upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/powerpc/cpu/mpc8xxx/law.c

334 lines
7.9 KiB

/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <linux/compiler.h>
#include <asm/fsl_law.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
#define FSL_HW_NUM_LAWS CONFIG_SYS_FSL_NUM_LAWS
#ifdef CONFIG_FSL_CORENET
#define LAW_BASE (CONFIG_SYS_FSL_CORENET_CCM_ADDR)
#define LAWAR_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawar)
#define LAWBARH_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarh)
#define LAWBARL_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarl)
#define LAWBAR_SHIFT 0
#else
#define LAW_BASE (CONFIG_SYS_IMMR + 0xc08)
#define LAWAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x + 2)
#define LAWBAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x)
#define LAWBAR_SHIFT 12
#endif
static inline phys_addr_t get_law_base_addr(int idx)
{
#ifdef CONFIG_FSL_CORENET
return (phys_addr_t)
((u64)in_be32(LAWBARH_ADDR(idx)) << 32) |
in_be32(LAWBARL_ADDR(idx));
#else
return (phys_addr_t)in_be32(LAWBAR_ADDR(idx)) << LAWBAR_SHIFT;
#endif
}
static inline void set_law_base_addr(int idx, phys_addr_t addr)
{
#ifdef CONFIG_FSL_CORENET
out_be32(LAWBARL_ADDR(idx), addr & 0xffffffff);
out_be32(LAWBARH_ADDR(idx), (u64)addr >> 32);
#else
out_be32(LAWBAR_ADDR(idx), addr >> LAWBAR_SHIFT);
#endif
}
void set_law(u8 idx, phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
{
gd->arch.used_laws |= (1 << idx);
out_be32(LAWAR_ADDR(idx), 0);
set_law_base_addr(idx, addr);
out_be32(LAWAR_ADDR(idx), LAW_EN | ((u32)id << 20) | (u32)sz);
/* Read back so that we sync the writes */
in_be32(LAWAR_ADDR(idx));
}
void disable_law(u8 idx)
{
gd->arch.used_laws &= ~(1 << idx);
out_be32(LAWAR_ADDR(idx), 0);
set_law_base_addr(idx, 0);
/* Read back so that we sync the writes */
in_be32(LAWAR_ADDR(idx));
return;
}
#if !defined(CONFIG_NAND_SPL) && !defined(CONFIG_SPL_BUILD)
static int get_law_entry(u8 i, struct law_entry *e)
{
u32 lawar;
lawar = in_be32(LAWAR_ADDR(i));
if (!(lawar & LAW_EN))
return 0;
e->addr = get_law_base_addr(i);
e->size = lawar & 0x3f;
e->trgt_id = (lawar >> 20) & 0xff;
return 1;
}
#endif
int set_next_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
{
u32 idx = ffz(gd->arch.used_laws);
if (idx >= FSL_HW_NUM_LAWS)
return -1;
set_law(idx, addr, sz, id);
return idx;
}
#if !defined(CONFIG_NAND_SPL) && !defined(CONFIG_SPL_BUILD)
int set_last_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
{
u32 idx;
/* we have no LAWs free */
if (gd->arch.used_laws == -1)
return -1;
/* grab the last free law */
idx = __ilog2(~(gd->arch.used_laws));
if (idx >= FSL_HW_NUM_LAWS)
return -1;
set_law(idx, addr, sz, id);
return idx;
}
struct law_entry find_law(phys_addr_t addr)
{
struct law_entry entry;
int i;
entry.index = -1;
entry.addr = 0;
entry.size = 0;
entry.trgt_id = 0;
for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
u64 upper;
if (!get_law_entry(i, &entry))
continue;
upper = entry.addr + (2ull << entry.size);
if ((addr >= entry.addr) && (addr < upper)) {
entry.index = i;
break;
}
}
return entry;
}
void print_laws(void)
{
int i;
u32 lawar;
printf("\nLocal Access Window Configuration\n");
for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
lawar = in_be32(LAWAR_ADDR(i));
#ifdef CONFIG_FSL_CORENET
printf("LAWBARH%02d: 0x%08x LAWBARL%02d: 0x%08x",
i, in_be32(LAWBARH_ADDR(i)),
i, in_be32(LAWBARL_ADDR(i)));
#else
printf("LAWBAR%02d: 0x%08x", i, in_be32(LAWBAR_ADDR(i)));
#endif
printf(" LAWAR%02d: 0x%08x\n", i, lawar);
printf("\t(EN: %d TGT: 0x%02x SIZE: ",
(lawar & LAW_EN) ? 1 : 0, (lawar >> 20) & 0xff);
print_size(lawar_size(lawar), ")\n");
}
return;
}
/* use up to 2 LAWs for DDR, used the last available LAWs */
int set_ddr_laws(u64 start, u64 sz, enum law_trgt_if id)
{
u64 start_align, law_sz;
int law_sz_enc;
if (start == 0)
start_align = 1ull << (LAW_SIZE_32G + 1);
else
start_align = 1ull << (ffs64(start) - 1);
law_sz = min(start_align, sz);
law_sz_enc = __ilog2_u64(law_sz) - 1;
if (set_last_law(start, law_sz_enc, id) < 0)
return -1;
/* recalculate size based on what was actually covered by the law */
law_sz = 1ull << __ilog2_u64(law_sz);
/* do we still have anything to map */
sz = sz - law_sz;
if (sz) {
start += law_sz;
start_align = 1ull << (ffs64(start) - 1);
law_sz = min(start_align, sz);
law_sz_enc = __ilog2_u64(law_sz) - 1;
if (set_last_law(start, law_sz_enc, id) < 0)
return -1;
} else {
return 0;
}
/* do we still have anything to map */
sz = sz - law_sz;
if (sz)
return 1;
return 0;
}
#endif /* not SPL */
void init_laws(void)
{
int i;
#if FSL_HW_NUM_LAWS < 32
gd->arch.used_laws = ~((1 << FSL_HW_NUM_LAWS) - 1);
#elif FSL_HW_NUM_LAWS == 32
gd->arch.used_laws = 0;
#else
#error FSL_HW_NUM_LAWS can not be greater than 32 w/o code changes
#endif
/*
* Any LAWs that were set up before we booted assume they are meant to
* be around and mark them used.
*/
for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
u32 lawar = in_be32(LAWAR_ADDR(i));
if (lawar & LAW_EN)
gd->arch.used_laws |= (1 << i);
}
#if (defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL)) || \
(defined(CONFIG_SPL) && !defined(CONFIG_SPL_BUILD))
/*
* in SPL boot we've already parsed the law_table and setup those LAWs
* so don't do it again.
*/
return;
#endif
for (i = 0; i < num_law_entries; i++) {
if (law_table[i].index == -1)
set_next_law(law_table[i].addr, law_table[i].size,
law_table[i].trgt_id);
else
set_law(law_table[i].index, law_table[i].addr,
law_table[i].size, law_table[i].trgt_id);
}
#ifdef CONFIG_SRIO_PCIE_BOOT_SLAVE
/* check RCW to get which port is used for boot */
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
u32 bootloc = in_be32(&gur->rcwsr[6]);
/*
* in SRIO or PCIE boot we need to set specail LAWs for
* SRIO or PCIE interfaces.
*/
switch ((bootloc & FSL_CORENET_RCWSR6_BOOT_LOC) >> 23) {
case 0x0: /* boot from PCIE1 */
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_PCIE_1);
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_PCIE_1);
break;
case 0x1: /* boot from PCIE2 */
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_PCIE_2);
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_PCIE_2);
break;
case 0x2: /* boot from PCIE3 */
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_PCIE_3);
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_PCIE_3);
break;
case 0x8: /* boot from SRIO1 */
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_1);
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_1);
break;
case 0x9: /* boot from SRIO2 */
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_2);
set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_2);
break;
default:
break;
}
#endif
return ;
}