatch = 1;
/* flush the pipeline */
if (DoC_is_2000(doc)) {
dummy = ReadDOC(docptr, 2k_ECCStatus);
dummy = ReadDOC(docptr, 2k_ECCStatus);
dummy = ReadDOC(docptr, 2k_ECCStatus);
} else if (DoC_is_MillenniumPlus(doc)) {
dummy = ReadDOC(docptr, Mplus_ECCConf);
dummy = ReadDOC(docptr, Mplus_ECCConf);
dummy = ReadDOC(docptr, Mplus_ECCConf);
} else {
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
}
/* Error occured ? */
if (dummy & 0x80) {
for (i = 0; i < 6; i++) {
if (DoC_is_MillenniumPlus(doc))
calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
else
calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
if (calc_ecc[i] != empty_read_syndrome[i])
emptymatch = 0;
}
/* If emptymatch=1, the read syndrome is consistent with an
all-0xff data and stored ecc block. Check the stored ecc. */
if (emptymatch) {
for (i = 0; i < 6; i++) {
if (read_ecc[i] == 0xff) continue;
emptymatch = 0;
break;
}
}
/* If emptymatch still =1, check the data block. */
if (emptymatch) {
/* Note: this somewhat expensive test should not be triggered
often. It could be optimized away by examining the data in
the readbuf routine, and remembering the result. */
for (i = 0; i < 512; i++) {
if (dat[i] == 0xff) continue;
emptymatch = 0;
break;
}
}
/* If emptymatch still =1, this is almost certainly a freshly-
erased block, in which case the ECC will not come out right.
We'll suppress the error and tell the caller everything's
OK. Because it is. */
if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
if (ret > 0)
printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
}
if (DoC_is_MillenniumPlus(doc))
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
if (no_ecc_failures && (ret == -1)) {
printk(KERN_ERR "suppressing ECC failure\n");
ret = 0;
}
return ret;
}
/*u_char mydatabuf[528]; */
static struct nand_oobinfo doc200x_oobinfo = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 4, 5},
.oobfree = { {8, 8} }
};
/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
On sucessful return, buf will contain a copy of the media header for
further processing. id is the string to scan for, and will presumably be
either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
header. The page #s of the found media headers are placed in mh0_page and
mh1_page in the DOC private structure. */
static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
const char *id, int findmirror)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
int ret;
size_t retlen;
end = min(end, mtd->size); /* paranoia */
for (offs = 0; offs < end; offs += mtd->erasesize) {
ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
if (retlen != mtd->oobblock) continue;
if (ret) {
printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
offs);
}
if (memcmp(buf, id, 6)) continue;
printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
if (doc->mh0_page == -1) {
doc->mh0_page = offs >> this->page_shift;
if (!findmirror) return 1;
continue;
}
doc->mh1_page = offs >> this->page_shift;
return 2;
}
if (doc->mh0_page == -1) {
printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
return 0;
}
/* Only one mediaheader was found. We want buf to contain a
mediaheader on return, so we'll have to re-read the one we found. */
offs = doc->mh0_page << this->page_shift;
ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
if (retlen != mtd->oobblock) {
/* Insanity. Give up. */
printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
return 0;
}
return 1;
}
static inline int __init nftl_partscan(struct mtd_info *mtd,
struct mtd_partition *parts)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
int ret = 0;
u_char *buf;
struct NFTLMediaHeader *mh;
const unsigned psize = 1 << this->page_shift;
unsigned blocks, maxblocks;
int offs, numheaders;
buf = kmalloc(mtd->oobblock, GFP_KERNEL);
if (!buf) {
printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
return 0;
}
if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
mh = (struct NFTLMediaHeader *) buf;
/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
printk(KERN_INFO " DataOrgID = %s\n"
" NumEraseUnits = %d\n"
" FirstPhysicalEUN = %d\n"
" FormattedSize = %d\n"
" UnitSizeFactor = %d\n",
mh->DataOrgID, mh->NumEraseUnits,
mh->FirstPhysicalEUN, mh->FormattedSize,
mh->UnitSizeFactor);
/*#endif */
blocks = mtd->size >> this->phys_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
if (mh->UnitSizeFactor == 0x00) {
/* Auto-determine UnitSizeFactor. The constraints are:
- There can be at most 32768 virtual blocks.
- There can be at most (virtual block size - page size)
virtual blocks (because MediaHeader+BBT must fit in 1).
*/
mh->UnitSizeFactor = 0xff;
while (blocks > maxblocks) {
blocks >>= 1;
maxblocks = min(32768U, (maxblocks << 1) + psize);
mh->UnitSizeFactor--;
}
printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
}
/* NOTE: The lines below modify internal variables of the NAND and MTD
layers; variables with have already been configured by nand_scan.
Unfortunately, we didn't know before this point what these values
should be. Thus, this code is somewhat dependant on the exact
implementation of the NAND layer. */
if (mh->UnitSizeFactor != 0xff) {
this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
blocks = mtd->size >> this->bbt_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
}
if (blocks > maxblocks) {
printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
goto out;
}
/* Skip past the media headers. */
offs = max(doc->mh0_page, doc->mh1_page);
offs <<= this->page_shift;
offs += mtd->erasesize;
/*parts[0].name = " DiskOnChip Boot / Media Header partition"; */
/*parts[0].offset = 0; */
/*parts[0].size = offs; */
parts[0].name = " DiskOnChip BDTL partition";
parts[0].offset = offs;
parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
offs += parts[0].size;
if (offs < mtd->size) {
parts[1].name = " DiskOnChip Remainder partition";
parts[1].offset = offs;
parts[1].size = mtd->size - offs;
ret = 2;
goto out;
}
ret = 1;
out:
kfree(buf);
return ret;
}
/* This is a stripped-down copy of the code in inftlmount.c */
static inline int __init inftl_partscan(struct mtd_info *mtd,
struct mtd_partition *parts)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
int ret = 0;
u_char *buf;
struct INFTLMediaHeader *mh;
struct INFTLPartition *ip;
int numparts = 0;
int blocks;
int vshift, lastvunit = 0;
int i;
int end = mtd->size;
if (inftl_bbt_write)
end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
buf = kmalloc(mtd->oobblock, GFP_KERNEL);
if (!buf) {
printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
return 0;
}
if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
mh = (struct INFTLMediaHeader *) buf;
mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
printk(KERN_INFO " bootRecordID = %s\n"
" NoOfBootImageBlocks = %d\n"
" NoOfBinaryPartitions = %d\n"
" NoOfBDTLPartitions = %d\n"
" BlockMultiplerBits = %d\n"
" FormatFlgs = %d\n"
" OsakVersion = %d.%d.%d.%d\n"
" PercentUsed = %d\n",
mh->bootRecordID, mh->NoOfBootImageBlocks,
mh->NoOfBinaryPartitions,
mh->NoOfBDTLPartitions,
mh->BlockMultiplierBits, mh->FormatFlags,
((unsigned char *) &mh->OsakVersion)[0] & 0xf,
((unsigned char *) &mh->OsakVersion)[1] & 0xf,
((unsigned char *) &mh->OsakVersion)[2] & 0xf,
((unsigned char *) &mh->OsakVersion)[3] & 0xf,
mh->PercentUsed);
/*#endif */
vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
blocks = mtd->size >> vshift;
if (blocks > 32768) {
printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
goto out;
}
blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
if (inftl_bbt_write && (blocks > mtd->erasesize)) {
printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
goto out;
}
/* Scan the partitions */
for (i = 0; (i < 4); i++) {
ip = &(mh->Partitions[i]);
ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
ip->firstUnit = le32_to_cpu(ip->firstUnit);
ip->lastUnit = le32_to_cpu(ip->lastUnit);
ip->flags = le32_to_cpu(ip->flags);
ip->spareUnits = le32_to_cpu(ip->spareUnits);
ip->Reserved0 = le32_to_cpu(ip->Reserved0);
/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
printk(KERN_INFO " PARTITION[%d] ->\n"
" virtualUnits = %d\n"
" firstUnit = %d\n"
" lastUnit = %d\n"
" flags = 0x%x\n"
" spareUnits = %d\n",
i, ip->virtualUnits, ip->firstUnit,
ip->lastUnit, ip->flags,
ip->spareUnits);
/*#endif */
/*
if ((i == 0) && (ip->firstUnit > 0)) {
parts[0].name = " DiskOnChip IPL / Media Header partition";
parts[0].offset = 0;
parts[0].size = mtd->erasesize * ip->firstUnit;
numparts = 1;
}
*/
if (ip->flags & INFTL_BINARY)
parts[numparts].name = " DiskOnChip BDK partition";
else
parts[numparts].name = " DiskOnChip BDTL partition";
parts[numparts].offset = ip->firstUnit << vshift;
parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
numparts++;
if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
if (ip->flags & INFTL_LAST) break;
}
lastvunit++;
if ((lastvunit << vshift) < end) {
parts[numparts].name = " DiskOnChip Remainder partition";
parts[numparts].offset = lastvunit << vshift;
parts[numparts].size = end - parts[numparts].offset;
numparts++;
}
ret = numparts;
out:
kfree(buf);
return ret;
}
static int __init nftl_scan_bbt(struct mtd_info *mtd)
{
int ret, numparts;
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
struct mtd_partition parts[2];
memset((char *) parts, 0, sizeof(parts));
/* On NFTL, we have to find the media headers before we can read the
BBTs, since they're stored in the media header eraseblocks. */
numparts = nftl_partscan(mtd, parts);
if (!numparts) return -EIO;
this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
NAND_BBT_VERSION;
this->bbt_td->veroffs = 7;
this->bbt_td->pages[0] = doc->mh0_page + 1;
if (doc->mh1_page != -1) {
this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
NAND_BBT_VERSION;
this->bbt_md->veroffs = 7;
this->bbt_md->pages[0] = doc->mh1_page + 1;
} else {
this->bbt_md = NULL;
}
/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
At least as nand_bbt.c is currently written. */
if ((ret = nand_scan_bbt(mtd, NULL)))
return ret;
add_mtd_device(mtd);
#ifdef CONFIG_MTD_PARTITIONS
if (!no_autopart)
add_mtd_partitions(mtd, parts, numparts);
#endif
return 0;
}
static int __init inftl_scan_bbt(struct mtd_info *mtd)
{
int ret, numparts;
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
struct mtd_partition parts[5];
if (this->numchips > doc->chips_per_floor) {
printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
return -EIO;
}
if (DoC_is_MillenniumPlus(doc)) {
this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
if (inftl_bbt_write)
this->bbt_td->options |= NAND_BBT_WRITE;
this->bbt_td->pages[0] = 2;
this->bbt_md = NULL;
} else {
this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
NAND_BBT_VERSION;
if (inftl_bbt_write)
this->bbt_td->options |= NAND_BBT_WRITE;
this->bbt_td->offs = 8;
this->bbt_td->len = 8;
this->bbt_td->veroffs = 7;
this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
this->bbt_td->reserved_block_code = 0x01;
this->bbt_td->pattern = "MSYS_BBT";
this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
NAND_BBT_VERSION;
if (inftl_bbt_write)
this->bbt_md->options |= NAND_BBT_WRITE;
this->bbt_md->offs = 8;
this->bbt_md->len = 8;
this->bbt_md->veroffs = 7;
this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
this->bbt_md->reserved_block_code = 0x01;
this->bbt_md->pattern = "TBB_SYSM";
}
/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
At least as nand_bbt.c is currently written. */
if ((ret = nand_scan_bbt(mtd, NULL)))
return ret;
memset((char *) parts, 0, sizeof(parts));
numparts = inftl_partscan(mtd, parts);
/* At least for now, require the INFTL Media Header. We could probably
do without it for non-INFTL use, since all it gives us is
autopartitioning, but I want to give it more thought. */
if (!numparts) return -EIO;
add_mtd_device(mtd);
#ifdef CONFIG_MTD_PARTITIONS
if (!no_autopart)
add_mtd_partitions(mtd, parts, numparts);
#endif
return 0;
}
static inline int __init doc2000_init(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
this->write_byte = doc2000_write_byte;
this->read_byte = doc2000_read_byte;
this->write_buf = doc2000_writebuf;
this->read_buf = doc2000_readbuf;
this->verify_buf = doc2000_verifybuf;
this->scan_bbt = nftl_scan_bbt;
doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
doc2000_count_chips(mtd);
mtd->name = "DiskOnChip 2000 (NFTL Model)";
return (4 * doc->chips_per_floor);
}
static inline int __init doc2001_init(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
this->write_byte = doc2001_write_byte;
this->read_byte = doc2001_read_byte;
this->write_buf = doc2001_writebuf;
this->read_buf = doc2001_readbuf;
this->verify_buf = doc2001_verifybuf;
ReadDOC(doc->virtadr, ChipID);
ReadDOC(doc->virtadr, ChipID);
ReadDOC(doc->virtadr, ChipID);
if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
/* It's not a Millennium; it's one of the newer
DiskOnChip 2000 units with a similar ASIC.
Treat it like a Millennium, except that it
can have multiple chips. */
doc2000_count_chips(mtd);
mtd->name = "DiskOnChip 2000 (INFTL Model)";
this->scan_bbt = inftl_scan_bbt;
return (4 * doc->chips_per_floor);
} else {
/* Bog-standard Millennium */
doc->chips_per_floor = 1;
mtd->name = "DiskOnChip Millennium";
this->scan_bbt = nftl_scan_bbt;
return 1;
}
}
static inline int __init doc2001plus_init(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
struct doc_priv *doc = this->priv;
this->write_byte = NULL;
this->read_byte = doc2001plus_read_byte;
this->write_buf = doc2001plus_writebuf;
this->read_buf = doc2001plus_readbuf;
this->verify_buf = doc2001plus_verifybuf;
this->scan_bbt = inftl_scan_bbt;
this->hwcontrol = NULL;
this->select_chip = doc2001plus_select_chip;
this->cmdfunc = doc2001plus_command;
this->enable_hwecc = doc2001plus_enable_hwecc;
doc->chips_per_floor = 1;
mtd->name = "DiskOnChip Millennium Plus";
return 1;
}
static inline int __init doc_probe(unsigned long physadr)
{
unsigned char ChipID;
struct mtd_info *mtd;
struct nand_chip *nand;
struct doc_priv *doc;
void __iomem *virtadr;
unsigned char save_control;
unsigned char tmp, tmpb, tmpc;
int reg, len, numchips;
int ret = 0;
virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
if (!virtadr) {
printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
return -EIO;
}
/* It's not possible to cleanly detect the DiskOnChip - the
* bootup procedure will put the device into reset mode, and
* it's not possible to talk to it without actually writing
* to the DOCControl register. So we store the current contents
* of the DOCControl register's location, in case we later decide
* that it's not a DiskOnChip, and want to put it back how we
* found it.
*/
save_control = ReadDOC(virtadr, DOCControl);
/* Reset the DiskOnChip ASIC */
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
virtadr, DOCControl);
/* Enable the DiskOnChip ASIC */
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
virtadr, DOCControl);
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
virtadr, DOCControl);
ChipID = ReadDOC(virtadr, ChipID);
switch(ChipID) {
case DOC_ChipID_Doc2k:
reg = DoC_2k_ECCStatus;
break;
case DOC_ChipID_DocMil:
reg = DoC_ECCConf;
break;
case DOC_ChipID_DocMilPlus16:
case DOC_ChipID_DocMilPlus32:
case 0:
/* Possible Millennium Plus, need to do more checks */
/* Possibly release from power down mode */
for (tmp = 0; (tmp < 4); tmp++)
ReadDOC(virtadr, Mplus_Power);
/* Reset the Millennium Plus ASIC */
tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
DOC_MODE_BDECT;
WriteDOC(tmp, virtadr, Mplus_DOCControl);
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
mdelay(1);
/* Enable the Millennium Plus ASIC */
tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
DOC_MODE_BDECT;
WriteDOC(tmp, virtadr, Mplus_DOCControl);
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
mdelay(1);
ChipID = ReadDOC(virtadr, ChipID);
switch (ChipID) {
case DOC_ChipID_DocMilPlus16:
reg = DoC_Mplus_Toggle;
break;
case DOC_ChipID_DocMilPlus32:
printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
default:
ret = -ENODEV;
goto notfound;
}
break;
default:
ret = -ENODEV;
goto notfound;
}
/* Check the TOGGLE bit in the ECC register */
tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
if ((tmp == tmpb) || (tmp != tmpc)) {
printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
ret = -ENODEV;
goto notfound;
}
for (mtd = doclist; mtd; mtd = doc->nextdoc) {
unsigned char oldval;
unsigned char newval;
nand = mtd->priv;
doc = nand->priv;
/* Use the alias resolution register to determine if this is
in fact the same DOC aliased to a new address. If writes
to one chip's alias resolution register change the value on
the other chip, they're the same chip. */
if (ChipID == DOC_ChipID_DocMilPlus16) {
oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
newval = ReadDOC(virtadr, Mplus_AliasResolution);
} else {
oldval = ReadDOC(doc->virtadr, AliasResolution);
newval = ReadDOC(virtadr, AliasResolution);
}
if (oldval != newval)
continue;
if (ChipID == DOC_ChipID_DocMilPlus16) {
WriteDOC(~newval, virtadr, Mplus_AliasResolution);
oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */
} else {
WriteDOC(~newval, virtadr, AliasResolution);
oldval = ReadDOC(doc->virtadr, AliasResolution);
WriteDOC(newval, virtadr, AliasResolution); /* restore it */
}
newval = ~newval;
if (oldval == newval) {
printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
goto notfound;
}
}
printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
len = sizeof(struct mtd_info) +
sizeof(struct nand_chip) +
sizeof(struct doc_priv) +
(2 * sizeof(struct nand_bbt_descr));
mtd = kmalloc(len, GFP_KERNEL);
if (!mtd) {
printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
ret = -ENOMEM;
goto fail;
}
memset(mtd, 0, len);
nand = (struct nand_chip *) (mtd + 1);
doc = (struct doc_priv *) (nand + 1);
nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
nand->bbt_md = nand->bbt_td + 1;
mtd->priv = nand;
mtd->owner = THIS_MODULE;
nand->priv = doc;
nand->select_chip = doc200x_select_chip;
nand->hwcontrol = doc200x_hwcontrol;
nand->dev_ready = doc200x_dev_ready;
nand->waitfunc = doc200x_wait;
nand->block_bad = doc200x_block_bad;
nand->enable_hwecc = doc200x_enable_hwecc;
nand->calculate_ecc = doc200x_calculate_ecc;
nand->correct_data = doc200x_correct_data;
nand->autooob = &doc200x_oobinfo;
nand->eccmode = NAND_ECC_HW6_512;
nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
doc->physadr = physadr;
doc->virtadr = virtadr;
doc->ChipID = ChipID;
doc->curfloor = -1;
doc->curchip = -1;
doc->mh0_page = -1;
doc->mh1_page = -1;
doc->nextdoc = doclist;
if (ChipID == DOC_ChipID_Doc2k)
numchips = doc2000_init(mtd);
else if (ChipID == DOC_ChipID_DocMilPlus16)
numchips = doc2001plus_init(mtd);
else
numchips = doc2001_init(mtd);
if ((ret = nand_scan(mtd, numchips))) {
/* DBB note: i believe nand_release is necessary here, as
buffers may have been allocated in nand_base. Check with
Thomas. FIX ME! */
/* nand_release will call del_mtd_device, but we haven't yet
added it. This is handled without incident by
del_mtd_device, as far as I can tell. */
nand_release(mtd);
kfree(mtd);
goto fail;
}
/* Success! */
doclist = mtd;
return 0;
notfound:
/* Put back the contents of the DOCControl register, in case it's not
actually a DiskOnChip. */
WriteDOC(save_control, virtadr, DOCControl);
fail:
iounmap(virtadr);
return ret;
}
static void release_nanddoc(void)
{
struct mtd_info *mtd, *nextmtd;
struct nand_chip *nand;
struct doc_priv *doc;
for (mtd = doclist; mtd; mtd = nextmtd) {
nand = mtd->priv;
doc = nand->priv;
nextmtd = doc->nextdoc;
nand_release(mtd);
iounmap(doc->virtadr);
kfree(mtd);
}
}
static int __init init_nanddoc(void)
{
int i, ret = 0;
/* We could create the decoder on demand, if memory is a concern.
* This way we have it handy, if an error happens
*
* Symbolsize is 10 (bits)
* Primitve polynomial is x^10+x^3+1
* first consecutive root is 510
* primitve element to generate roots = 1
* generator polinomial degree = 4
*/
rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!rs_decoder) {
printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
return -ENOMEM;
}
if (doc_config_location) {
printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
ret = doc_probe(doc_config_location);
if (ret < 0)
goto outerr;
} else {
for (i=0; (doc_locations[i] != 0xffffffff); i++) {
doc_probe(doc_locations[i]);
}
}
/* No banner message any more. Print a message if no DiskOnChip
found, so the user knows we at least tried. */
if (!doclist) {
printk(KERN_INFO "No valid DiskOnChip devices found\n");
ret = -ENODEV;
goto outerr;
}
return 0;
outerr:
free_rs(rs_decoder);
return ret;
}
static void __exit cleanup_nanddoc(void)
{
/* Cleanup the nand/DoC resources */
release_nanddoc();
/* Free the reed solomon resources */
if (rs_decoder) {
free_rs(rs_decoder);
}
}
module_init(init_nanddoc);
module_exit(cleanup_nanddoc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
#endif