upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/x86/cpu/quark/hte.c

396 lines
11 KiB

/*
* Copyright (C) 2013, Intel Corporation
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
*
* Ported from Intel released Quark UEFI BIOS
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
*
* SPDX-License-Identifier: Intel
*/
#include <common.h>
#include <asm/arch/mrc.h>
#include <asm/arch/msg_port.h>
#include "mrc_util.h"
#include "hte.h"
/**
* Enable HTE to detect all possible errors for the given training parameters
* (per-bit or full byte lane).
*/
static void hte_enable_all_errors(void)
{
msg_port_write(HTE, 0x000200a2, 0xffffffff);
msg_port_write(HTE, 0x000200a3, 0x000000ff);
msg_port_write(HTE, 0x000200a4, 0x00000000);
}
/**
* Go and read the HTE register in order to find any error
*
* @return: The errors detected in the HTE status register
*/
static u32 hte_check_errors(void)
{
return msg_port_read(HTE, 0x000200a7);
}
/**
* Wait until HTE finishes
*/
static void hte_wait_for_complete(void)
{
u32 tmp;
ENTERFN();
do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0);
tmp = msg_port_read(HTE, 0x00020011);
tmp |= (1 << 9);
tmp &= ~((1 << 12) | (1 << 13));
msg_port_write(HTE, 0x00020011, tmp);
LEAVEFN();
}
/**
* Clear registers related with errors in the HTE
*/
static void hte_clear_error_regs(void)
{
u32 tmp;
/*
* Clear all HTE errors and enable error checking
* for burst and chunk.
*/
tmp = msg_port_read(HTE, 0x000200a1);
tmp |= (1 << 8);
msg_port_write(HTE, 0x000200a1, tmp);
}
/**
* Execute a basic single-cache-line memory write/read/verify test using simple
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
*
* See hte_basic_write_read() which is the external visible wrapper.
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
u8 first_run, u8 mode)
{
u32 pattern;
u32 offset;
if (first_run) {
msg_port_write(HTE, 0x00020020, 0x01b10021);
msg_port_write(HTE, 0x00020021, 0x06000000);
msg_port_write(HTE, 0x00020022, addr >> 6);
msg_port_write(HTE, 0x00020062, 0x00800015);
msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
msg_port_write(HTE, 0x00020064, 0xcccccccc);
msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
msg_port_write(HTE, 0x00020061, 0x00030008);
if (mode == WRITE_TRAIN)
pattern = 0xc33c0000;
else /* READ_TRAIN */
pattern = 0xaa5555aa;
for (offset = 0x80; offset <= 0x8f; offset++)
msg_port_write(HTE, offset, pattern);
}
msg_port_write(HTE, 0x000200a1, 0xffff1000);
msg_port_write(HTE, 0x00020011, 0x00011000);
msg_port_write(HTE, 0x00020011, 0x00011100);
hte_wait_for_complete();
/*
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
* any bytelane errors.
*/
return (hte_check_errors() >> 8) & 0xff;
}
/**
* Examine a single-cache-line memory with write/read/verify test using multiple
* data patterns (victim-aggressor algorithm).
*
* See hte_write_stress_bit_lanes() which is the external visible wrapper.
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @loop_cnt: number of test iterations
* @seed_victim: victim data pattern seed
* @seed_aggressor: aggressor data pattern seed
* @victim_bit: should be 0 as auto-rotate feature is in use
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
u8 victim_bit, u8 first_run)
{
u32 offset;
u32 tmp;
if (first_run) {
msg_port_write(HTE, 0x00020020, 0x00910024);
msg_port_write(HTE, 0x00020023, 0x00810024);
msg_port_write(HTE, 0x00020021, 0x06070000);
msg_port_write(HTE, 0x00020024, 0x06070000);
msg_port_write(HTE, 0x00020022, addr >> 6);
msg_port_write(HTE, 0x00020025, addr >> 6);
msg_port_write(HTE, 0x00020062, 0x0000002a);
msg_port_write(HTE, 0x00020063, seed_victim);
msg_port_write(HTE, 0x00020064, seed_aggressor);
msg_port_write(HTE, 0x00020065, seed_victim);
/*
* Write the pattern buffers to select the victim bit
*
* Start with bit0
*/
for (offset = 0x80; offset <= 0x8f; offset++) {
if ((offset % 8) == victim_bit)
msg_port_write(HTE, offset, 0x55555555);
else
msg_port_write(HTE, offset, 0xcccccccc);
}
msg_port_write(HTE, 0x00020061, 0x00000000);
msg_port_write(HTE, 0x00020066, 0x03440000);
msg_port_write(HTE, 0x000200a1, 0xffff1000);
}
tmp = 0x10001000 | (loop_cnt << 16);
msg_port_write(HTE, 0x00020011, tmp);
msg_port_write(HTE, 0x00020011, tmp | (1 << 8));
hte_wait_for_complete();
/*
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
* any bytelane errors.
*/
return (hte_check_errors() >> 8) & 0xff;
}
/**
* Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
* If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
* initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
* pattern to all memory locations on the RankMask and then read it back.
* Then it sends an A55AA55A pattern to all memory locations on the RankMask
* and reads it back.
*
* @mrc_params: host structure for all MRC global data
* @flag: MRC_MEM_INIT or MRC_MEM_TEST
*
* @return: errors register showing HTE failures. Also prints out which rank
* failed the HTE test if failure occurs. For rank detection to work,
* the address map must be left in its default state. If MRC changes
* the address map, this function must be modified to change it back
* to default at the beginning, then restore it at the end.
*/
u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
{
u32 offset;
int test_num;
int i;
/*
* Clear out the error registers at the start of each memory
* init or memory test run.
*/
hte_clear_error_regs();
msg_port_write(HTE, 0x00020062, 0x00000015);
for (offset = 0x80; offset <= 0x8f; offset++)
msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5));
msg_port_write(HTE, 0x00020021, 0x00000000);
msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
msg_port_write(HTE, 0x00020064, 0xcccccccc);
msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
msg_port_write(HTE, 0x00020066, 0x03000000);
switch (flag) {
case MRC_MEM_INIT:
/*
* Only 1 write pass through memory is needed
* to initialize ECC
*/
test_num = 1;
break;
case MRC_MEM_TEST:
/* Write/read then write/read with inverted pattern */
test_num = 4;
break;
default:
DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
return 0xffffffff;
}
DPF(D_INFO, "hte_mem_init");
for (i = 0; i < test_num; i++) {
DPF(D_INFO, ".");
if (i == 0) {
msg_port_write(HTE, 0x00020061, 0x00000000);
msg_port_write(HTE, 0x00020020, 0x00110010);
} else if (i == 1) {
msg_port_write(HTE, 0x00020061, 0x00000000);
msg_port_write(HTE, 0x00020020, 0x00010010);
} else if (i == 2) {
msg_port_write(HTE, 0x00020061, 0x00010100);
msg_port_write(HTE, 0x00020020, 0x00110010);
} else {
msg_port_write(HTE, 0x00020061, 0x00010100);
msg_port_write(HTE, 0x00020020, 0x00010010);
}
msg_port_write(HTE, 0x00020011, 0x00111000);
msg_port_write(HTE, 0x00020011, 0x00111100);
hte_wait_for_complete();
/* If this is a READ pass, check for errors at the end */
if ((i % 2) == 1) {
/* Return immediately if error */
if (hte_check_errors())
break;
}
}
DPF(D_INFO, "done\n");
return hte_check_errors();
}
/**
* Execute a basic single-cache-line memory write/read/verify test using simple
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
u8 first_run, u8 mode)
{
u16 errors;
ENTERFN();
/* Enable all error reporting in preparation for HTE test */
hte_enable_all_errors();
hte_clear_error_regs();
errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
LEAVEFN();
return errors;
}
/**
* Examine a single-cache-line memory with write/read/verify test using multiple
* data patterns (victim-aggressor algorithm).
*
* @mrc_params: host structure for all MRC global data
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
*
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
*/
u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
u32 addr, u8 first_run)
{
u16 errors;
u8 victim_bit = 0;
ENTERFN();
/* Enable all error reporting in preparation for HTE test */
hte_enable_all_errors();
hte_clear_error_regs();
/*
* Loop through each bit in the bytelane.
*
* Each pass creates a victim bit while keeping all other bits the same
* as aggressors. AVN HTE adds an auto-rotate feature which allows us
* to program the entire victim/aggressor sequence in 1 step.
*
* The victim bit rotates on each pass so no need to have software
* implement a victim bit loop like on VLV.
*/
errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
victim_bit, first_run);
LEAVEFN();
return errors;
}
/**
* Execute a basic single-cache-line memory write or read.
* This is just for receive enable / fine write-levelling purpose.
*
* @addr: memory adress being tested (must hit specific channel/rank)
* @first_run: if set then the HTE registers are configured, otherwise it is
* assumed configuration is done and we just re-run the test
* @is_write: when non-zero memory write operation executed, otherwise read
*/
void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
{
u32 offset;
u32 tmp;
hte_enable_all_errors();
hte_clear_error_regs();
if (first_run) {
tmp = is_write ? 0x01110021 : 0x01010021;
msg_port_write(HTE, 0x00020020, tmp);
msg_port_write(HTE, 0x00020021, 0x06000000);
msg_port_write(HTE, 0x00020022, addr >> 6);
msg_port_write(HTE, 0x00020062, 0x00800015);
msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
msg_port_write(HTE, 0x00020064, 0xcccccccc);
msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
msg_port_write(HTE, 0x00020061, 0x00030008);
for (offset = 0x80; offset <= 0x8f; offset++)
msg_port_write(HTE, offset, 0xc33c0000);
}
msg_port_write(HTE, 0x000200a1, 0xffff1000);
msg_port_write(HTE, 0x00020011, 0x00011000);
msg_port_write(HTE, 0x00020011, 0x00011100);
hte_wait_for_complete();
}