upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mtd/nand/vf610_nfc.c

774 lines
20 KiB

/*
* Copyright 2009-2015 Freescale Semiconductor, Inc. and others
*
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
* Ported to U-Boot by Stefan Agner
* Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
* Jason ported to M54418TWR and MVFA5.
* Authors: Stefan Agner <stefan.agner@toradex.com>
* Bill Pringlemeir <bpringlemeir@nbsps.com>
* Shaohui Xie <b21989@freescale.com>
* Jason Jin <Jason.jin@freescale.com>
*
* Based on original driver mpc5121_nfc.c.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Limitations:
* - Untested on MPC5125 and M54418.
* - DMA and pipelining not used.
* - 2K pages or less.
* - HW ECC: Only 2K page with 64+ OOB.
* - HW ECC: Only 24 and 32-bit error correction implemented.
*/
#include <common.h>
#include <malloc.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <nand.h>
#include <errno.h>
#include <asm/io.h>
/* Register Offsets */
#define NFC_FLASH_CMD1 0x3F00
#define NFC_FLASH_CMD2 0x3F04
#define NFC_COL_ADDR 0x3F08
#define NFC_ROW_ADDR 0x3F0c
#define NFC_ROW_ADDR_INC 0x3F14
#define NFC_FLASH_STATUS1 0x3F18
#define NFC_FLASH_STATUS2 0x3F1c
#define NFC_CACHE_SWAP 0x3F28
#define NFC_SECTOR_SIZE 0x3F2c
#define NFC_FLASH_CONFIG 0x3F30
#define NFC_IRQ_STATUS 0x3F38
/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
#define PAGE_2K 0x0800
#define OOB_64 0x0040
#define OOB_MAX 0x0100
/*
* NFC_CMD2[CODE] values. See section:
* - 31.4.7 Flash Command Code Description, Vybrid manual
* - 23.8.6 Flash Command Sequencer, MPC5125 manual
*
* Briefly these are bitmasks of controller cycles.
*/
#define READ_PAGE_CMD_CODE 0x7EE0
#define READ_ONFI_PARAM_CMD_CODE 0x4860
#define PROGRAM_PAGE_CMD_CODE 0x7FC0
#define ERASE_CMD_CODE 0x4EC0
#define READ_ID_CMD_CODE 0x4804
#define RESET_CMD_CODE 0x4040
#define STATUS_READ_CMD_CODE 0x4068
/* NFC ECC mode define */
#define ECC_BYPASS 0
#define ECC_45_BYTE 6
#define ECC_60_BYTE 7
/*** Register Mask and bit definitions */
/* NFC_FLASH_CMD1 Field */
#define CMD_BYTE2_MASK 0xFF000000
#define CMD_BYTE2_SHIFT 24
/* NFC_FLASH_CM2 Field */
#define CMD_BYTE1_MASK 0xFF000000
#define CMD_BYTE1_SHIFT 24
#define CMD_CODE_MASK 0x00FFFF00
#define CMD_CODE_SHIFT 8
#define BUFNO_MASK 0x00000006
#define BUFNO_SHIFT 1
#define START_BIT (1<<0)
/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK 0x0000FFFF
#define COL_ADDR_SHIFT 0
/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK 0x00FFFFFF
#define ROW_ADDR_SHIFT 0
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
#define ROW_ADDR_CHIP_SEL_SHIFT 24
/* NFC_FLASH_STATUS2 Field */
#define STATUS_BYTE1_MASK 0x000000FF
/* NFC_FLASH_CONFIG Field */
#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
#define CONFIG_ECC_SRAM_REQ_BIT (1<<21)
#define CONFIG_DMA_REQ_BIT (1<<20)
#define CONFIG_ECC_MODE_MASK 0x000E0000
#define CONFIG_ECC_MODE_SHIFT 17
#define CONFIG_FAST_FLASH_BIT (1<<16)
#define CONFIG_16BIT (1<<7)
#define CONFIG_BOOT_MODE_BIT (1<<6)
#define CONFIG_ADDR_AUTO_INCR_BIT (1<<5)
#define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4)
#define CONFIG_PAGE_CNT_MASK 0xF
#define CONFIG_PAGE_CNT_SHIFT 0
/* NFC_IRQ_STATUS Field */
#define IDLE_IRQ_BIT (1<<29)
#define IDLE_EN_BIT (1<<20)
#define CMD_DONE_CLEAR_BIT (1<<18)
#define IDLE_CLEAR_BIT (1<<17)
#define NFC_TIMEOUT (1000)
/*
* ECC status - seems to consume 8 bytes (double word). The documented
* status byte is located in the lowest byte of the second word (which is
* the 4th or 7th byte depending on endianness).
* Calculate an offset to store the ECC status at the end of the buffer.
*/
#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
#define ECC_STATUS 0x4
#define ECC_STATUS_MASK 0x80
#define ECC_STATUS_ERR_COUNT 0x3F
enum vf610_nfc_alt_buf {
ALT_BUF_DATA = 0,
ALT_BUF_ID = 1,
ALT_BUF_STAT = 2,
ALT_BUF_ONFI = 3,
};
struct vf610_nfc {
struct mtd_info *mtd;
struct nand_chip chip;
void __iomem *regs;
uint buf_offset;
int write_sz;
/* Status and ID are in alternate locations. */
enum vf610_nfc_alt_buf alt_buf;
};
#define mtd_to_nfc(_mtd) \
(struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
#define ECC_HW_MODE ECC_45_BYTE
static struct nand_ecclayout vf610_nfc_ecc = {
.eccbytes = 45,
.eccpos = {19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 2,
.length = 17} }
};
#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
#define ECC_HW_MODE ECC_60_BYTE
static struct nand_ecclayout vf610_nfc_ecc = {
.eccbytes = 60,
.eccpos = { 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63 },
.oobfree = {
{.offset = 2,
.length = 2} }
};
#endif
static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
return readl(nfc->regs + reg);
}
static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
writel(val, nfc->regs + reg);
}
static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
{
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
}
static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
{
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
}
static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
u32 mask, u32 shift, u32 val)
{
vf610_nfc_write(mtd, reg,
(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
}
static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
{
/*
* Use this accessor for the internal SRAM buffers. On the ARM
* Freescale Vybrid SoC it's known that the driver can treat
* the SRAM buffer as if it's memory. Other platform might need
* to treat the buffers differently.
*
* For the time being, use memcpy
*/
memcpy(dst, src, n);
}
/* Clear flags for upcoming command */
static inline void vf610_nfc_clear_status(void __iomem *regbase)
{
void __iomem *reg = regbase + NFC_IRQ_STATUS;
u32 tmp = __raw_readl(reg);
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
__raw_writel(tmp, reg);
}
/* Wait for complete operation */
static void vf610_nfc_done(struct mtd_info *mtd)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
uint start;
/*
* Barrier is needed after this write. This write need
* to be done before reading the next register the first
* time.
* vf610_nfc_set implicates such a barrier by using writel
* to write to the register.
*/
vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
start = get_timer(0);
while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
if (get_timer(start) > NFC_TIMEOUT) {
printf("Timeout while waiting for IDLE.\n");
return;
}
}
vf610_nfc_clear_status(nfc->regs);
}
static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
{
u32 flash_id;
if (col < 4) {
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
flash_id >>= (3 - col) * 8;
} else {
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
flash_id >>= 24;
}
return flash_id & 0xff;
}
static u8 vf610_nfc_get_status(struct mtd_info *mtd)
{
return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
}
/* Single command */
static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
u32 cmd_code)
{
void __iomem *reg = regbase + NFC_FLASH_CMD2;
u32 tmp;
vf610_nfc_clear_status(regbase);
tmp = __raw_readl(reg);
tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
tmp |= cmd_code << CMD_CODE_SHIFT;
__raw_writel(tmp, reg);
}
/* Two commands */
static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
u32 cmd_byte2, u32 cmd_code)
{
void __iomem *reg = regbase + NFC_FLASH_CMD1;
u32 tmp;
vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
tmp = __raw_readl(reg);
tmp &= ~CMD_BYTE2_MASK;
tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
__raw_writel(tmp, reg);
}
static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
{
if (column != -1) {
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
if (nfc->chip.options & NAND_BUSWIDTH_16)
column = column / 2;
vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
COL_ADDR_SHIFT, column);
}
if (page != -1)
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
ROW_ADDR_SHIFT, page);
}
static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
{
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ecc_mode);
}
static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
{
__raw_writel(size, regbase + NFC_SECTOR_SIZE);
}
/* Send command to NAND chip */
static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
int column, int page)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
nfc->buf_offset = max(column, 0);
nfc->alt_buf = ALT_BUF_DATA;
switch (command) {
case NAND_CMD_SEQIN:
/* Use valid column/page from preread... */
vf610_nfc_addr_cycle(mtd, column, page);
nfc->buf_offset = 0;
/*
* SEQIN => data => PAGEPROG sequence is done by the controller
* hence we do not need to issue the command here...
*/
return;
case NAND_CMD_PAGEPROG:
trfr_sz += nfc->write_sz;
vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
command, PROGRAM_PAGE_CMD_CODE);
break;
case NAND_CMD_RESET:
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
break;
case NAND_CMD_READOOB:
trfr_sz += mtd->oobsize;
column = mtd->writesize;
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
vf610_nfc_addr_cycle(mtd, column, page);
vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
break;
case NAND_CMD_READ0:
trfr_sz += mtd->writesize + mtd->oobsize;
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
vf610_nfc_addr_cycle(mtd, column, page);
break;
case NAND_CMD_PARAM:
nfc->alt_buf = ALT_BUF_ONFI;
trfr_sz = 3 * sizeof(struct nand_onfi_params);
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM,
READ_ONFI_PARAM_CMD_CODE);
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
ROW_ADDR_SHIFT, column);
vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
break;
case NAND_CMD_ERASE1:
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_commands(nfc->regs, command,
NAND_CMD_ERASE2, ERASE_CMD_CODE);
vf610_nfc_addr_cycle(mtd, column, page);
break;
case NAND_CMD_READID:
nfc->alt_buf = ALT_BUF_ID;
nfc->buf_offset = 0;
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
ROW_ADDR_SHIFT, column);
break;
case NAND_CMD_STATUS:
nfc->alt_buf = ALT_BUF_STAT;
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
break;
default:
return;
}
vf610_nfc_done(mtd);
nfc->write_sz = 0;
}
/* Read data from NFC buffers */
static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
uint c = nfc->buf_offset;
/* Alternate buffers are only supported through read_byte */
if (nfc->alt_buf)
return;
vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
nfc->buf_offset += len;
}
/* Write data to NFC buffers */
static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
uint c = nfc->buf_offset;
uint l;
l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
nfc->write_sz += l;
nfc->buf_offset += l;
}
/* Read byte from NFC buffers */
static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
u8 tmp;
uint c = nfc->buf_offset;
switch (nfc->alt_buf) {
case ALT_BUF_ID:
tmp = vf610_nfc_get_id(mtd, c);
break;
case ALT_BUF_STAT:
tmp = vf610_nfc_get_status(mtd);
break;
#ifdef __LITTLE_ENDIAN
case ALT_BUF_ONFI:
/* Reverse byte since the controller uses big endianness */
c = nfc->buf_offset ^ 0x3;
/* fall-through */
#endif
default:
tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
break;
}
nfc->buf_offset++;
return tmp;
}
/* Read word from NFC buffers */
static u16 vf610_nfc_read_word(struct mtd_info *mtd)
{
u16 tmp;
vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
return tmp;
}
/* If not provided, upper layers apply a fixed delay. */
static int vf610_nfc_dev_ready(struct mtd_info *mtd)
{
/* NFC handles R/B internally; always ready. */
return 1;
}
/*
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
*/
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
{
#ifdef CONFIG_VF610
u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
if (chip >= 0) {
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT;
}
vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
#endif
}
/* Count the number of 0's in buff upto max_bits */
static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
{
uint32_t *buff32 = (uint32_t *)buff;
int k, written_bits = 0;
for (k = 0; k < (size / 4); k++) {
written_bits += hweight32(~buff32[k]);
if (written_bits > max_bits)
break;
}
return written_bits;
}
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *oob, int page)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
u8 ecc_status;
u8 ecc_count;
int flips;
int flips_threshold = nfc->chip.ecc.strength / 2;
ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff;
ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
if (!(ecc_status & ECC_STATUS_MASK))
return ecc_count;
/* Read OOB without ECC unit enabled */
vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
/*
* On an erased page, bit count (including OOB) should be zero or
* at least less then half of the ECC strength.
*/
flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold);
flips += count_written_bits(oob, mtd->oobsize, flips_threshold);
if (unlikely(flips > flips_threshold))
return -EINVAL;
/* Erased page. */
memset(dat, 0xff, nfc->chip.ecc.size);
memset(oob, 0xff, mtd->oobsize);
return flips;
}
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int eccsize = chip->ecc.size;
int stat;
vf610_nfc_read_buf(mtd, buf, eccsize);
if (oob_required)
vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
if (stat < 0) {
mtd->ecc_stats.failed++;
return 0;
} else {
mtd->ecc_stats.corrected += stat;
return stat;
}
}
/*
* ECC will be calculated automatically
*/
static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
vf610_nfc_write_buf(mtd, buf, mtd->writesize);
if (oob_required)
vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Always write whole page including OOB due to HW ECC */
nfc->write_sz = mtd->writesize + mtd->oobsize;
return 0;
}
struct vf610_nfc_config {
int hardware_ecc;
int width;
int flash_bbt;
};
static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
{
struct mtd_info *mtd = &nand_info[devnum];
struct nand_chip *chip;
struct vf610_nfc *nfc;
int err = 0;
struct vf610_nfc_config cfg = {
.hardware_ecc = 1,
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
.width = 16,
#else
.width = 8,
#endif
.flash_bbt = 1,
};
nfc = malloc(sizeof(*nfc));
if (!nfc) {
printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
return -ENOMEM;
}
chip = &nfc->chip;
nfc->regs = addr;
mtd->priv = chip;
chip->priv = nfc;
if (cfg.width == 16)
chip->options |= NAND_BUSWIDTH_16;
chip->dev_ready = vf610_nfc_dev_ready;
chip->cmdfunc = vf610_nfc_command;
chip->read_byte = vf610_nfc_read_byte;
chip->read_word = vf610_nfc_read_word;
chip->read_buf = vf610_nfc_read_buf;
chip->write_buf = vf610_nfc_write_buf;
chip->select_chip = vf610_nfc_select_chip;
chip->options |= NAND_NO_SUBPAGE_WRITE;
chip->ecc.size = PAGE_2K;
/* Set configuration register. */
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
/* Disable virtual pages, only one elementary transfer unit */
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
CONFIG_PAGE_CNT_SHIFT, 1);
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
err = -ENXIO;
goto error;
}
if (cfg.width == 16)
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
/* Bad block options. */
if (cfg.flash_bbt)
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB |
NAND_BBT_CREATE;
/* Single buffer only, max 256 OOB minus ECC status */
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
dev_err(nfc->dev, "Unsupported flash page size\n");
err = -ENXIO;
goto error;
}
if (cfg.hardware_ecc) {
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
err = -ENXIO;
goto error;
}
if (chip->ecc.size != mtd->writesize) {
dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size);
dev_err(nfc->dev, "Step size needs to be page size\n");
err = -ENXIO;
goto error;
}
/* Current HW ECC layouts only use 64 bytes of OOB */
if (mtd->oobsize > 64)
mtd->oobsize = 64;
/* propagate ecc.layout to mtd_info */
mtd->ecclayout = chip->ecc.layout;
chip->ecc.read_page = vf610_nfc_read_page;
chip->ecc.write_page = vf610_nfc_write_page;
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = PAGE_2K;
chip->ecc.layout = &vf610_nfc_ecc;
#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
chip->ecc.strength = 24;
chip->ecc.bytes = 45;
#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
chip->ecc.strength = 32;
chip->ecc.bytes = 60;
#endif
/* Set ECC_STATUS offset */
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_SRAM_ADDR_MASK,
CONFIG_ECC_SRAM_ADDR_SHIFT,
ECC_SRAM_ADDR >> 3);
/* Enable ECC status in SRAM */
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
}
/* second phase scan */
err = nand_scan_tail(mtd);
if (err)
return err;
err = nand_register(devnum);
if (err)
return err;
return 0;
error:
return err;
}
void board_nand_init(void)
{
int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
if (err)
printf("VF610 NAND init failed (err %d)\n", err);
}