upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/samsung/odroid/odroid.c

514 lines
14 KiB

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014 Samsung Electronics
* Przemyslaw Marczak <p.marczak@samsung.com>
*/
#include <common.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/power.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/gpio.h>
#include <asm/arch/cpu.h>
#include <dm.h>
#include <power/pmic.h>
#include <power/regulator.h>
#include <power/max77686_pmic.h>
#include <errno.h>
#include <mmc.h>
#include <usb.h>
#include <usb/dwc2_udc.h>
#include <samsung/misc.h>
#include "setup.h"
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_BOARD_TYPES
/* Odroid board types */
enum {
ODROID_TYPE_U3,
ODROID_TYPE_X2,
ODROID_TYPES,
};
void set_board_type(void)
{
/* Set GPA1 pin 1 to HI - enable XCL205 output */
writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
/* Set GPC1 pin 2 to IN - check XCL205 output state */
writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
/* XCL205 - needs some latch time */
sdelay(200000);
/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
gd->board_type = ODROID_TYPE_X2;
else
gd->board_type = ODROID_TYPE_U3;
}
const char *get_board_type(void)
{
const char *board_type[] = {"u3", "x2"};
return board_type[gd->board_type];
}
#endif
#ifdef CONFIG_SET_DFU_ALT_INFO
char *get_dfu_alt_system(char *interface, char *devstr)
{
return env_get("dfu_alt_system");
}
char *get_dfu_alt_boot(char *interface, char *devstr)
{
struct mmc *mmc;
char *alt_boot;
int dev_num;
dev_num = simple_strtoul(devstr, NULL, 10);
mmc = find_mmc_device(dev_num);
if (!mmc)
return NULL;
if (mmc_init(mmc))
return NULL;
alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
CONFIG_DFU_ALT_BOOT_EMMC;
return alt_boot;
}
#endif
static void board_clock_init(void)
{
unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
samsung_get_base_clock();
/*
* CMU_CPU clocks src to MPLL
* Bit values: 0 ; 1
* MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
* MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
* MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
* MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
*/
clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
MUX_MPLL_USER_SEL_C(1);
clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
continue;
/* Set APLL to 1000MHz */
clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
/* Wait for PLL to be locked */
while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
continue;
/* Set CMU_CPU clocks src to APLL */
set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
MUX_MPLL_USER_SEL_C(1);
clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
continue;
set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
APLL_RATIO(0) | CORE2_RATIO(0);
/*
* Set dividers for MOUTcore = 1000 MHz
* coreout = MOUT / (ratio + 1) = 1000 MHz (0)
* corem0 = armclk / (ratio + 1) = 333 MHz (2)
* corem1 = armclk / (ratio + 1) = 166 MHz (5)
* periph = armclk / (ratio + 1) = 1000 MHz (0)
* atbout = MOUT / (ratio + 1) = 200 MHz (4)
* pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
* sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
* core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
*/
clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
APLL_RATIO(7) | CORE2_RATIO(7);
clrsetbits_le32(&clk->div_cpu0, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
continue;
/*
* For MOUThpm = 1000 MHz (MOUTapll)
* doutcopy = MOUThpm / (ratio + 1) = 200 (4)
* sclkhpm = doutcopy / (ratio + 1) = 200 (4)
* cores_out = armclk / (ratio + 1) = 200 (4)
*/
clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
clrsetbits_le32(&clk->div_cpu1, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
continue;
/*
* Set CMU_DMC clocks src to APLL
* Bit values: 0 ; 1
* MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL
* MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL
* MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL
* MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT
* MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
* MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
* MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
* MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1
*/
clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
continue;
/* Set MPLL to 800MHz */
set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
/* Wait for PLL to be locked */
while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
continue;
/* Switch back CMU_DMC mux */
set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
continue;
/* CLK_DIV_DMC0 */
clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
/*
* For:
* MOUTdmc = 800 MHz
* MOUTdphy = 800 MHz
*
* aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
* pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
* sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
* sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
* aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
* aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
*/
set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
clrsetbits_le32(&clk->div_dmc0, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
continue;
/* CLK_DIV_DMC1 */
clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
/*
* For:
* MOUTg2d = 800 MHz
* MOUTc2c = 800 Mhz
* MOUTpwi = 108 MHz
*
* sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
* sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
* aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
* sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
*/
set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
clrsetbits_le32(&clk->div_dmc1, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
continue;
/* CLK_SRC_PERIL0 */
clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
UART3_SEL(15) | UART4_SEL(15);
/*
* Set CLK_SRC_PERIL0 clocks src to MPLL
* src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
* 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
* 8(SCLK_VPLL)
*
* Set all to SCLK_MPLL_USER_T
*/
set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
UART4_SEL(6);
clrsetbits_le32(&clk->src_peril0, clr, set);
/* CLK_DIV_PERIL0 */
clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
UART3_RATIO(15) | UART4_RATIO(15);
/*
* For MOUTuart0-4: 800MHz
*
* SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
*/
set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
UART3_RATIO(7) | UART4_RATIO(7);
clrsetbits_le32(&clk->div_peril0, clr, set);
while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
continue;
/* CLK_DIV_FSYS1 */
clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
MMC1_PRE_RATIO(255);
/*
* For MOUTmmc0-3 = 800 MHz (MPLL)
*
* DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
* sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
* DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
* sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
*/
set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
MMC1_PRE_RATIO(1);
clrsetbits_le32(&clk->div_fsys1, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
continue;
/* CLK_DIV_FSYS2 */
clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
MMC3_PRE_RATIO(255);
/*
* For MOUTmmc0-3 = 800 MHz (MPLL)
*
* DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
* sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
* DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
* sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
*/
set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
MMC3_PRE_RATIO(1);
clrsetbits_le32(&clk->div_fsys2, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
continue;
/* CLK_DIV_FSYS3 */
clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
/*
* For MOUTmmc4 = 800 MHz (MPLL)
*
* DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
* sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
*/
set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
clrsetbits_le32(&clk->div_fsys3, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
continue;
return;
}
static void board_gpio_init(void)
{
/* eMMC Reset Pin */
gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
/* Enable FAN (Odroid U3) */
gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
/* OTG Vbus output (Odroid U3+) */
gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
/* OTG INT (Odroid U3+) */
gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
gpio_direction_input(EXYNOS4X12_GPIO_X31);
/* Blue LED (Odroid X2/U2/U3) */
gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
#ifdef CONFIG_CMD_USB
/* USB3503A Reference frequency */
gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
/* USB3503A Connect */
gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
/* USB3503A Reset */
gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
#endif
}
int exynos_early_init_f(void)
{
board_clock_init();
return 0;
}
int exynos_init(void)
{
board_gpio_init();
return 0;
}
int exynos_power_init(void)
{
const char *mmc_regulators[] = {
"VDDQ_EMMC_1.8V",
"VDDQ_EMMC_2.8V",
"TFLASH_2.8V",
NULL,
};
if (regulator_list_autoset(mmc_regulators, NULL, true))
pr_err("Unable to init all mmc regulators\n");
return 0;
}
#ifdef CONFIG_USB_GADGET
static int s5pc210_phy_control(int on)
{
struct udevice *dev;
int ret;
ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
if (ret) {
pr_err("Regulator get error: %d\n", ret);
return ret;
}
if (on)
return regulator_set_mode(dev, OPMODE_ON);
else
return regulator_set_mode(dev, OPMODE_LPM);
}
struct dwc2_plat_otg_data s5pc210_otg_data = {
.phy_control = s5pc210_phy_control,
.regs_phy = EXYNOS4X12_USBPHY_BASE,
.regs_otg = EXYNOS4X12_USBOTG_BASE,
.usb_phy_ctrl = EXYNOS4X12_USBPHY_CONTROL,
.usb_flags = PHY0_SLEEP,
};
#endif
#if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
int board_usb_init(int index, enum usb_init_type init)
{
#ifdef CONFIG_CMD_USB
struct udevice *dev;
int ret;
/* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
/* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
if (gd->board_type == ODROID_TYPE_U3)
gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
else
gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
/* Disconnect, Reset, Connect */
gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
/* Power off and on BUCK8 for LAN9730 */
debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
if (ret) {
pr_err("Regulator get error: %d\n", ret);
return ret;
}
ret = regulator_set_enable(dev, true);
if (ret) {
pr_err("Regulator %s enable setting error: %d\n", dev->name, ret);
return ret;
}
ret = regulator_set_value(dev, 750000);
if (ret) {
pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
return ret;
}
ret = regulator_set_value(dev, 3300000);
if (ret) {
pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
return ret;
}
#endif
debug("USB_udc_probe\n");
return dwc2_udc_probe(&s5pc210_otg_data);
}
#endif