upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mtd/nand/fsl_elbc_nand.c

833 lines
22 KiB

/* Freescale Enhanced Local Bus Controller FCM NAND driver
*
* Copyright (c) 2006-2008 Freescale Semiconductor
*
* Authors: Nick Spence <nick.spence@freescale.com>,
* Scott Wood <scottwood@freescale.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/io.h>
#include <asm/errno.h>
#ifdef VERBOSE_DEBUG
#define DEBUG_ELBC
#define vdbg(format, arg...) printf("DEBUG: " format, ##arg)
#else
#define vdbg(format, arg...) do {} while (0)
#endif
/* Can't use plain old DEBUG because the linux mtd
* headers define it as a macro.
*/
#ifdef DEBUG_ELBC
#define dbg(format, arg...) printf("DEBUG: " format, ##arg)
#else
#define dbg(format, arg...) do {} while (0)
#endif
#define MAX_BANKS 8
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
#define FCM_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for FCM */
#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
struct fsl_elbc_ctrl;
/* mtd information per set */
struct fsl_elbc_mtd {
struct nand_chip chip;
struct fsl_elbc_ctrl *ctrl;
struct device *dev;
int bank; /* Chip select bank number */
u8 __iomem *vbase; /* Chip select base virtual address */
int page_size; /* NAND page size (0=512, 1=2048) */
unsigned int fmr; /* FCM Flash Mode Register value */
};
/* overview of the fsl elbc controller */
struct fsl_elbc_ctrl {
struct nand_hw_control controller;
struct fsl_elbc_mtd *chips[MAX_BANKS];
/* device info */
fsl_lbc_t *regs;
u8 __iomem *addr; /* Address of assigned FCM buffer */
unsigned int page; /* Last page written to / read from */
unsigned int read_bytes; /* Number of bytes read during command */
unsigned int column; /* Saved column from SEQIN */
unsigned int index; /* Pointer to next byte to 'read' */
unsigned int status; /* status read from LTESR after last op */
unsigned int mdr; /* UPM/FCM Data Register value */
unsigned int use_mdr; /* Non zero if the MDR is to be set */
unsigned int oob; /* Non zero if operating on OOB data */
};
/* These map to the positions used by the FCM hardware ECC generator */
/* Small Page FLASH with FMR[ECCM] = 0 */
static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
.eccbytes = 3,
.eccpos = {6, 7, 8},
.oobfree = { {0, 5}, {9, 7} },
};
/* Small Page FLASH with FMR[ECCM] = 1 */
static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
.eccbytes = 3,
.eccpos = {8, 9, 10},
.oobfree = { {0, 5}, {6, 2}, {11, 5} },
};
/* Large Page FLASH with FMR[ECCM] = 0 */
static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
.eccbytes = 12,
.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
};
/* Large Page FLASH with FMR[ECCM] = 1 */
static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
.eccbytes = 12,
.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
};
/*
* fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
* 1, so we have to adjust bad block pattern. This pattern should be used for
* x8 chips only. So far hardware does not support x16 chips anyway.
*/
static u8 scan_ff_pattern[] = { 0xff, };
static struct nand_bbt_descr largepage_memorybased = {
.options = 0,
.offs = 0,
.len = 1,
.pattern = scan_ff_pattern,
};
/*
* ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
* interfere with ECC positions, that's why we implement our own descriptors.
* OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
*/
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/*=================================*/
/*
* Set up the FCM hardware block and page address fields, and the fcm
* structure addr field to point to the correct FCM buffer in memory
*/
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
fsl_lbc_t *lbc = ctrl->regs;
int buf_num;
ctrl->page = page_addr;
if (priv->page_size) {
out_be32(&lbc->fbar, page_addr >> 6);
out_be32(&lbc->fpar,
((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
(oob ? FPAR_LP_MS : 0) | column);
buf_num = (page_addr & 1) << 2;
} else {
out_be32(&lbc->fbar, page_addr >> 5);
out_be32(&lbc->fpar,
((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
(oob ? FPAR_SP_MS : 0) | column);
buf_num = page_addr & 7;
}
ctrl->addr = priv->vbase + buf_num * 1024;
ctrl->index = column;
/* for OOB data point to the second half of the buffer */
if (oob)
ctrl->index += priv->page_size ? 2048 : 512;
vdbg("set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
"index %x, pes %d ps %d\n",
buf_num, ctrl->addr, priv->vbase, ctrl->index,
chip->phys_erase_shift, chip->page_shift);
}
/*
* execute FCM command and wait for it to complete
*/
static int fsl_elbc_run_command(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
fsl_lbc_t *lbc = ctrl->regs;
long long end_tick;
u32 ltesr;
/* Setup the FMR[OP] to execute without write protection */
out_be32(&lbc->fmr, priv->fmr | 3);
if (ctrl->use_mdr)
out_be32(&lbc->mdr, ctrl->mdr);
vdbg("fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
vdbg("fsl_elbc_run_command: fbar=%08x fpar=%08x "
"fbcr=%08x bank=%d\n",
in_be32(&lbc->fbar), in_be32(&lbc->fpar),
in_be32(&lbc->fbcr), priv->bank);
/* execute special operation */
out_be32(&lbc->lsor, priv->bank);
/* wait for FCM complete flag or timeout */
end_tick = usec2ticks(FCM_TIMEOUT_MSECS * 1000) + get_ticks();
ltesr = 0;
while (end_tick > get_ticks()) {
ltesr = in_be32(&lbc->ltesr);
if (ltesr & LTESR_CC)
break;
}
ctrl->status = ltesr & LTESR_NAND_MASK;
out_be32(&lbc->ltesr, ctrl->status);
out_be32(&lbc->lteatr, 0);
/* store mdr value in case it was needed */
if (ctrl->use_mdr)
ctrl->mdr = in_be32(&lbc->mdr);
ctrl->use_mdr = 0;
vdbg("fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
/* returns 0 on success otherwise non-zero) */
return ctrl->status == LTESR_CC ? 0 : -EIO;
}
static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
{
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
fsl_lbc_t *lbc = ctrl->regs;
if (priv->page_size) {
out_be32(&lbc->fir,
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_CA << FIR_OP1_SHIFT) |
(FIR_OP_PA << FIR_OP2_SHIFT) |
(FIR_OP_CW1 << FIR_OP3_SHIFT) |
(FIR_OP_RBW << FIR_OP4_SHIFT));
out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
(NAND_CMD_READSTART << FCR_CMD1_SHIFT));
} else {
out_be32(&lbc->fir,
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_CA << FIR_OP1_SHIFT) |
(FIR_OP_PA << FIR_OP2_SHIFT) |
(FIR_OP_RBW << FIR_OP3_SHIFT));
if (oob)
out_be32(&lbc->fcr,
NAND_CMD_READOOB << FCR_CMD0_SHIFT);
else
out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
}
}
/* cmdfunc send commands to the FCM */
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
fsl_lbc_t *lbc = ctrl->regs;
ctrl->use_mdr = 0;
/* clear the read buffer */
ctrl->read_bytes = 0;
if (command != NAND_CMD_PAGEPROG)
ctrl->index = 0;
switch (command) {
/* READ0 and READ1 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ1:
column += 256;
/* fall-through */
case NAND_CMD_READ0:
vdbg("fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
" 0x%x, column: 0x%x.\n", page_addr, column);
out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
set_addr(mtd, 0, page_addr, 0);
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
ctrl->index += column;
fsl_elbc_do_read(chip, 0);
fsl_elbc_run_command(mtd);
return;
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
vdbg("fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
" 0x%x, column: 0x%x.\n", page_addr, column);
out_be32(&lbc->fbcr, mtd->oobsize - column);
set_addr(mtd, column, page_addr, 1);
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
fsl_elbc_do_read(chip, 1);
fsl_elbc_run_command(mtd);
return;
/* READID must read all 5 possible bytes while CEB is active */
case NAND_CMD_READID:
case NAND_CMD_PARAM:
vdbg("fsl_elbc_cmdfunc: NAND_CMD 0x%x.\n", command);
out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_UA << FIR_OP1_SHIFT) |
(FIR_OP_RBW << FIR_OP2_SHIFT));
out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
/*
* although currently it's 8 bytes for READID, we always read
* the maximum 256 bytes(for PARAM)
*/
out_be32(&lbc->fbcr, 256);
ctrl->read_bytes = 256;
ctrl->use_mdr = 1;
ctrl->mdr = column;
set_addr(mtd, 0, 0, 0);
fsl_elbc_run_command(mtd);
return;
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
"page_addr: 0x%x.\n", page_addr);
set_addr(mtd, 0, page_addr, 0);
return;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
out_be32(&lbc->fir,
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_PA << FIR_OP1_SHIFT) |
(FIR_OP_CM1 << FIR_OP2_SHIFT));
out_be32(&lbc->fcr,
(NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
(NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
out_be32(&lbc->fbcr, 0);
ctrl->read_bytes = 0;
fsl_elbc_run_command(mtd);
return;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN: {
u32 fcr;
vdbg("fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
"page_addr: 0x%x, column: 0x%x.\n",
page_addr, column);
ctrl->column = column;
ctrl->oob = 0;
if (priv->page_size) {
fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
(NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
out_be32(&lbc->fir,
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_CA << FIR_OP1_SHIFT) |
(FIR_OP_PA << FIR_OP2_SHIFT) |
(FIR_OP_WB << FIR_OP3_SHIFT) |
(FIR_OP_CW1 << FIR_OP4_SHIFT));
} else {
fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
(NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
out_be32(&lbc->fir,
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_CM2 << FIR_OP1_SHIFT) |
(FIR_OP_CA << FIR_OP2_SHIFT) |
(FIR_OP_PA << FIR_OP3_SHIFT) |
(FIR_OP_WB << FIR_OP4_SHIFT) |
(FIR_OP_CW1 << FIR_OP5_SHIFT));
if (column >= mtd->writesize) {
/* OOB area --> READOOB */
column -= mtd->writesize;
fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
ctrl->oob = 1;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
} else {
/* Second 256 bytes --> READ1 */
fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
}
}
out_be32(&lbc->fcr, fcr);
set_addr(mtd, column, page_addr, ctrl->oob);
return;
}
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG: {
vdbg("fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
"writing %d bytes.\n", ctrl->index);
/* if the write did not start at 0 or is not a full page
* then set the exact length, otherwise use a full page
* write so the HW generates the ECC.
*/
if (ctrl->oob || ctrl->column != 0 ||
ctrl->index != mtd->writesize + mtd->oobsize)
out_be32(&lbc->fbcr, ctrl->index);
else
out_be32(&lbc->fbcr, 0);
fsl_elbc_run_command(mtd);
return;
}
/* CMD_STATUS must read the status byte while CEB is active */
/* Note - it does not wait for the ready line */
case NAND_CMD_STATUS:
out_be32(&lbc->fir,
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_RBW << FIR_OP1_SHIFT));
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
out_be32(&lbc->fbcr, 1);
set_addr(mtd, 0, 0, 0);
ctrl->read_bytes = 1;
fsl_elbc_run_command(mtd);
/* The chip always seems to report that it is
* write-protected, even when it is not.
*/
out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
return;
/* RESET without waiting for the ready line */
case NAND_CMD_RESET:
dbg("fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
fsl_elbc_run_command(mtd);
return;
default:
printf("fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
command);
}
}
static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
{
/* The hardware does not seem to support multiple
* chips per bank.
*/
}
/*
* Write buf to the FCM Controller Data Buffer
*/
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
unsigned int bufsize = mtd->writesize + mtd->oobsize;
if (len <= 0) {
printf("write_buf of %d bytes", len);
ctrl->status = 0;
return;
}
if ((unsigned int)len > bufsize - ctrl->index) {
printf("write_buf beyond end of buffer "
"(%d requested, %u available)\n",
len, bufsize - ctrl->index);
len = bufsize - ctrl->index;
}
memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
/*
* This is workaround for the weird elbc hangs during nand write,
* Scott Wood says: "...perhaps difference in how long it takes a
* write to make it through the localbus compared to a write to IMMR
* is causing problems, and sync isn't helping for some reason."
* Reading back the last byte helps though.
*/
in_8(&ctrl->addr[ctrl->index] + len - 1);
ctrl->index += len;
}
/*
* read a byte from either the FCM hardware buffer if it has any data left
* otherwise issue a command to read a single byte.
*/
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
/* If there are still bytes in the FCM, then use the next byte. */
if (ctrl->index < ctrl->read_bytes)
return in_8(&ctrl->addr[ctrl->index++]);
printf("read_byte beyond end of buffer\n");
return ERR_BYTE;
}
/*
* Read from the FCM Controller Data Buffer
*/
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
int avail;
if (len < 0)
return;
avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
ctrl->index += avail;
if (len > avail)
printf("read_buf beyond end of buffer "
"(%d requested, %d available)\n",
len, avail);
}
#if defined(CONFIG_MTD_NAND_VERIFY_WRITE)
/*
* Verify buffer against the FCM Controller Data Buffer
*/
static int fsl_elbc_verify_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *chip = mtd->priv;
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
int i;
if (len < 0) {
printf("write_buf of %d bytes", len);
return -EINVAL;
}
if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
printf("verify_buf beyond end of buffer "
"(%d requested, %u available)\n",
len, ctrl->read_bytes - ctrl->index);
ctrl->index = ctrl->read_bytes;
return -EINVAL;
}
for (i = 0; i < len; i++)
if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
break;
ctrl->index += len;
return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
}
#endif
/* This function is called after Program and Erase Operations to
* check for success or failure.
*/
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct fsl_elbc_mtd *priv = chip->priv;
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
fsl_lbc_t *lbc = ctrl->regs;
if (ctrl->status != LTESR_CC)
return NAND_STATUS_FAIL;
/* Use READ_STATUS command, but wait for the device to be ready */
ctrl->use_mdr = 0;
out_be32(&lbc->fir,
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
(FIR_OP_RBW << FIR_OP1_SHIFT));
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
out_be32(&lbc->fbcr, 1);
set_addr(mtd, 0, 0, 0);
ctrl->read_bytes = 1;
fsl_elbc_run_command(mtd);
if (ctrl->status != LTESR_CC)
return NAND_STATUS_FAIL;
/* The chip always seems to report that it is
* write-protected, even when it is not.
*/
out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
return fsl_elbc_read_byte(mtd);
}
static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
fsl_elbc_read_buf(mtd, buf, mtd->writesize);
fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
mtd->ecc_stats.failed++;
return 0;
}
/* ECC will be calculated automatically, and errors will be detected in
* waitfunc.
*/
static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
fsl_elbc_write_buf(mtd, buf, mtd->writesize);
fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static struct fsl_elbc_ctrl *elbc_ctrl;
static void fsl_elbc_ctrl_init(void)
{
elbc_ctrl = kzalloc(sizeof(*elbc_ctrl), GFP_KERNEL);
if (!elbc_ctrl)
return;
elbc_ctrl->regs = LBC_BASE_ADDR;
/* clear event registers */
out_be32(&elbc_ctrl->regs->ltesr, LTESR_NAND_MASK);
out_be32(&elbc_ctrl->regs->lteatr, 0);
/* Enable interrupts for any detected events */
out_be32(&elbc_ctrl->regs->lteir, LTESR_NAND_MASK);
elbc_ctrl->read_bytes = 0;
elbc_ctrl->index = 0;
elbc_ctrl->addr = NULL;
}
static int fsl_elbc_chip_init(int devnum, u8 *addr)
{
struct mtd_info *mtd = &nand_info[devnum];
struct nand_chip *nand;
struct fsl_elbc_mtd *priv;
uint32_t br = 0, or = 0;
int ret;
if (!elbc_ctrl) {
fsl_elbc_ctrl_init();
if (!elbc_ctrl)
return -1;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ctrl = elbc_ctrl;
priv->vbase = addr;
/* Find which chip select it is connected to. It'd be nice
* if we could pass more than one datum to the NAND driver...
*/
for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
phys_addr_t phys_addr = virt_to_phys(addr);
br = in_be32(&elbc_ctrl->regs->bank[priv->bank].br);
or = in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
if ((br & BR_V) && (br & BR_MSEL) == BR_MS_FCM &&
(br & or & BR_BA) == BR_PHYS_ADDR(phys_addr))
break;
}
if (priv->bank >= MAX_BANKS) {
printf("fsl_elbc_nand: address did not match any "
"chip selects\n");
return -ENODEV;
}
nand = &priv->chip;
mtd->priv = nand;
elbc_ctrl->chips[priv->bank] = priv;
/* fill in nand_chip structure */
/* set up function call table */
nand->read_byte = fsl_elbc_read_byte;
nand->write_buf = fsl_elbc_write_buf;
nand->read_buf = fsl_elbc_read_buf;
#if defined(CONFIG_MTD_NAND_VERIFY_WRITE)
nand->verify_buf = fsl_elbc_verify_buf;
#endif
nand->select_chip = fsl_elbc_select_chip;
nand->cmdfunc = fsl_elbc_cmdfunc;
nand->waitfunc = fsl_elbc_wait;
/* set up nand options */
nand->bbt_td = &bbt_main_descr;
nand->bbt_md = &bbt_mirror_descr;
/* set up nand options */
nand->options = NAND_NO_SUBPAGE_WRITE;
nand->bbt_options = NAND_BBT_USE_FLASH;
nand->controller = &elbc_ctrl->controller;
nand->priv = priv;
nand->ecc.read_page = fsl_elbc_read_page;
nand->ecc.write_page = fsl_elbc_write_page;
priv->fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT);
/* If CS Base Register selects full hardware ECC then use it */
if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
&fsl_elbc_oob_sp_eccm1 :
&fsl_elbc_oob_sp_eccm0;
nand->ecc.size = 512;
nand->ecc.bytes = 3;
nand->ecc.steps = 1;
nand->ecc.strength = 1;
} else {
/* otherwise fall back to software ECC */
#if defined(CONFIG_NAND_ECC_BCH)
nand->ecc.mode = NAND_ECC_SOFT_BCH;
#else
nand->ecc.mode = NAND_ECC_SOFT;
#endif
}
ret = nand_scan_ident(mtd, 1, NULL);
if (ret)
return ret;
/* Large-page-specific setup */
if (mtd->writesize == 2048) {
setbits_be32(&elbc_ctrl->regs->bank[priv->bank].or,
OR_FCM_PGS);
in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
priv->page_size = 1;
nand->badblock_pattern = &largepage_memorybased;
/*
* Hardware expects small page has ECCM0, large page has
* ECCM1 when booting from NAND, and we follow that even
* when not booting from NAND.
*/
priv->fmr |= FMR_ECCM;
/* adjust ecc setup if needed */
if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
nand->ecc.steps = 4;
nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
&fsl_elbc_oob_lp_eccm1 :
&fsl_elbc_oob_lp_eccm0;
}
} else if (mtd->writesize == 512) {
clrbits_be32(&elbc_ctrl->regs->bank[priv->bank].or,
OR_FCM_PGS);
in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
} else {
return -ENODEV;
}
ret = nand_scan_tail(mtd);
if (ret)
return ret;
ret = nand_register(devnum);
if (ret)
return ret;
return 0;
}
#ifndef CONFIG_SYS_NAND_BASE_LIST
#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
#endif
static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] =
CONFIG_SYS_NAND_BASE_LIST;
void board_nand_init(void)
{
int i;
for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
fsl_elbc_chip_init(i, (u8 *)base_address[i]);
}