upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mmc/uniphier-sd.c

872 lines
25 KiB

/*
* Copyright (C) 2016 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <fdtdec.h>
#include <mmc.h>
#include <dm.h>
#include <linux/compat.h>
#include <linux/dma-direction.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <power/regulator.h>
#include <asm/unaligned.h>
DECLARE_GLOBAL_DATA_PTR;
#define UNIPHIER_SD_CMD 0x000 /* command */
#define UNIPHIER_SD_CMD_NOSTOP BIT(14) /* No automatic CMD12 issue */
#define UNIPHIER_SD_CMD_MULTI BIT(13) /* multiple block transfer */
#define UNIPHIER_SD_CMD_RD BIT(12) /* 1: read, 0: write */
#define UNIPHIER_SD_CMD_DATA BIT(11) /* data transfer */
#define UNIPHIER_SD_CMD_APP BIT(6) /* ACMD preceded by CMD55 */
#define UNIPHIER_SD_CMD_NORMAL (0 << 8)/* auto-detect of resp-type */
#define UNIPHIER_SD_CMD_RSP_NONE (3 << 8)/* response: none */
#define UNIPHIER_SD_CMD_RSP_R1 (4 << 8)/* response: R1, R5, R6, R7 */
#define UNIPHIER_SD_CMD_RSP_R1B (5 << 8)/* response: R1b, R5b */
#define UNIPHIER_SD_CMD_RSP_R2 (6 << 8)/* response: R2 */
#define UNIPHIER_SD_CMD_RSP_R3 (7 << 8)/* response: R3, R4 */
#define UNIPHIER_SD_ARG 0x008 /* command argument */
#define UNIPHIER_SD_STOP 0x010 /* stop action control */
#define UNIPHIER_SD_STOP_SEC BIT(8) /* use sector count */
#define UNIPHIER_SD_STOP_STP BIT(0) /* issue CMD12 */
#define UNIPHIER_SD_SECCNT 0x014 /* sector counter */
#define UNIPHIER_SD_RSP10 0x018 /* response[39:8] */
#define UNIPHIER_SD_RSP32 0x020 /* response[71:40] */
#define UNIPHIER_SD_RSP54 0x028 /* response[103:72] */
#define UNIPHIER_SD_RSP76 0x030 /* response[127:104] */
#define UNIPHIER_SD_INFO1 0x038 /* IRQ status 1 */
#define UNIPHIER_SD_INFO1_CD BIT(5) /* state of card detect */
#define UNIPHIER_SD_INFO1_INSERT BIT(4) /* card inserted */
#define UNIPHIER_SD_INFO1_REMOVE BIT(3) /* card removed */
#define UNIPHIER_SD_INFO1_CMP BIT(2) /* data complete */
#define UNIPHIER_SD_INFO1_RSP BIT(0) /* response complete */
#define UNIPHIER_SD_INFO2 0x03c /* IRQ status 2 */
#define UNIPHIER_SD_INFO2_ERR_ILA BIT(15) /* illegal access err */
#define UNIPHIER_SD_INFO2_CBSY BIT(14) /* command busy */
#define UNIPHIER_SD_INFO2_BWE BIT(9) /* write buffer ready */
#define UNIPHIER_SD_INFO2_BRE BIT(8) /* read buffer ready */
#define UNIPHIER_SD_INFO2_DAT0 BIT(7) /* SDDAT0 */
#define UNIPHIER_SD_INFO2_ERR_RTO BIT(6) /* response time out */
#define UNIPHIER_SD_INFO2_ERR_ILR BIT(5) /* illegal read err */
#define UNIPHIER_SD_INFO2_ERR_ILW BIT(4) /* illegal write err */
#define UNIPHIER_SD_INFO2_ERR_TO BIT(3) /* time out error */
#define UNIPHIER_SD_INFO2_ERR_END BIT(2) /* END bit error */
#define UNIPHIER_SD_INFO2_ERR_CRC BIT(1) /* CRC error */
#define UNIPHIER_SD_INFO2_ERR_IDX BIT(0) /* cmd index error */
#define UNIPHIER_SD_INFO1_MASK 0x040
#define UNIPHIER_SD_INFO2_MASK 0x044
#define UNIPHIER_SD_CLKCTL 0x048 /* clock divisor */
#define UNIPHIER_SD_CLKCTL_DIV_MASK 0x104ff
#define UNIPHIER_SD_CLKCTL_DIV1024 BIT(16) /* SDCLK = CLK / 1024 */
#define UNIPHIER_SD_CLKCTL_DIV512 BIT(7) /* SDCLK = CLK / 512 */
#define UNIPHIER_SD_CLKCTL_DIV256 BIT(6) /* SDCLK = CLK / 256 */
#define UNIPHIER_SD_CLKCTL_DIV128 BIT(5) /* SDCLK = CLK / 128 */
#define UNIPHIER_SD_CLKCTL_DIV64 BIT(4) /* SDCLK = CLK / 64 */
#define UNIPHIER_SD_CLKCTL_DIV32 BIT(3) /* SDCLK = CLK / 32 */
#define UNIPHIER_SD_CLKCTL_DIV16 BIT(2) /* SDCLK = CLK / 16 */
#define UNIPHIER_SD_CLKCTL_DIV8 BIT(1) /* SDCLK = CLK / 8 */
#define UNIPHIER_SD_CLKCTL_DIV4 BIT(0) /* SDCLK = CLK / 4 */
#define UNIPHIER_SD_CLKCTL_DIV2 0 /* SDCLK = CLK / 2 */
#define UNIPHIER_SD_CLKCTL_DIV1 BIT(10) /* SDCLK = CLK */
#define UNIPHIER_SD_CLKCTL_OFFEN BIT(9) /* stop SDCLK when unused */
#define UNIPHIER_SD_CLKCTL_SCLKEN BIT(8) /* SDCLK output enable */
#define UNIPHIER_SD_SIZE 0x04c /* block size */
#define UNIPHIER_SD_OPTION 0x050
#define UNIPHIER_SD_OPTION_WIDTH_MASK (5 << 13)
#define UNIPHIER_SD_OPTION_WIDTH_1 (4 << 13)
#define UNIPHIER_SD_OPTION_WIDTH_4 (0 << 13)
#define UNIPHIER_SD_OPTION_WIDTH_8 (1 << 13)
#define UNIPHIER_SD_BUF 0x060 /* read/write buffer */
#define UNIPHIER_SD_EXTMODE 0x1b0
#define UNIPHIER_SD_EXTMODE_DMA_EN BIT(1) /* transfer 1: DMA, 0: pio */
#define UNIPHIER_SD_SOFT_RST 0x1c0
#define UNIPHIER_SD_SOFT_RST_RSTX BIT(0) /* reset deassert */
#define UNIPHIER_SD_VERSION 0x1c4 /* version register */
#define UNIPHIER_SD_VERSION_IP 0xff /* IP version */
#define UNIPHIER_SD_HOST_MODE 0x1c8
#define UNIPHIER_SD_IF_MODE 0x1cc
#define UNIPHIER_SD_IF_MODE_DDR BIT(0) /* DDR mode */
#define UNIPHIER_SD_VOLT 0x1e4 /* voltage switch */
#define UNIPHIER_SD_VOLT_MASK (3 << 0)
#define UNIPHIER_SD_VOLT_OFF (0 << 0)
#define UNIPHIER_SD_VOLT_330 (1 << 0)/* 3.3V signal */
#define UNIPHIER_SD_VOLT_180 (2 << 0)/* 1.8V signal */
#define UNIPHIER_SD_DMA_MODE 0x410
#define UNIPHIER_SD_DMA_MODE_DIR_RD BIT(16) /* 1: from device, 0: to dev */
#define UNIPHIER_SD_DMA_MODE_ADDR_INC BIT(0) /* 1: address inc, 0: fixed */
#define UNIPHIER_SD_DMA_CTL 0x414
#define UNIPHIER_SD_DMA_CTL_START BIT(0) /* start DMA (auto cleared) */
#define UNIPHIER_SD_DMA_RST 0x418
#define UNIPHIER_SD_DMA_RST_RD BIT(9)
#define UNIPHIER_SD_DMA_RST_WR BIT(8)
#define UNIPHIER_SD_DMA_INFO1 0x420
#define UNIPHIER_SD_DMA_INFO1_END_RD2 BIT(20) /* DMA from device is complete*/
#define UNIPHIER_SD_DMA_INFO1_END_RD BIT(17) /* Don't use! Hardware bug */
#define UNIPHIER_SD_DMA_INFO1_END_WR BIT(16) /* DMA to device is complete */
#define UNIPHIER_SD_DMA_INFO1_MASK 0x424
#define UNIPHIER_SD_DMA_INFO2 0x428
#define UNIPHIER_SD_DMA_INFO2_ERR_RD BIT(17)
#define UNIPHIER_SD_DMA_INFO2_ERR_WR BIT(16)
#define UNIPHIER_SD_DMA_INFO2_MASK 0x42c
#define UNIPHIER_SD_DMA_ADDR_L 0x440
#define UNIPHIER_SD_DMA_ADDR_H 0x444
/* alignment required by the DMA engine of this controller */
#define UNIPHIER_SD_DMA_MINALIGN 0x10
struct uniphier_sd_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct uniphier_sd_priv {
void __iomem *regbase;
unsigned long mclk;
unsigned int version;
u32 caps;
#define UNIPHIER_SD_CAP_NONREMOVABLE BIT(0) /* Nonremovable e.g. eMMC */
#define UNIPHIER_SD_CAP_DMA_INTERNAL BIT(1) /* have internal DMA engine */
#define UNIPHIER_SD_CAP_DIV1024 BIT(2) /* divisor 1024 is available */
#define UNIPHIER_SD_CAP_64BIT BIT(3) /* Controller is 64bit */
};
static u64 uniphier_sd_readq(struct uniphier_sd_priv *priv, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
return readq(priv->regbase + (reg << 1));
else
return readq(priv->regbase + reg);
}
static void uniphier_sd_writeq(struct uniphier_sd_priv *priv,
u64 val, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
writeq(val, priv->regbase + (reg << 1));
else
writeq(val, priv->regbase + reg);
}
static u32 uniphier_sd_readl(struct uniphier_sd_priv *priv, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
return readl(priv->regbase + (reg << 1));
else
return readl(priv->regbase + reg);
}
static void uniphier_sd_writel(struct uniphier_sd_priv *priv,
u32 val, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
writel(val, priv->regbase + (reg << 1));
else
writel(val, priv->regbase + reg);
}
static dma_addr_t __dma_map_single(void *ptr, size_t size,
enum dma_data_direction dir)
{
unsigned long addr = (unsigned long)ptr;
if (dir == DMA_FROM_DEVICE)
invalidate_dcache_range(addr, addr + size);
else
flush_dcache_range(addr, addr + size);
return addr;
}
static void __dma_unmap_single(dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE)
invalidate_dcache_range(addr, addr + size);
}
static int uniphier_sd_check_error(struct udevice *dev)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
u32 info2 = uniphier_sd_readl(priv, UNIPHIER_SD_INFO2);
if (info2 & UNIPHIER_SD_INFO2_ERR_RTO) {
/*
* TIMEOUT must be returned for unsupported command. Do not
* display error log since this might be a part of sequence to
* distinguish between SD and MMC.
*/
return -ETIMEDOUT;
}
if (info2 & UNIPHIER_SD_INFO2_ERR_TO) {
dev_err(dev, "timeout error\n");
return -ETIMEDOUT;
}
if (info2 & (UNIPHIER_SD_INFO2_ERR_END | UNIPHIER_SD_INFO2_ERR_CRC |
UNIPHIER_SD_INFO2_ERR_IDX)) {
dev_err(dev, "communication out of sync\n");
return -EILSEQ;
}
if (info2 & (UNIPHIER_SD_INFO2_ERR_ILA | UNIPHIER_SD_INFO2_ERR_ILR |
UNIPHIER_SD_INFO2_ERR_ILW)) {
dev_err(dev, "illegal access\n");
return -EIO;
}
return 0;
}
static int uniphier_sd_wait_for_irq(struct udevice *dev, unsigned int reg,
u32 flag)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000;
int ret;
while (!(uniphier_sd_readl(priv, reg) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout\n");
return -ETIMEDOUT;
}
ret = uniphier_sd_check_error(dev);
if (ret)
return ret;
udelay(1);
}
return 0;
}
static int uniphier_sd_pio_read_one_block(struct udevice *dev, char *pbuf,
uint blocksize)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
int i, ret;
/* wait until the buffer is filled with data */
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO2,
UNIPHIER_SD_INFO2_BRE);
if (ret)
return ret;
/*
* Clear the status flag _before_ read the buffer out because
* UNIPHIER_SD_INFO2_BRE is edge-triggered, not level-triggered.
*/
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO2);
if (priv->caps & UNIPHIER_SD_CAP_64BIT) {
u64 *buf = (u64 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 8))) {
for (i = 0; i < blocksize / 8; i++) {
*buf++ = uniphier_sd_readq(priv,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 8; i++) {
u64 data;
data = uniphier_sd_readq(priv,
UNIPHIER_SD_BUF);
put_unaligned(data, buf++);
}
}
} else {
u32 *buf = (u32 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 4))) {
for (i = 0; i < blocksize / 4; i++) {
*buf++ = uniphier_sd_readl(priv,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 4; i++) {
u32 data;
data = uniphier_sd_readl(priv, UNIPHIER_SD_BUF);
put_unaligned(data, buf++);
}
}
}
return 0;
}
static int uniphier_sd_pio_write_one_block(struct udevice *dev,
const char *pbuf, uint blocksize)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
int i, ret;
/* wait until the buffer becomes empty */
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO2,
UNIPHIER_SD_INFO2_BWE);
if (ret)
return ret;
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO2);
if (priv->caps & UNIPHIER_SD_CAP_64BIT) {
const u64 *buf = (const u64 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 8))) {
for (i = 0; i < blocksize / 8; i++) {
uniphier_sd_writeq(priv, *buf++,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 8; i++) {
u64 data = get_unaligned(buf++);
uniphier_sd_writeq(priv, data,
UNIPHIER_SD_BUF);
}
}
} else {
const u32 *buf = (const u32 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 4))) {
for (i = 0; i < blocksize / 4; i++) {
uniphier_sd_writel(priv, *buf++,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 4; i++) {
u32 data = get_unaligned(buf++);
uniphier_sd_writel(priv, data,
UNIPHIER_SD_BUF);
}
}
}
return 0;
}
static int uniphier_sd_pio_xfer(struct udevice *dev, struct mmc_data *data)
{
const char *src = data->src;
char *dest = data->dest;
int i, ret;
for (i = 0; i < data->blocks; i++) {
if (data->flags & MMC_DATA_READ)
ret = uniphier_sd_pio_read_one_block(dev, dest,
data->blocksize);
else
ret = uniphier_sd_pio_write_one_block(dev, src,
data->blocksize);
if (ret)
return ret;
if (data->flags & MMC_DATA_READ)
dest += data->blocksize;
else
src += data->blocksize;
}
return 0;
}
static void uniphier_sd_dma_start(struct uniphier_sd_priv *priv,
dma_addr_t dma_addr)
{
u32 tmp;
uniphier_sd_writel(priv, 0, UNIPHIER_SD_DMA_INFO1);
uniphier_sd_writel(priv, 0, UNIPHIER_SD_DMA_INFO2);
/* enable DMA */
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_EXTMODE);
tmp |= UNIPHIER_SD_EXTMODE_DMA_EN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_EXTMODE);
uniphier_sd_writel(priv, dma_addr & U32_MAX, UNIPHIER_SD_DMA_ADDR_L);
/* suppress the warning "right shift count >= width of type" */
dma_addr >>= min_t(int, 32, 8 * sizeof(dma_addr));
uniphier_sd_writel(priv, dma_addr & U32_MAX, UNIPHIER_SD_DMA_ADDR_H);
uniphier_sd_writel(priv, UNIPHIER_SD_DMA_CTL_START, UNIPHIER_SD_DMA_CTL);
}
static int uniphier_sd_dma_wait_for_irq(struct udevice *dev, u32 flag,
unsigned int blocks)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000 + 10 * blocks;
while (!(uniphier_sd_readl(priv, UNIPHIER_SD_DMA_INFO1) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout during DMA\n");
return -ETIMEDOUT;
}
udelay(10);
}
if (uniphier_sd_readl(priv, UNIPHIER_SD_DMA_INFO2)) {
dev_err(dev, "error during DMA\n");
return -EIO;
}
return 0;
}
static int uniphier_sd_dma_xfer(struct udevice *dev, struct mmc_data *data)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
size_t len = data->blocks * data->blocksize;
void *buf;
enum dma_data_direction dir;
dma_addr_t dma_addr;
u32 poll_flag, tmp;
int ret;
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_DMA_MODE);
if (data->flags & MMC_DATA_READ) {
buf = data->dest;
dir = DMA_FROM_DEVICE;
poll_flag = UNIPHIER_SD_DMA_INFO1_END_RD2;
tmp |= UNIPHIER_SD_DMA_MODE_DIR_RD;
} else {
buf = (void *)data->src;
dir = DMA_TO_DEVICE;
poll_flag = UNIPHIER_SD_DMA_INFO1_END_WR;
tmp &= ~UNIPHIER_SD_DMA_MODE_DIR_RD;
}
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_DMA_MODE);
dma_addr = __dma_map_single(buf, len, dir);
uniphier_sd_dma_start(priv, dma_addr);
ret = uniphier_sd_dma_wait_for_irq(dev, poll_flag, data->blocks);
__dma_unmap_single(dma_addr, len, dir);
return ret;
}
/* check if the address is DMA'able */
static bool uniphier_sd_addr_is_dmaable(unsigned long addr)
{
if (!IS_ALIGNED(addr, UNIPHIER_SD_DMA_MINALIGN))
return false;
#if defined(CONFIG_ARCH_UNIPHIER) && !defined(CONFIG_ARM64) && \
defined(CONFIG_SPL_BUILD)
/*
* For UniPhier ARMv7 SoCs, the stack is allocated in the locked ways
* of L2, which is unreachable from the DMA engine.
*/
if (addr < CONFIG_SPL_STACK)
return false;
#endif
return true;
}
static int uniphier_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
int ret;
u32 tmp;
if (uniphier_sd_readl(priv, UNIPHIER_SD_INFO2) & UNIPHIER_SD_INFO2_CBSY) {
dev_err(dev, "command busy\n");
return -EBUSY;
}
/* clear all status flags */
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO1);
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO2);
/* disable DMA once */
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_EXTMODE);
tmp &= ~UNIPHIER_SD_EXTMODE_DMA_EN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_EXTMODE);
uniphier_sd_writel(priv, cmd->cmdarg, UNIPHIER_SD_ARG);
tmp = cmd->cmdidx;
if (data) {
uniphier_sd_writel(priv, data->blocksize, UNIPHIER_SD_SIZE);
uniphier_sd_writel(priv, data->blocks, UNIPHIER_SD_SECCNT);
/* Do not send CMD12 automatically */
tmp |= UNIPHIER_SD_CMD_NOSTOP | UNIPHIER_SD_CMD_DATA;
if (data->blocks > 1)
tmp |= UNIPHIER_SD_CMD_MULTI;
if (data->flags & MMC_DATA_READ)
tmp |= UNIPHIER_SD_CMD_RD;
}
/*
* Do not use the response type auto-detection on this hardware.
* CMD8, for example, has different response types on SD and eMMC,
* while this controller always assumes the response type for SD.
* Set the response type manually.
*/
switch (cmd->resp_type) {
case MMC_RSP_NONE:
tmp |= UNIPHIER_SD_CMD_RSP_NONE;
break;
case MMC_RSP_R1:
tmp |= UNIPHIER_SD_CMD_RSP_R1;
break;
case MMC_RSP_R1b:
tmp |= UNIPHIER_SD_CMD_RSP_R1B;
break;
case MMC_RSP_R2:
tmp |= UNIPHIER_SD_CMD_RSP_R2;
break;
case MMC_RSP_R3:
tmp |= UNIPHIER_SD_CMD_RSP_R3;
break;
default:
dev_err(dev, "unknown response type\n");
return -EINVAL;
}
dev_dbg(dev, "sending CMD%d (SD_CMD=%08x, SD_ARG=%08x)\n",
cmd->cmdidx, tmp, cmd->cmdarg);
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CMD);
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO1,
UNIPHIER_SD_INFO1_RSP);
if (ret)
return ret;
if (cmd->resp_type & MMC_RSP_136) {
u32 rsp_127_104 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP76);
u32 rsp_103_72 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP54);
u32 rsp_71_40 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP32);
u32 rsp_39_8 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP10);
cmd->response[0] = ((rsp_127_104 & 0x00ffffff) << 8) |
((rsp_103_72 & 0xff000000) >> 24);
cmd->response[1] = ((rsp_103_72 & 0x00ffffff) << 8) |
((rsp_71_40 & 0xff000000) >> 24);
cmd->response[2] = ((rsp_71_40 & 0x00ffffff) << 8) |
((rsp_39_8 & 0xff000000) >> 24);
cmd->response[3] = (rsp_39_8 & 0xffffff) << 8;
} else {
/* bit 39-8 */
cmd->response[0] = uniphier_sd_readl(priv, UNIPHIER_SD_RSP10);
}
if (data) {
/* use DMA if the HW supports it and the buffer is aligned */
if (priv->caps & UNIPHIER_SD_CAP_DMA_INTERNAL &&
uniphier_sd_addr_is_dmaable((long)data->src))
ret = uniphier_sd_dma_xfer(dev, data);
else
ret = uniphier_sd_pio_xfer(dev, data);
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO1,
UNIPHIER_SD_INFO1_CMP);
if (ret)
return ret;
}
return ret;
}
static int uniphier_sd_set_bus_width(struct uniphier_sd_priv *priv,
struct mmc *mmc)
{
u32 val, tmp;
switch (mmc->bus_width) {
case 1:
val = UNIPHIER_SD_OPTION_WIDTH_1;
break;
case 4:
val = UNIPHIER_SD_OPTION_WIDTH_4;
break;
case 8:
val = UNIPHIER_SD_OPTION_WIDTH_8;
break;
default:
return -EINVAL;
}
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_OPTION);
tmp &= ~UNIPHIER_SD_OPTION_WIDTH_MASK;
tmp |= val;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_OPTION);
return 0;
}
static void uniphier_sd_set_ddr_mode(struct uniphier_sd_priv *priv,
struct mmc *mmc)
{
u32 tmp;
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_IF_MODE);
if (mmc->ddr_mode)
tmp |= UNIPHIER_SD_IF_MODE_DDR;
else
tmp &= ~UNIPHIER_SD_IF_MODE_DDR;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_IF_MODE);
}
static void uniphier_sd_set_clk_rate(struct uniphier_sd_priv *priv,
struct mmc *mmc)
{
unsigned int divisor;
u32 val, tmp;
if (!mmc->clock)
return;
divisor = DIV_ROUND_UP(priv->mclk, mmc->clock);
if (divisor <= 1)
val = UNIPHIER_SD_CLKCTL_DIV1;
else if (divisor <= 2)
val = UNIPHIER_SD_CLKCTL_DIV2;
else if (divisor <= 4)
val = UNIPHIER_SD_CLKCTL_DIV4;
else if (divisor <= 8)
val = UNIPHIER_SD_CLKCTL_DIV8;
else if (divisor <= 16)
val = UNIPHIER_SD_CLKCTL_DIV16;
else if (divisor <= 32)
val = UNIPHIER_SD_CLKCTL_DIV32;
else if (divisor <= 64)
val = UNIPHIER_SD_CLKCTL_DIV64;
else if (divisor <= 128)
val = UNIPHIER_SD_CLKCTL_DIV128;
else if (divisor <= 256)
val = UNIPHIER_SD_CLKCTL_DIV256;
else if (divisor <= 512 || !(priv->caps & UNIPHIER_SD_CAP_DIV1024))
val = UNIPHIER_SD_CLKCTL_DIV512;
else
val = UNIPHIER_SD_CLKCTL_DIV1024;
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_CLKCTL);
if (tmp & UNIPHIER_SD_CLKCTL_SCLKEN &&
(tmp & UNIPHIER_SD_CLKCTL_DIV_MASK) == val)
return;
/* stop the clock before changing its rate to avoid a glitch signal */
tmp &= ~UNIPHIER_SD_CLKCTL_SCLKEN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CLKCTL);
tmp &= ~UNIPHIER_SD_CLKCTL_DIV_MASK;
tmp |= val | UNIPHIER_SD_CLKCTL_OFFEN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CLKCTL);
tmp |= UNIPHIER_SD_CLKCTL_SCLKEN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CLKCTL);
udelay(1000);
}
static int uniphier_sd_set_ios(struct udevice *dev)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
int ret;
dev_dbg(dev, "clock %uHz, DDRmode %d, width %u\n",
mmc->clock, mmc->ddr_mode, mmc->bus_width);
ret = uniphier_sd_set_bus_width(priv, mmc);
if (ret)
return ret;
uniphier_sd_set_ddr_mode(priv, mmc);
uniphier_sd_set_clk_rate(priv, mmc);
return 0;
}
static int uniphier_sd_get_cd(struct udevice *dev)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
if (priv->caps & UNIPHIER_SD_CAP_NONREMOVABLE)
return 1;
return !!(uniphier_sd_readl(priv, UNIPHIER_SD_INFO1) &
UNIPHIER_SD_INFO1_CD);
}
static const struct dm_mmc_ops uniphier_sd_ops = {
.send_cmd = uniphier_sd_send_cmd,
.set_ios = uniphier_sd_set_ios,
.get_cd = uniphier_sd_get_cd,
};
static void uniphier_sd_host_init(struct uniphier_sd_priv *priv)
{
u32 tmp;
/* soft reset of the host */
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_SOFT_RST);
tmp &= ~UNIPHIER_SD_SOFT_RST_RSTX;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_SOFT_RST);
tmp |= UNIPHIER_SD_SOFT_RST_RSTX;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_SOFT_RST);
/* FIXME: implement eMMC hw_reset */
uniphier_sd_writel(priv, UNIPHIER_SD_STOP_SEC, UNIPHIER_SD_STOP);
/*
* Connected to 32bit AXI.
* This register dropped backward compatibility at version 0x10.
* Write an appropriate value depending on the IP version.
*/
uniphier_sd_writel(priv, priv->version >= 0x10 ? 0x00000101 : 0x00000000,
UNIPHIER_SD_HOST_MODE);
if (priv->caps & UNIPHIER_SD_CAP_DMA_INTERNAL) {
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_DMA_MODE);
tmp |= UNIPHIER_SD_DMA_MODE_ADDR_INC;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_DMA_MODE);
}
}
static int uniphier_sd_bind(struct udevice *dev)
{
struct uniphier_sd_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static int uniphier_sd_probe(struct udevice *dev)
{
struct uniphier_sd_plat *plat = dev_get_platdata(dev);
struct uniphier_sd_priv *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
const u32 quirks = dev_get_driver_data(dev);
fdt_addr_t base;
struct clk clk;
int ret;
#ifdef CONFIG_DM_REGULATOR
struct udevice *vqmmc_dev;
#endif
base = devfdt_get_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->regbase = devm_ioremap(dev, base, SZ_2K);
if (!priv->regbase)
return -ENOMEM;
#ifdef CONFIG_DM_REGULATOR
ret = device_get_supply_regulator(dev, "vqmmc-supply", &vqmmc_dev);
if (!ret) {
/* Set the regulator to 3.3V until we support 1.8V modes */
regulator_set_value(vqmmc_dev, 3300000);
regulator_set_enable(vqmmc_dev, true);
}
#endif
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get host clock\n");
return ret;
}
/* set to max rate */
priv->mclk = clk_set_rate(&clk, ULONG_MAX);
if (IS_ERR_VALUE(priv->mclk)) {
dev_err(dev, "failed to set rate for host clock\n");
clk_free(&clk);
return priv->mclk;
}
ret = clk_enable(&clk);
clk_free(&clk);
if (ret) {
dev_err(dev, "failed to enable host clock\n");
return ret;
}
plat->cfg.name = dev->name;
plat->cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
switch (fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width",
1)) {
case 8:
plat->cfg.host_caps |= MMC_MODE_8BIT;
break;
case 4:
plat->cfg.host_caps |= MMC_MODE_4BIT;
break;
case 1:
break;
default:
dev_err(dev, "Invalid \"bus-width\" value\n");
return -EINVAL;
}
if (quirks) {
priv->caps = quirks;
} else {
priv->version = uniphier_sd_readl(priv, UNIPHIER_SD_VERSION) &
UNIPHIER_SD_VERSION_IP;
dev_dbg(dev, "version %x\n", priv->version);
if (priv->version >= 0x10) {
priv->caps |= UNIPHIER_SD_CAP_DMA_INTERNAL;
priv->caps |= UNIPHIER_SD_CAP_DIV1024;
}
}
if (fdt_get_property(gd->fdt_blob, dev_of_offset(dev), "non-removable",
NULL))
priv->caps |= UNIPHIER_SD_CAP_NONREMOVABLE;
uniphier_sd_host_init(priv);
plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
plat->cfg.f_min = priv->mclk /
(priv->caps & UNIPHIER_SD_CAP_DIV1024 ? 1024 : 512);
plat->cfg.f_max = priv->mclk;
plat->cfg.b_max = U32_MAX; /* max value of UNIPHIER_SD_SECCNT */
upriv->mmc = &plat->mmc;
return 0;
}
static const struct udevice_id uniphier_sd_match[] = {
{ .compatible = "renesas,sdhi-r8a7790", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7791", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7792", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7793", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7794", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7795", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a7796", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a77970", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a77995", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "socionext,uniphier-sdhc", .data = 0 },
{ /* sentinel */ }
};
U_BOOT_DRIVER(uniphier_mmc) = {
.name = "uniphier-mmc",
.id = UCLASS_MMC,
.of_match = uniphier_sd_match,
.bind = uniphier_sd_bind,
.probe = uniphier_sd_probe,
.priv_auto_alloc_size = sizeof(struct uniphier_sd_priv),
.platdata_auto_alloc_size = sizeof(struct uniphier_sd_plat),
.ops = &uniphier_sd_ops,
};