upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/netta/codec.c

1484 lines
42 KiB

/*
* CODEC
*/
#include <common.h>
#include <post.h>
#include "mpc8xx.h"
/***********************************************/
#define MAX_DUSLIC 4
#define NUM_CHANNELS 2
#define MAX_SLICS (MAX_DUSLIC * NUM_CHANNELS)
/***********************************************/
#define SOP_READ_CH_0 0xC4 /* Read SOP Register for Channel A */
#define SOP_READ_CH_1 0xCC /* Read SOP Register for Channel B */
#define SOP_WRITE_CH_0 0x44 /* Write SOP Register for Channel A */
#define SOP_WRITE_CH_1 0x4C /* Write SOP Register for Channel B */
#define COP_READ_CH_0 0xC5
#define COP_READ_CH_1 0xCD
#define COP_WRITE_CH_0 0x45
#define COP_WRITE_CH_1 0x4D
#define POP_READ_CH_0 0xC6
#define POP_READ_CH_1 0xCE
#define POP_WRITE_CH_0 0x46
#define POP_WRITE_CH_1 0x4E
#define RST_CMD_DUSLIC_CHIP 0x40 /* OR 0x48 */
#define RST_CMD_DUSLIC_CH_A 0x41
#define RST_CMD_DUSLIC_CH_B 0x49
#define PCM_RESYNC_CMD_CH_A 0x42
#define PCM_RESYNC_CMD_CH_B 0x4A
#define ACTIVE_HOOK_LEV_4 0
#define ACTIVE_HOOK_LEV_12 1
#define SLIC_P_NORMAL 0x01
/************************************************/
#define CODSP_WR 0x00
#define CODSP_RD 0x80
#define CODSP_OP 0x40
#define CODSP_ADR(x) (((unsigned char)(x) & 7) << 3)
#define CODSP_M(x) ((unsigned char)(x) & 7)
#define CODSP_CMD(x) ((unsigned char)(x) & 7)
/************************************************/
/* command indication ops */
#define CODSP_M_SLEEP_PWRDN 7
#define CODSP_M_PWRDN_HIZ 0
#define CODSP_M_ANY_ACT 2
#define CODSP_M_RING 5
#define CODSP_M_ACT_MET 6
#define CODSP_M_GND_START 4
#define CODSP_M_RING_PAUSE 1
/* single byte commands */
#define CODSP_CMD_SOFT_RESET CODSP_CMD(0)
#define CODSP_CMD_RESET_CH CODSP_CMD(1)
#define CODSP_CMD_RESYNC CODSP_CMD(2)
/* two byte commands */
#define CODSP_CMD_SOP CODSP_CMD(4)
#define CODSP_CMD_COP CODSP_CMD(5)
#define CODSP_CMD_POP CODSP_CMD(6)
/************************************************/
/* read as 4-bytes */
#define CODSP_INTREG_INT_CH 0x80000000
#define CODSP_INTREG_HOOK 0x40000000
#define CODSP_INTREG_GNDK 0x20000000
#define CODSP_INTREG_GNDP 0x10000000
#define CODSP_INTREG_ICON 0x08000000
#define CODSP_INTREG_VRTLIM 0x04000000
#define CODSP_INTREG_OTEMP 0x02000000
#define CODSP_INTREG_SYNC_FAIL 0x01000000
#define CODSP_INTREG_LM_THRES 0x00800000
#define CODSP_INTREG_READY 0x00400000
#define CODSP_INTREG_RSTAT 0x00200000
#define CODSP_INTREG_LM_OK 0x00100000
#define CODSP_INTREG_IO4_DU 0x00080000
#define CODSP_INTREG_IO3_DU 0x00040000
#define CODSP_INTREG_IO2_DU 0x00020000
#define CODSP_INTREG_IO1_DU 0x00010000
#define CODSP_INTREG_DTMF_OK 0x00008000
#define CODSP_INTREG_DTMF_KEY4 0x00004000
#define CODSP_INTREG_DTMF_KEY3 0x00002000
#define CODSP_INTREG_DTMF_KEY2 0x00001000
#define CODSP_INTREG_DTMF_KEY1 0x00000800
#define CODSP_INTREG_DTMF_KEY0 0x00000400
#define CODSP_INTREG_UTDR_OK 0x00000200
#define CODSP_INTREG_UTDX_OK 0x00000100
#define CODSP_INTREG_EDSP_FAIL 0x00000080
#define CODSP_INTREG_CIS_BOF 0x00000008
#define CODSP_INTREG_CIS_BUF 0x00000004
#define CODSP_INTREG_CIS_REQ 0x00000002
#define CODSP_INTREG_CIS_ACT 0x00000001
/************************************************/
/* ======== SOP REG ADDRESSES =======*/
#define REVISION_ADDR 0x00
#define PCMC1_ADDR 0x05
#define XCR_ADDR 0x06
#define INTREG1_ADDR 0x07
#define INTREG2_ADDR 0x08
#define INTREG3_ADDR 0x09
#define INTREG4_ADDR 0x0A
#define LMRES1_ADDR 0x0D
#define MASK_ADDR 0x11
#define IOCTL3_ADDR 0x14
#define BCR1_ADDR 0x15
#define BCR2_ADDR 0x16
#define BCR3_ADDR 0x17
#define BCR4_ADDR 0x18
#define BCR5_ADDR 0x19
#define DSCR_ADDR 0x1A
#define LMCR1_ADDR 0x1C
#define LMCR2_ADDR 0x1D
#define LMCR3_ADDR 0x1E
#define OFR1_ADDR 0x1F
#define PCMR1_ADDR 0x21
#define PCMX1_ADDR 0x25
#define TSTR3_ADDR 0x2B
#define TSTR4_ADDR 0x2C
#define TSTR5_ADDR 0x2D
/* ========= POP REG ADDRESSES ========*/
#define CIS_DAT_ADDR 0x00
#define LEC_LEN_ADDR 0x3A
#define LEC_POWR_ADDR 0x3B
#define LEC_DELP_ADDR 0x3C
#define LEC_DELQ_ADDR 0x3D
#define LEC_GAIN_XI_ADDR 0x3E
#define LEC_GAIN_RI_ADDR 0x3F
#define LEC_GAIN_XO_ADDR 0x40
#define LEC_RES_1_ADDR 0x41
#define LEC_RES_2_ADDR 0x42
#define NLP_POW_LPF_ADDR 0x30
#define NLP_POW_LPS_ADDR 0x31
#define NLP_BN_LEV_X_ADDR 0x32
#define NLP_BN_LEV_R_ADDR 0x33
#define NLP_BN_INC_ADDR 0x34
#define NLP_BN_DEC_ADDR 0x35
#define NLP_BN_MAX_ADDR 0x36
#define NLP_BN_ADJ_ADDR 0x37
#define NLP_RE_MIN_ERLL_ADDR 0x38
#define NLP_RE_EST_ERLL_ADDR 0x39
#define NLP_SD_LEV_X_ADDR 0x3A
#define NLP_SD_LEV_R_ADDR 0x3B
#define NLP_SD_LEV_BN_ADDR 0x3C
#define NLP_SD_LEV_RE_ADDR 0x3D
#define NLP_SD_OT_DT_ADDR 0x3E
#define NLP_ERL_LIN_LP_ADDR 0x3F
#define NLP_ERL_LEC_LP_ADDR 0x40
#define NLP_CT_LEV_RE_ADDR 0x41
#define NLP_CTRL_ADDR 0x42
#define UTD_CF_H_ADDR 0x4B
#define UTD_CF_L_ADDR 0x4C
#define UTD_BW_H_ADDR 0x4D
#define UTD_BW_L_ADDR 0x4E
#define UTD_NLEV_ADDR 0x4F
#define UTD_SLEV_H_ADDR 0x50
#define UTD_SLEV_L_ADDR 0x51
#define UTD_DELT_ADDR 0x52
#define UTD_RBRK_ADDR 0x53
#define UTD_RTIME_ADDR 0x54
#define UTD_EBRK_ADDR 0x55
#define UTD_ETIME_ADDR 0x56
#define DTMF_LEV_ADDR 0x30
#define DTMF_TWI_ADDR 0x31
#define DTMF_NCF_H_ADDR 0x32
#define DTMF_NCF_L_ADDR 0x33
#define DTMF_NBW_H_ADDR 0x34
#define DTMF_NBW_L_ADDR 0x35
#define DTMF_GAIN_ADDR 0x36
#define DTMF_RES1_ADDR 0x37
#define DTMF_RES2_ADDR 0x38
#define DTMF_RES3_ADDR 0x39
#define CIS_LEV_H_ADDR 0x43
#define CIS_LEV_L_ADDR 0x44
#define CIS_BRS_ADDR 0x45
#define CIS_SEIZ_H_ADDR 0x46
#define CIS_SEIZ_L_ADDR 0x47
#define CIS_MARK_H_ADDR 0x48
#define CIS_MARK_L_ADDR 0x49
#define CIS_LEC_MODE_ADDR 0x4A
/*=====================================*/
#define HOOK_LEV_ACT_START_ADDR 0x89
#define RO1_START_ADDR 0x70
#define RO2_START_ADDR 0x95
#define RO3_START_ADDR 0x96
#define TG1_FREQ_START_ADDR 0x38
#define TG1_GAIN_START_ADDR 0x39
#define TG1_BANDPASS_START_ADDR 0x3B
#define TG1_BANDPASS_END_ADDR 0x3D
#define TG2_FREQ_START_ADDR 0x40
#define TG2_GAIN_START_ADDR 0x41
#define TG2_BANDPASS_START_ADDR 0x43
#define TG2_BANDPASS_END_ADDR 0x45
/*====================================*/
#define PCM_HW_B 0x80
#define PCM_HW_A 0x00
#define PCM_TIME_SLOT_0 0x00 /* Byte 0 of PCM Frame (by default is assigned to channel A ) */
#define PCM_TIME_SLOT_1 0x01 /* Byte 1 of PCM Frame (by default is assigned to channel B ) */
#define PCM_TIME_SLOT_4 0x04 /* Byte 4 of PCM Frame (Corresponds to B1 of the Second GCI ) */
#define RX_LEV_ADDR 0x28
#define TX_LEV_ADDR 0x30
#define Ik1_ADDR 0x83
#define AR_ROW 3 /* Is the row (AR Params) of the ac_Coeff array in SMS_CODEC_Defaults struct */
#define AX_ROW 6 /* Is the row (AX Params) of the ac_Coeff array in SMS_CODEC_Defaults struct */
#define DCF_ROW 0 /* Is the row (DCF Params) of the dc_Coeff array in SMS_CODEC_Defaults struct */
/* Mark the start byte of Duslic parameters that we use with configurator */
#define Ik1_START_BYTE 3
#define RX_LEV_START_BYTE 0
#define TX_LEV_START_BYTE 0
/************************************************/
#define INTREG4_CIS_ACT (1 << 0)
#define BCR1_SLEEP 0x20
#define BCR1_REVPOL 0x10
#define BCR1_ACTR 0x08
#define BCR1_ACTL 0x04
#define BCR1_SLIC_MASK 0x03
#define BCR2_HARD_POL_REV 0x40
#define BCR2_TTX 0x20
#define BCR2_TTX_12K 0x10
#define BCR2_HIMAN 0x08
#define BCR2_PDOT 0x01
#define BCR3_PCMX_EN (1 << 4)
#define BCR5_DTMF_EN (1 << 0)
#define BCR5_DTMF_SRC (1 << 1)
#define BCR5_LEC_EN (1 << 2)
#define BCR5_LEC_OUT (1 << 3)
#define BCR5_CIS_EN (1 << 4)
#define BCR5_CIS_AUTO (1 << 5)
#define BCR5_UTDX_EN (1 << 6)
#define BCR5_UTDR_EN (1 << 7)
#define DSCR_TG1_EN (1 << 0)
#define DSCR_TG2_EN (1 << 1)
#define DSCR_PTG (1 << 2)
#define DSCR_COR8 (1 << 3)
#define DSCR_DG_KEY(x) (((x) & 0x0F) << 4)
#define CIS_LEC_MODE_CIS_V23 (1 << 0)
#define CIS_LEC_MODE_CIS_FRM (1 << 1)
#define CIS_LEC_MODE_NLP_EN (1 << 2)
#define CIS_LEC_MODE_UTDR_SUM (1 << 4)
#define CIS_LEC_MODE_UTDX_SUM (1 << 5)
#define CIS_LEC_MODE_LEC_FREEZE (1 << 6)
#define CIS_LEC_MODE_LEC_ADAPT (1 << 7)
#define TSTR4_COR_64 (1 << 5)
#define TSTR3_AC_DLB_8K (1 << 2)
#define TSTR3_AC_DLB_32K (1 << 3)
#define TSTR3_AC_DLB_4M (1 << 5)
#define LMCR1_TEST_EN (1 << 7)
#define LMCR1_LM_EN (1 << 6)
#define LMCR1_LM_THM (1 << 5)
#define LMCR1_LM_ONCE (1 << 2)
#define LMCR1_LM_MASK (1 << 1)
#define LMCR2_LM_RECT (1 << 5)
#define LMCR2_LM_SEL_VDD 0x0D
#define LMCR2_LM_SEL_IO3 0x0A
#define LMCR2_LM_SEL_IO4 0x0B
#define LMCR2_LM_SEL_IO4_MINUS_IO3 0x0F
#define LMCR3_RTR_SEL (1 << 6)
#define LMCR3_RNG_OFFSET_NONE 0x00
#define LMCR3_RNG_OFFSET_1 0x01
#define LMCR3_RNG_OFFSET_2 0x02
#define LMCR3_RNG_OFFSET_3 0x03
#define TSTR5_DC_HOLD (1 << 3)
/************************************************/
#define TARGET_ONHOOK_BATH_x100 4600 /* 46.0 Volt */
#define TARGET_ONHOOK_BATL_x100 2500 /* 25.0 Volt */
#define TARGET_V_DIVIDER_RATIO_x100 21376L /* (R1+R2)/R2 = 213.76 */
#define DIVIDER_RATIO_ACCURx100 (22 * 100)
#define V_AD_x10000 10834L /* VAD = 1.0834 */
#define TARGET_VDDx100 330 /* VDD = 3.3 * 10 */
#define VDD_MAX_DIFFx100 20 /* VDD Accur = 0.2*100 */
#define RMS_MULTIPLIERx100 111 /* pi/(2xsqrt(2)) = 1.11*/
#define K_INTDC_RECT_ON 4 /* When Rectifier is ON this value is necessary(2^4) */
#define K_INTDC_RECT_OFF 2 /* 2^2 */
#define RNG_FREQ 25
#define SAMPLING_FREQ (2000L)
#define N_SAMPLES (SAMPLING_FREQ/RNG_FREQ) /* for Ring Freq =25Hz (40ms Integration Period)[Sampling rate 2KHz -->1 Sample every 500us] */
#define HOOK_THRESH_RING_START_ADDR 0x8B
#define RING_PARAMS_START_ADDR 0x70
#define V_OUT_BATH_MAX_DIFFx100 300 /* 3.0 x100 */
#define V_OUT_BATL_MAX_DIFFx100 400 /* 4.0 x100 */
#define MAX_V_RING_MEANx100 50
#define TARGET_V_RING_RMSx100 2720
#define V_RMS_RING_MAX_DIFFx100 250
#define LM_OK_SRC_IRG_2 (1 << 4)
/************************************************/
#define PORTB (((volatile immap_t *)CONFIG_SYS_IMMR)->im_cpm.cp_pbdat)
#define PORTC (((volatile immap_t *)CONFIG_SYS_IMMR)->im_ioport.iop_pcdat)
#define PORTD (((volatile immap_t *)CONFIG_SYS_IMMR)->im_ioport.iop_pddat)
#define _PORTD_SET(mask, state) \
do { \
if (state) \
PORTD |= mask; \
else \
PORTD &= ~mask; \
} while (0)
#define _PORTB_SET(mask, state) \
do { \
if (state) \
PORTB |= mask; \
else \
PORTB &= ~mask; \
} while (0)
#define _PORTB_TGL(mask) do { PORTB ^= mask; } while (0)
#define _PORTB_GET(mask) (!!(PORTB & mask))
#define _PORTC_GET(mask) (!!(PORTC & mask))
/* port B */
#define SPI_RXD (1 << (31 - 28))
#define SPI_TXD (1 << (31 - 29))
#define SPI_CLK (1 << (31 - 30))
/* port C */
#define COM_HOOK1 (1 << (15 - 9))
#define COM_HOOK2 (1 << (15 - 10))
#ifndef CONFIG_NETTA_SWAPHOOK
#define COM_HOOK3 (1 << (15 - 11))
#define COM_HOOK4 (1 << (15 - 12))
#else
#define COM_HOOK3 (1 << (15 - 12))
#define COM_HOOK4 (1 << (15 - 11))
#endif
/* port D */
#define SPIENC1 (1 << (15 - 9))
#define SPIENC2 (1 << (15 - 10))
#define SPIENC3 (1 << (15 - 11))
#define SPIENC4 (1 << (15 - 14))
#define SPI_DELAY() udelay(1)
static inline unsigned int __SPI_Transfer(unsigned int tx)
{
unsigned int rx;
int b;
rx = 0; b = 8;
while (--b >= 0) {
_PORTB_SET(SPI_TXD, tx & 0x80);
tx <<= 1;
_PORTB_TGL(SPI_CLK);
SPI_DELAY();
rx <<= 1;
rx |= _PORTB_GET(SPI_RXD);
_PORTB_TGL(SPI_CLK);
SPI_DELAY();
}
return rx;
}
static const char *codsp_dtmf_map = "D1234567890*#ABC";
static const int spienc_mask_tab[4] = { SPIENC1, SPIENC2, SPIENC3, SPIENC4 };
static const int com_hook_mask_tab[4] = { COM_HOOK1, COM_HOOK2, COM_HOOK3, COM_HOOK4 };
static unsigned int codsp_send(int duslic_id, const unsigned char *cmd, int cmdlen, unsigned char *res, int reslen)
{
unsigned int rx;
int i;
/* just some sanity checks */
if (cmd == 0 || cmdlen < 0)
return -1;
_PORTD_SET(spienc_mask_tab[duslic_id], 0);
/* first 2 bytes are without response */
i = 2;
while (i-- > 0 && cmdlen-- > 0)
__SPI_Transfer(*cmd++);
while (cmdlen-- > 0) {
rx = __SPI_Transfer(*cmd++);
if (res != 0 && reslen-- > 0)
*res++ = (unsigned char)rx;
}
if (res != 0) {
while (reslen-- > 0)
*res++ = __SPI_Transfer(0xFF);
}
_PORTD_SET(spienc_mask_tab[duslic_id], 1);
return 0;
}
/****************************************************************************/
void codsp_set_ciop_m(int duslic_id, int channel, unsigned char m)
{
unsigned char cmd = CODSP_WR | CODSP_ADR(channel) | CODSP_M(m);
codsp_send(duslic_id, &cmd, 1, 0, 0);
}
void codsp_reset_chip(int duslic_id)
{
static const unsigned char cmd = CODSP_WR | CODSP_OP | CODSP_CMD_SOFT_RESET;
codsp_send(duslic_id, &cmd, 1, 0, 0);
}
void codsp_reset_channel(int duslic_id, int channel)
{
unsigned char cmd = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_RESET_CH;
codsp_send(duslic_id, &cmd, 1, 0, 0);
}
void codsp_resync_channel(int duslic_id, int channel)
{
unsigned char cmd = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_RESYNC;
codsp_send(duslic_id, &cmd, 1, 0, 0);
}
/****************************************************************************/
void codsp_write_sop_char(int duslic_id, int channel, unsigned char regno, unsigned char val)
{
unsigned char cmd[3];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP;
cmd[1] = regno;
cmd[2] = val;
codsp_send(duslic_id, cmd, 3, 0, 0);
}
void codsp_write_sop_short(int duslic_id, int channel, unsigned char regno, unsigned short val)
{
unsigned char cmd[4];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP;
cmd[1] = regno;
cmd[2] = (unsigned char)(val >> 8);
cmd[3] = (unsigned char)val;
codsp_send(duslic_id, cmd, 4, 0, 0);
}
void codsp_write_sop_int(int duslic_id, int channel, unsigned char regno, unsigned int val)
{
unsigned char cmd[5];
cmd[0] = CODSP_WR | CODSP_ADR(channel) | CODSP_CMD_SOP;
cmd[1] = regno;
cmd[2] = (unsigned char)(val >> 24);
cmd[3] = (unsigned char)(val >> 16);
cmd[4] = (unsigned char)(val >> 8);
cmd[5] = (unsigned char)val;
codsp_send(duslic_id, cmd, 6, 0, 0);
}
unsigned char codsp_read_sop_char(int duslic_id, int channel, unsigned char regno)
{
unsigned char cmd[3];
unsigned char res[2];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP;
cmd[1] = regno;
codsp_send(duslic_id, cmd, 2, res, 2);
return res[1];
}
unsigned short codsp_read_sop_short(int duslic_id, int channel, unsigned char regno)
{
unsigned char cmd[2];
unsigned char res[3];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP;
cmd[1] = regno;
codsp_send(duslic_id, cmd, 2, res, 3);
return ((unsigned short)res[1] << 8) | res[2];
}
unsigned int codsp_read_sop_int(int duslic_id, int channel, unsigned char regno)
{
unsigned char cmd[2];
unsigned char res[5];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_SOP;
cmd[1] = regno;
codsp_send(duslic_id, cmd, 2, res, 5);
return ((unsigned int)res[1] << 24) | ((unsigned int)res[2] << 16) | ((unsigned int)res[3] << 8) | res[4];
}
/****************************************************************************/
void codsp_write_cop_block(int duslic_id, int channel, unsigned char addr, const unsigned char *block)
{
unsigned char cmd[10];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP;
cmd[1] = addr;
memcpy(cmd + 2, block, 8);
codsp_send(duslic_id, cmd, 10, 0, 0);
}
void codsp_write_cop_char(int duslic_id, int channel, unsigned char addr, unsigned char val)
{
unsigned char cmd[3];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP;
cmd[1] = addr;
cmd[2] = val;
codsp_send(duslic_id, cmd, 3, 0, 0);
}
void codsp_write_cop_short(int duslic_id, int channel, unsigned char addr, unsigned short val)
{
unsigned char cmd[3];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP;
cmd[1] = addr;
cmd[2] = (unsigned char)(val >> 8);
cmd[3] = (unsigned char)val;
codsp_send(duslic_id, cmd, 4, 0, 0);
}
void codsp_read_cop_block(int duslic_id, int channel, unsigned char addr, unsigned char *block)
{
unsigned char cmd[2];
unsigned char res[9];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP;
cmd[1] = addr;
codsp_send(duslic_id, cmd, 2, res, 9);
memcpy(block, res + 1, 8);
}
unsigned char codsp_read_cop_char(int duslic_id, int channel, unsigned char addr)
{
unsigned char cmd[2];
unsigned char res[2];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP;
cmd[1] = addr;
codsp_send(duslic_id, cmd, 2, res, 2);
return res[1];
}
unsigned short codsp_read_cop_short(int duslic_id, int channel, unsigned char addr)
{
unsigned char cmd[2];
unsigned char res[3];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR(channel) | CODSP_CMD_COP;
cmd[1] = addr;
codsp_send(duslic_id, cmd, 2, res, 3);
return ((unsigned short)res[1] << 8) | res[2];
}
/****************************************************************************/
#define MAX_POP_BLOCK 50
void codsp_write_pop_block (int duslic_id, int channel, unsigned char addr,
const unsigned char *block, int len)
{
unsigned char cmd[2 + MAX_POP_BLOCK];
if (len > MAX_POP_BLOCK) /* truncate */
len = MAX_POP_BLOCK;
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = addr;
memcpy (cmd + 2, block, len);
codsp_send (duslic_id, cmd, 2 + len, 0, 0);
}
void codsp_write_pop_char (int duslic_id, int channel, unsigned char regno,
unsigned char val)
{
unsigned char cmd[3];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = regno;
cmd[2] = val;
codsp_send (duslic_id, cmd, 3, 0, 0);
}
void codsp_write_pop_short (int duslic_id, int channel, unsigned char regno,
unsigned short val)
{
unsigned char cmd[4];
cmd[0] = CODSP_WR | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = regno;
cmd[2] = (unsigned char) (val >> 8);
cmd[3] = (unsigned char) val;
codsp_send (duslic_id, cmd, 4, 0, 0);
}
void codsp_write_pop_int (int duslic_id, int channel, unsigned char regno,
unsigned int val)
{
unsigned char cmd[5];
cmd[0] = CODSP_WR | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = regno;
cmd[2] = (unsigned char) (val >> 24);
cmd[3] = (unsigned char) (val >> 16);
cmd[4] = (unsigned char) (val >> 8);
cmd[5] = (unsigned char) val;
codsp_send (duslic_id, cmd, 6, 0, 0);
}
unsigned char codsp_read_pop_char (int duslic_id, int channel,
unsigned char regno)
{
unsigned char cmd[3];
unsigned char res[2];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = regno;
codsp_send (duslic_id, cmd, 2, res, 2);
return res[1];
}
unsigned short codsp_read_pop_short (int duslic_id, int channel,
unsigned char regno)
{
unsigned char cmd[2];
unsigned char res[3];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = regno;
codsp_send (duslic_id, cmd, 2, res, 3);
return ((unsigned short) res[1] << 8) | res[2];
}
unsigned int codsp_read_pop_int (int duslic_id, int channel,
unsigned char regno)
{
unsigned char cmd[2];
unsigned char res[5];
cmd[0] = CODSP_RD | CODSP_OP | CODSP_ADR (channel) | CODSP_CMD_POP;
cmd[1] = regno;
codsp_send (duslic_id, cmd, 2, res, 5);
return (((unsigned int) res[1] << 24) |
((unsigned int) res[2] << 16) |
((unsigned int) res[3] << 8) |
res[4] );
}
/****************************************************************************/
struct _coeffs {
unsigned char addr;
unsigned char values[8];
};
struct _coeffs ac_coeffs[11] = {
{ 0x60, {0xAD,0xDA,0xB5,0x9B,0xC7,0x2A,0x9D,0x00} }, /* 0x60 IM-Filter part 1 */
{ 0x68, {0x10,0x00,0xA9,0x82,0x0D,0x77,0x0A,0x00} }, /* 0x68 IM-Filter part 2 */
{ 0x18, {0x08,0xC0,0xD2,0xAB,0xA5,0xE2,0xAB,0x07} }, /* 0x18 FRR-Filter */
{ 0x28, {0x44,0x93,0xF5,0x92,0x88,0x00,0x00,0x00} }, /* 0x28 AR-Filter */
{ 0x48, {0x96,0x38,0x29,0x96,0xC9,0x2B,0x8B,0x00} }, /* 0x48 LPR-Filter */
{ 0x20, {0x08,0xB0,0xDA,0x9D,0xA7,0xFA,0x93,0x06} }, /* 0x20 FRX-Filter */
{ 0x30, {0xBA,0xAC,0x00,0x01,0x85,0x50,0xC0,0x1A} }, /* 0x30 AX-Filter */
{ 0x50, {0x96,0x38,0x29,0xF5,0xFA,0x2B,0x8B,0x00} }, /* 0x50 LPX-Filter */
{ 0x00, {0x00,0x08,0x08,0x81,0x00,0x80,0x00,0x08} }, /* 0x00 TH-Filter part 1 */
{ 0x08, {0x81,0x00,0x80,0x00,0xD7,0x33,0xBA,0x01} }, /* 0x08 TH-Filter part 2 */
{ 0x10, {0xB3,0x6C,0xDC,0xA3,0xA4,0xE5,0x88,0x00} } /* 0x10 TH-Filter part 3 */
};
struct _coeffs ac_coeffs_0dB[11] = {
{ 0x60, {0xAC,0x2A,0xB5,0x9A,0xB7,0x2A,0x9D,0x00} },
{ 0x68, {0x10,0x00,0xA9,0x82,0x0D,0x83,0x0A,0x00} },
{ 0x18, {0x08,0x20,0xD4,0xA4,0x65,0xEE,0x92,0x07} },
{ 0x28, {0x2B,0xAB,0x36,0xA5,0x88,0x00,0x00,0x00} },
{ 0x48, {0xAB,0xE9,0x4E,0x32,0xAB,0x25,0xA5,0x03} },
{ 0x20, {0x08,0x20,0xDB,0x9C,0xA7,0xFA,0xB4,0x07} },
{ 0x30, {0xF3,0x10,0x07,0x60,0x85,0x40,0xC0,0x1A} },
{ 0x50, {0x96,0x38,0x29,0x97,0x39,0x19,0x8B,0x00} },
{ 0x00, {0x00,0x08,0x08,0x81,0x00,0x80,0x00,0x08} },
{ 0x08, {0x81,0x00,0x80,0x00,0x47,0x3C,0xD2,0x01} },
{ 0x10, {0x62,0xDB,0x4A,0x87,0x73,0x28,0x88,0x00} }
};
struct _coeffs dc_coeffs[9] = {
{ 0x80, {0x25,0x59,0x9C,0x23,0x24,0x23,0x32,0x1C} }, /* 0x80 DC-Parameter */
{ 0x70, {0x90,0x30,0x1B,0xC0,0x33,0x43,0xAC,0x02} }, /* 0x70 Ringing */
{ 0x90, {0x3F,0xC3,0x2E,0x3A,0x80,0x90,0x00,0x09} }, /* 0x90 LP-Filters */
{ 0x88, {0xAF,0x80,0x27,0x7B,0x01,0x4C,0x7B,0x02} }, /* 0x88 Hook Levels */
{ 0x78, {0x00,0xC0,0x6D,0x7A,0xB3,0x78,0x89,0x00} }, /* 0x78 Ramp Generator */
{ 0x58, {0xA5,0x44,0x34,0xDB,0x0E,0xA2,0x2A,0x00} }, /* 0x58 TTX */
{ 0x38, {0x33,0x49,0x9A,0x65,0xBB,0x00,0x00,0x00} }, /* 0x38 TG1 */
{ 0x40, {0x33,0x49,0x9A,0x65,0xBB,0x00,0x00,0x00} }, /* 0x40 TG2 */
{ 0x98, {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} } /* 0x98 Reserved */
};
void program_coeffs(int duslic_id, int channel, struct _coeffs *coeffs, int tab_size)
{
int i;
for (i = 0; i < tab_size; i++)
codsp_write_cop_block(duslic_id, channel, coeffs[i].addr, coeffs[i].values);
}
#define SS_OPEN_CIRCUIT 0
#define SS_RING_PAUSE 1
#define SS_ACTIVE 2
#define SS_ACTIVE_HIGH 3
#define SS_ACTIVE_RING 4
#define SS_RINGING 5
#define SS_ACTIVE_WITH_METERING 6
#define SS_ONHOOKTRNSM 7
#define SS_STANDBY 8
#define SS_MAX 8
static void codsp_set_slic(int duslic_id, int channel, int state)
{
unsigned char v;
v = codsp_read_sop_char(duslic_id, channel, BCR1_ADDR);
switch (state) {
case SS_ACTIVE:
codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, (v & ~BCR1_ACTR) | BCR1_ACTL);
codsp_set_ciop_m(duslic_id, channel, CODSP_M_ANY_ACT);
break;
case SS_ACTIVE_HIGH:
codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, v & ~(BCR1_ACTR | BCR1_ACTL));
codsp_set_ciop_m(duslic_id, channel, CODSP_M_ANY_ACT);
break;
case SS_ACTIVE_RING:
case SS_ONHOOKTRNSM:
codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, (v & ~BCR1_ACTL) | BCR1_ACTR);
codsp_set_ciop_m(duslic_id, channel, CODSP_M_ANY_ACT);
break;
case SS_STANDBY:
codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, v & ~(BCR1_ACTL | BCR1_ACTR));
codsp_set_ciop_m(duslic_id, channel, CODSP_M_SLEEP_PWRDN);
break;
case SS_OPEN_CIRCUIT:
codsp_set_ciop_m(duslic_id, channel, CODSP_M_PWRDN_HIZ);
break;
case SS_RINGING:
codsp_set_ciop_m(duslic_id, channel, CODSP_M_RING);
break;
case SS_RING_PAUSE:
codsp_set_ciop_m(duslic_id, channel, CODSP_M_RING_PAUSE);
break;
}
}
const unsigned char Ring_Sin_28Vrms_25Hz[8] = { 0x90, 0x30, 0x1B, 0xC0, 0xC3, 0x9C, 0x88, 0x00 };
const unsigned char Max_HookRingTh[3] = { 0x7B, 0x41, 0x62 };
void retrieve_slic_state(int slic_id)
{
int duslic_id = slic_id >> 1;
int channel = slic_id & 1;
/* Retrieve the state of the SLICs */
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, 0x00);
/* wait at least 1000us to clear the LM_OK and 500us to set the LM_OK ==> for the LM to make the first Measurement */
udelay(10000);
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK);
codsp_set_slic(duslic_id, channel, SS_ACTIVE_HIGH);
codsp_write_sop_char(duslic_id, channel, LMCR3_ADDR, 0x40);
/* Program Default Hook Ring thresholds */
codsp_write_cop_block(duslic_id, channel, dc_coeffs[1].addr, dc_coeffs[1].values);
/* Now program Hook Threshold while Ring and ac RingTrip to max values */
codsp_write_cop_block(duslic_id, channel, dc_coeffs[3].addr, dc_coeffs[3].values);
codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, 0x0000);
udelay(40000);
}
int wait_level_metering_finish(int duslic_id, int channel)
{
int cnt;
for (cnt = 0; cnt < 1000 &&
(codsp_read_sop_char(duslic_id, channel, INTREG2_ADDR) & LM_OK_SRC_IRG_2) == 0; cnt++) { }
return cnt != 1000;
}
int measure_on_hook_voltages(int slic_id, long *vdd,
long *v_oh_H, long *v_oh_L, long *ring_mean_v, long *ring_rms_v)
{
short LM_Result, Offset_Compensation; /* Signed 16 bit */
long int VDD, VDD_diff, V_in, V_out, Divider_Ratio, Vout_diff ;
unsigned char err_mask = 0;
int duslic_id = slic_id >> 1;
int channel = slic_id & 1;
int i;
/* measure VDD */
/* Now select the VDD level Measurement (but first of all Hold the DC characteristic) */
codsp_write_sop_char(duslic_id, channel, TSTR5_ADDR, TSTR5_DC_HOLD);
/* Activate Test Mode ==> To Enable DC Hold !!! */
/* (else the LMRES is treated as Feeding Current and the Feeding voltage changes */
/* imediatelly (after 500us when the LMRES Registers is updated for the first time after selection of (IO4-IO3) measurement !!!!))*/
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_TEST_EN | LMCR1_LM_THM | LMCR1_LM_MASK);
udelay(40000);
/* Now I Can select what to measure by DC Level Meter (select IO4-IO3) */
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, LMCR2_LM_SEL_VDD);
/* wait at least 1000us to clear the LM_OK and 500us to set the LM_OK ==> for the LM to make the first Measurement */
udelay(10000);
/* Now Read the LM Result Registers */
LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
VDD = (-1)*((((long int)LM_Result) * 390L ) >> 15) ; /* VDDx100 */
*vdd = VDD;
VDD_diff = VDD - TARGET_VDDx100;
if (VDD_diff < 0)
VDD_diff = -VDD_diff;
if (VDD_diff > VDD_MAX_DIFFx100)
err_mask |= 1;
Divider_Ratio = TARGET_V_DIVIDER_RATIO_x100;
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, 0x00);
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK);
codsp_set_slic(duslic_id, channel, SS_ACTIVE_HIGH); /* Go back to ONHOOK Voltage */
udelay(40000);
codsp_write_sop_char(duslic_id, channel,
LMCR1_ADDR, LMCR1_TEST_EN | LMCR1_LM_THM | LMCR1_LM_MASK);
udelay(40000);
/* Now I Can select what to measure by DC Level Meter (select IO4-IO3) */
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, LMCR2_LM_SEL_IO4_MINUS_IO3);
/* wait at least 1000us to clear the LM_OK and 500us to set the LM_OK ==> for the LM to make the first Measurement */
udelay(10000);
/* Now Read the LM Result Registers */
LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
V_in = (-1)* ((((long int)LM_Result) * V_AD_x10000 ) >> 15) ; /* Vin x 10000*/
V_out = (V_in * Divider_Ratio) / 10000L ; /* Vout x100 */
*v_oh_H = V_out;
Vout_diff = V_out - TARGET_ONHOOK_BATH_x100;
if (Vout_diff < 0)
Vout_diff = -Vout_diff;
if (Vout_diff > V_OUT_BATH_MAX_DIFFx100)
err_mask |= 2;
codsp_set_slic(duslic_id, channel, SS_ACTIVE); /* Go back to ONHOOK Voltage */
udelay(40000);
/* Now Read the LM Result Registers */
LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
V_in = (-1)* ((((long int)LM_Result) * V_AD_x10000 ) >> 15) ; /* Vin x 10000*/
V_out = (V_in * Divider_Ratio) / 10000L ; /* Vout x100 */
*v_oh_L = V_out;
Vout_diff = V_out - TARGET_ONHOOK_BATL_x100;
if (Vout_diff < 0)
Vout_diff = -Vout_diff;
if (Vout_diff > V_OUT_BATL_MAX_DIFFx100)
err_mask |= 4;
/* perform ring tests */
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, 0x00);
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK);
udelay(40000);
codsp_write_sop_char(duslic_id, channel, LMCR3_ADDR, LMCR3_RTR_SEL | LMCR3_RNG_OFFSET_NONE);
/* Now program RO1 =0V , Ring Amplitude and frequency and shift factor K = 1 (LMDC=0x0088)*/
codsp_write_cop_block(duslic_id, channel, RING_PARAMS_START_ADDR, Ring_Sin_28Vrms_25Hz);
/* By Default RO1 is selected when ringing RNG-OFFSET = 00 */
/* Now program Hook Threshold while Ring and ac RingTrip to max values */
for(i = 0; i < sizeof(Max_HookRingTh); i++)
codsp_write_cop_char(duslic_id, channel, HOOK_THRESH_RING_START_ADDR + i, Max_HookRingTh[i]);
codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, 0x0000);
codsp_set_slic(duslic_id, channel, SS_RING_PAUSE); /* Start Ringing */
/* select source for the levelmeter to be IO4-IO3 */
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR, LMCR2_LM_SEL_IO4_MINUS_IO3);
udelay(40000);
/* Before Enabling Level Meter Programm the apropriate shift factor K_INTDC=(4 if Rectifier Enabled and 2 if Rectifier Disabled) */
codsp_write_cop_char(duslic_id, channel, RING_PARAMS_START_ADDR + 7, K_INTDC_RECT_OFF);
udelay(10000);
/* Enable LevelMeter to Integrate only once (Rectifier Disabled) */
codsp_write_sop_char(duslic_id, channel,
LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE);
udelay(40000); /* Integration Period == Ring Period = 40ms (for 25Hz Ring) */
if (wait_level_metering_finish(duslic_id, channel)) {
udelay(10000); /* To be sure that Integration Results are Valid wait at least 500us !!! */
/* Now Read the LM Result Registers (Will be valid until LM_EN becomes zero again( after that the Result is updated every 500us) ) */
Offset_Compensation = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
Offset_Compensation = (-1) * ((Offset_Compensation * (1 << K_INTDC_RECT_OFF)) / N_SAMPLES);
/* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_ONCE);
/* Now programm Integrator Offset Registers !!! */
codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, Offset_Compensation);
codsp_set_slic(duslic_id, channel, SS_RINGING); /* Start Ringing */
udelay(40000);
/* Reenable Level Meter Integrator (The Result will be valid after Integration Period=Ring Period and until LN_EN become zero again) */
codsp_write_sop_char(duslic_id, channel,
LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE);
udelay(40000); /* Integration Period == Ring Period = 40ms (for 25Hz Ring) */
/* Poll the LM_OK bit to see when Integration Result is Ready */
if (wait_level_metering_finish(duslic_id, channel)) {
udelay(10000); /* wait at least 500us to be sure that the Integration Result are valid !!! */
/* Now Read the LM Result Registers (They will hold their value until LM_EN become zero again */
/* ==>After that Result Regs will be updated every 500us !!!) */
LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
V_in = (-1) * ( ( (((long int)LM_Result) * V_AD_x10000) / N_SAMPLES) >> (15 - K_INTDC_RECT_OFF)) ; /* Vin x 10000*/
V_out = (V_in * Divider_Ratio) / 10000L ; /* Vout x100 */
if (V_out < 0)
V_out= -V_out;
if (V_out > MAX_V_RING_MEANx100)
err_mask |= 8;
*ring_mean_v = V_out;
} else {
err_mask |= 8;
*ring_mean_v = 0;
}
} else {
err_mask |= 8;
*ring_mean_v = 0;
}
/* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR,
LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_ONCE);
codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, 0x0000);
codsp_set_slic(duslic_id, channel, SS_RING_PAUSE); /* Start Ringing */
/* Now Enable Rectifier */
/* select source for the levelmeter to be IO4-IO3 */
codsp_write_sop_char(duslic_id, channel, LMCR2_ADDR,
LMCR2_LM_SEL_IO4_MINUS_IO3 | LMCR2_LM_RECT);
/* Program the apropriate shift factor K_INTDC (in order to avoid Overflow at Integtation Result !!!) */
codsp_write_cop_char(duslic_id, channel, RING_PARAMS_START_ADDR + 7, K_INTDC_RECT_ON);
udelay(40000);
/* Reenable Level Meter Integrator (The Result will be valid after Integration Period=Ring Period and until LN_EN become zero again) */
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR,
LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE);
udelay(40000);
/* Poll the LM_OK bit to see when Integration Result is Ready */
if (wait_level_metering_finish(duslic_id, channel)) {
udelay(10000);
/* Now Read the LM Result Registers (They will hold their value until LM_EN become zero again */
/* ==>After that Result Regs will be updated every 500us !!!) */
Offset_Compensation = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
Offset_Compensation = (-1) * ((Offset_Compensation * (1 << K_INTDC_RECT_ON)) / N_SAMPLES);
/* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_ONCE);
/* Now programm Integrator Offset Registers !!! */
codsp_write_sop_short(duslic_id, channel, OFR1_ADDR, Offset_Compensation);
/* Be sure that a Ring is generated !!!! */
codsp_set_slic(duslic_id, channel, SS_RINGING); /* Start Ringing again */
udelay(40000);
/* Reenable Level Meter Integrator (The Result will be valid after Integration Period=Ring Period and until LN_EN become zero again) */
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR,
LMCR1_LM_THM | LMCR1_LM_MASK | LMCR1_LM_EN | LMCR1_LM_ONCE);
udelay(40000);
/* Poll the LM_OK bit to see when Integration Result is Ready */
if (wait_level_metering_finish(duslic_id, channel)) {
udelay(10000);
/* Now Read the LM Result Registers (They will hold their value until LM_EN become zero again */
/* ==>After that Result Regs will be updated every 500us !!!) */
LM_Result = codsp_read_sop_short(duslic_id, channel, LMRES1_ADDR);
V_in = (-1) * ( ( (((long int)LM_Result) * V_AD_x10000) / N_SAMPLES) >> (15 - K_INTDC_RECT_ON) ) ; /* Vin x 10000*/
V_out = (((V_in * Divider_Ratio) / 10000L) * RMS_MULTIPLIERx100) / 100 ; /* Vout_RMS x100 */
if (V_out < 0)
V_out = -V_out;
Vout_diff = (V_out - TARGET_V_RING_RMSx100);
if (Vout_diff < 0)
Vout_diff = -Vout_diff;
if (Vout_diff > V_RMS_RING_MAX_DIFFx100)
err_mask |= 16;
*ring_rms_v = V_out;
} else {
err_mask |= 16;
*ring_rms_v = 0;
}
} else {
err_mask |= 16;
*ring_rms_v = 0;
}
/* Disable LevelMeter ==> In order to be able to restart Integrator again (for the next integration) */
codsp_write_sop_char(duslic_id, channel, LMCR1_ADDR, LMCR1_LM_THM | LMCR1_LM_MASK);
retrieve_slic_state(slic_id);
return(err_mask);
}
int test_dtmf(int slic_id)
{
unsigned char code;
unsigned char b;
unsigned int intreg;
int duslic_id = slic_id >> 1;
int channel = slic_id & 1;
for (code = 0; code < 16; code++) {
b = codsp_read_sop_char(duslic_id, channel, DSCR_ADDR);
codsp_write_sop_char(duslic_id, channel, DSCR_ADDR,
(b & ~(DSCR_PTG | DSCR_DG_KEY(15))) | DSCR_DG_KEY(code) | DSCR_TG1_EN | DSCR_TG2_EN);
udelay(80000);
intreg = codsp_read_sop_int(duslic_id, channel, INTREG1_ADDR);
if ((intreg & CODSP_INTREG_INT_CH) == 0)
break;
if ((intreg & CODSP_INTREG_DTMF_OK) == 0 ||
codsp_dtmf_map[(intreg >> 10) & 15] != codsp_dtmf_map[code])
break;
b = codsp_read_sop_char(duslic_id, channel, DSCR_ADDR);
codsp_write_sop_char(duslic_id, channel, DSCR_ADDR,
b & ~(DSCR_COR8 | DSCR_TG1_EN | DSCR_TG2_EN));
udelay(80000);
intreg = codsp_read_sop_int(duslic_id, channel, INTREG1_ADDR); /* for dtmf_pause irq */
}
if (code != 16) {
b = codsp_read_sop_char(duslic_id, channel, DSCR_ADDR); /* stop dtmf */
codsp_write_sop_char(duslic_id, channel, DSCR_ADDR,
b & ~(DSCR_COR8 | DSCR_TG1_EN | DSCR_TG2_EN));
return(1);
}
return(0);
}
void data_up_persist_time(int duslic_id, int channel, int time_ms)
{
unsigned char b;
b = codsp_read_sop_char(duslic_id, channel, IOCTL3_ADDR);
b = (b & 0x0F) | ((time_ms & 0x0F) << 4);
codsp_write_sop_char(duslic_id, channel, IOCTL3_ADDR, b);
}
static void program_dtmf_params(int duslic_id, int channel)
{
unsigned char b;
codsp_write_pop_char(duslic_id, channel, DTMF_LEV_ADDR, 0x10);
codsp_write_pop_char(duslic_id, channel, DTMF_TWI_ADDR, 0x0C);
codsp_write_pop_char(duslic_id, channel, DTMF_NCF_H_ADDR, 0x79);
codsp_write_pop_char(duslic_id, channel, DTMF_NCF_L_ADDR, 0x10);
codsp_write_pop_char(duslic_id, channel, DTMF_NBW_H_ADDR, 0x02);
codsp_write_pop_char(duslic_id, channel, DTMF_NBW_L_ADDR, 0xFB);
codsp_write_pop_char(duslic_id, channel, DTMF_GAIN_ADDR, 0x91);
codsp_write_pop_char(duslic_id, channel, DTMF_RES1_ADDR, 0x00);
codsp_write_pop_char(duslic_id, channel, DTMF_RES2_ADDR, 0x00);
codsp_write_pop_char(duslic_id, channel, DTMF_RES3_ADDR, 0x00);
b = codsp_read_sop_char(duslic_id, channel, BCR5_ADDR);
codsp_write_sop_char(duslic_id, channel, BCR5_ADDR, b | BCR5_DTMF_EN);
}
static void codsp_channel_full_reset(int duslic_id, int channel)
{
program_coeffs(duslic_id, channel, ac_coeffs, sizeof(ac_coeffs) / sizeof(struct _coeffs));
program_coeffs(duslic_id, channel, dc_coeffs, sizeof(dc_coeffs) / sizeof(struct _coeffs));
/* program basic configuration registers */
codsp_write_sop_char(duslic_id, channel, BCR1_ADDR, 0x01);
codsp_write_sop_char(duslic_id, channel, BCR2_ADDR, 0x41);
codsp_write_sop_char(duslic_id, channel, BCR3_ADDR, 0x43);
codsp_write_sop_char(duslic_id, channel, BCR4_ADDR, 0x00);
codsp_write_sop_char(duslic_id, channel, BCR5_ADDR, 0x00);
codsp_write_sop_char(duslic_id, channel, DSCR_ADDR, 0x04); /* PG */
program_dtmf_params(duslic_id, channel);
codsp_write_sop_char(duslic_id, channel, LMCR3_ADDR, 0x40); /* RingTRip_SEL */
data_up_persist_time(duslic_id, channel, 4);
codsp_write_sop_char(duslic_id, channel, MASK_ADDR, 0xFF); /* All interrupts masked */
codsp_set_slic(duslic_id, channel, SS_ACTIVE_HIGH);
}
static int codsp_chip_full_reset(int duslic_id)
{
int i, cnt;
int intreg[NUM_CHANNELS];
unsigned char pcm_resync;
unsigned char revision;
codsp_reset_chip(duslic_id);
udelay(2000);
for (i = 0; i < NUM_CHANNELS; i++)
intreg[i] = codsp_read_sop_int(duslic_id, i, INTREG1_ADDR);
udelay(1500);
if (_PORTC_GET(com_hook_mask_tab[duslic_id]) == 0) {
printf("_HOOK(%d) stayed low\n", duslic_id);
return -1;
}
for (pcm_resync = 0, i = 0; i < NUM_CHANNELS; i++) {
if (intreg[i] & CODSP_INTREG_SYNC_FAIL)
pcm_resync |= 1 << i;
}
for (cnt = 0; cnt < 5 && pcm_resync; cnt++) {
for (i = 0; i < NUM_CHANNELS; i++)
codsp_resync_channel(duslic_id, i);
udelay(2000);
pcm_resync = 0;
for (i = 0; i < NUM_CHANNELS; i++) {
if (codsp_read_sop_int(duslic_id, i, INTREG1_ADDR) & CODSP_INTREG_SYNC_FAIL)
pcm_resync |= 1 << i;
}
}
if (cnt == 5) {
printf("PCM_Resync(%u) not completed\n", duslic_id);
return -2;
}
revision = codsp_read_sop_char(duslic_id, 0, REVISION_ADDR);
printf("DuSLIC#%d hardware version %d.%d\r\n", duslic_id, (revision & 0xF0) >> 4, revision & 0x0F);
codsp_write_sop_char(duslic_id, 0, XCR_ADDR, 0x80); /* EDSP_EN */
for (i = 0; i < NUM_CHANNELS; i++) {
codsp_write_sop_char(duslic_id, i, PCMC1_ADDR, 0x01);
codsp_channel_full_reset(duslic_id, i);
}
return 0;
}
int slic_self_test(int duslic_mask)
{
int slic;
int i;
int r;
long vdd, v_oh_H, v_oh_L, ring_mean_v, ring_rms_v;
const char *err_txt[] = { "VDD", "V_OH_H", "V_OH_L", "V_RING_MEAN", "V_RING_RMS" };
int error = 0;
for (slic = 0; slic < MAX_SLICS; slic++) { /* voltages self test */
if (duslic_mask & (1 << (slic >> 1))) {
r = measure_on_hook_voltages(slic, &vdd,
&v_oh_H, &v_oh_L, &ring_mean_v, &ring_rms_v);
printf("SLIC %u measured voltages (x100):\n\t"
"VDD = %ld\tV_OH_H = %ld\tV_OH_L = %ld\tV_RING_MEAN = %ld\tV_RING_RMS = %ld\n",
slic, vdd, v_oh_H, v_oh_L, ring_mean_v, ring_rms_v);
if (r != 0)
error |= 1 << slic;
for (i = 0; i < 5; i++)
if (r & (1 << i))
printf("\t%s out of range\n", err_txt[i]);
}
}
for (slic = 0; slic < MAX_SLICS; slic++) { /* voice path self test */
if (duslic_mask & (1 << (slic >> 1))) {
printf("SLIC %u VOICE PATH...CHECKING", slic);
printf("\rSLIC %u VOICE PATH...%s\n", slic,
(r = test_dtmf(slic)) != 0 ? "FAILED " : "PASSED ");
if (r != 0)
error |= 1 << slic;
}
}
return(error);
}
#if defined(CONFIG_NETTA_ISDN)
#define SPIENS1 (1 << (31 - 15))
#define SPIENS2 (1 << (31 - 19))
static const int spiens_mask_tab[2] = { SPIENS1, SPIENS2 };
int s_initialized = 0;
static inline unsigned int s_transfer_internal(int s_id, unsigned int address, unsigned int value)
{
unsigned int rx, v;
_PORTB_SET(spiens_mask_tab[s_id], 0);
rx = __SPI_Transfer(address);
switch (address & 0xF0) {
case 0x60: /* write byte register */
case 0x70:
rx = __SPI_Transfer(value);
break;
case 0xE0: /* read R6 register */
v = __SPI_Transfer(0);
rx = (rx << 8) | v;
break;
case 0xF0: /* read byte register */
rx = __SPI_Transfer(0);
break;
}
_PORTB_SET(spiens_mask_tab[s_id], 1);
return rx;
}
static void s_write_BR(int s_id, unsigned int regno, unsigned int val)
{
unsigned int address;
unsigned int v;
address = 0x70 | (regno & 15);
val &= 0xff;
v = s_transfer_internal(s_id, address, val);
}
static void s_write_OR(int s_id, unsigned int regno, unsigned int val)
{
unsigned int address;
unsigned int v;
address = 0x70 | (regno & 15);
val &= 0xff;
v = s_transfer_internal(s_id, address, val);
}
static void s_write_NR(int s_id, unsigned int regno, unsigned int val)
{
unsigned int address;
unsigned int v;
address = (regno & 7) << 4;
val &= 0xf;
v = s_transfer_internal(s_id, address | val, 0x00);
}
#define BR7_IFR 0x08 /* IDL2 free run */
#define BR7_ICSLSB 0x04 /* IDL2 clock speed LSB */
#define BR15_OVRL_REG_EN 0x80
#define OR7_D3VR 0x80 /* disable 3V regulator */
#define OR8_TEME 0x10 /* TE mode enable */
#define OR8_MME 0x08 /* master mode enable */
void s_initialize(void)
{
int s_id;
for (s_id = 0; s_id < 2; s_id++) {
s_write_BR(s_id, 7, BR7_IFR | BR7_ICSLSB);
s_write_BR(s_id, 15, BR15_OVRL_REG_EN);
s_write_OR(s_id, 8, OR8_TEME | OR8_MME);
s_write_OR(s_id, 7, OR7_D3VR);
s_write_OR(s_id, 6, 0);
s_write_BR(s_id, 15, 0);
s_write_NR(s_id, 3, 0);
}
}
#endif
int board_post_codec(int flags)
{
int j;
int r;
int duslic_mask;
printf("board_post_dsp\n");
#if defined(CONFIG_NETTA_ISDN)
if (s_initialized == 0) {
s_initialize();
s_initialized = 1;
printf("s_initialized\n");
udelay(20000);
}
#endif
duslic_mask = 0;
for (j = 0; j < MAX_DUSLIC; j++) {
if (codsp_chip_full_reset(j) < 0)
printf("Error initializing DuSLIC#%d\n", j);
else
duslic_mask |= 1 << j;
}
if (duslic_mask != 0) {
printf("Testing SLICs...\n");
r = slic_self_test(duslic_mask);
for (j = 0; j < MAX_SLICS; j++) {
if (duslic_mask & (1 << (j >> 1)))
printf("SLIC %u...%s\n", j, r & (1 << j) ? "FAULTY" : "OK");
}
}
printf("DuSLIC self test finished\n");
return 0; /* return -1 on error */
}