upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/sacsng/sacsng.c

830 lines
25 KiB

/*
* (C) Copyright 2002
* Custom IDEAS, Inc. <www.cideas.com>
* Gerald Van Baren <vanbaren@cideas.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <asm/u-boot.h>
#include <common.h>
#include <ioports.h>
#include <mpc8260.h>
#include <i2c.h>
#include <spi.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif
#include "clkinit.h"
#include "ioconfig.h" /* I/O configuration table */
/*
* PBI Page Based Interleaving
* PSDMR_PBI page based interleaving
* 0 bank based interleaving
* External Address Multiplexing (EAMUX) adds a clock to address cycles
* (this can help with marginal board layouts)
* PSDMR_EAMUX adds a clock
* 0 no extra clock
* Buffer Command (BUFCMD) adds a clock to command cycles.
* PSDMR_BUFCMD adds a clock
* 0 no extra clock
*/
#define CONFIG_PBI PSDMR_PBI
#define PESSIMISTIC_SDRAM 0
#define EAMUX 0 /* EST requires EAMUX */
#define BUFCMD 0
/*
* ADC/DAC Defines:
*/
#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */
#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */
#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */
#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */
#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */
/*
* ADC Defines:
*/
#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */
#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */
#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */
#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */
#define ADC_VREF_CAP 100 /* VREF capacitor in uF */
#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */
#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
/* Wait at least 4100 LRCLK's */
#define ADC_REG1_FRAME_START 0x80 /* Frame start */
#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */
#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */
#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */
#define ADC_REG2_128x 0x80 /* Oversample at 128x */
#define ADC_REG2_CAL 0x40 /* System calibration enable */
#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */
#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */
#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */
#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */
#define ADC_REG2_DFS 0x02 /* Digital format select */
#define ADC_REG2_MUTE 0x01 /* Mute */
#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */
#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */
#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */
#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */
#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */
#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */
#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */
/*
* DAC Defines:
*/
#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */
#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */
#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */
#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
#define DAC_REG1_AMUTE 0x80 /* Auto-mute */
#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */
#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */
#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */
#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */
#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */
#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */
#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */
#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */
#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */
#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */
#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */
#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */
#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */
#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */
#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */
#define DAC_REG5_FREEZE 0x04 /* Freeze */
#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */
#define DAC_REG5_RESERVED 0x01 /* Reserved */
/* ------------------------------------------------------------------------- */
/*
* Check Board Identity:
*/
int checkboard(void)
{
printf ("SACSng\n");
return 0;
}
/* ------------------------------------------------------------------------- */
long int initdram(int board_type)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile memctl8260_t *memctl = &immap->im_memctl;
volatile uchar c = 0;
volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8);
uint psdmr = CFG_PSDMR;
int i;
uint psrt = 14; /* for no SPD */
uint chipselects = 1; /* for no SPD */
uint sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
uint or = CFG_OR2_PRELIM; /* for no SPD */
#ifdef SDRAM_SPD_ADDR
uint data_width;
uint rows;
uint banks;
uint cols;
uint caslatency;
uint width;
uint rowst;
uint sdam;
uint bsma;
uint sda10;
u_char spd_size;
u_char data;
u_char cksum;
int j;
#endif
#ifdef SDRAM_SPD_ADDR
/* Keep the compiler from complaining about potentially uninitialized vars */
data_width = chipselects = rows = banks = cols = caslatency = psrt = 0;
/*
* Read the SDRAM SPD EEPROM via I2C.
*/
i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
spd_size = data;
cksum = data;
for(j = 1; j < 64; j++) { /* read only the checksummed bytes */
/* note: the I2C address autoincrements when alen == 0 */
i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
if(j == 5) chipselects = data & 0x0F;
else if(j == 6) data_width = data;
else if(j == 7) data_width |= data << 8;
else if(j == 3) rows = data & 0x0F;
else if(j == 4) cols = data & 0x0F;
else if(j == 12) {
/*
* Refresh rate: this assumes the prescaler is set to
* approximately 1uSec per tick.
*/
switch(data & 0x7F) {
default:
case 0: psrt = 14 ; /* 15.625uS */ break;
case 1: psrt = 2; /* 3.9uS */ break;
case 2: psrt = 6; /* 7.8uS */ break;
case 3: psrt = 29; /* 31.3uS */ break;
case 4: psrt = 60; /* 62.5uS */ break;
case 5: psrt = 120; /* 125uS */ break;
}
}
else if(j == 17) banks = data;
else if(j == 18) {
caslatency = 3; /* default CL */
#if(PESSIMISTIC_SDRAM)
if((data & 0x04) != 0) caslatency = 3;
else if((data & 0x02) != 0) caslatency = 2;
else if((data & 0x01) != 0) caslatency = 1;
#else
if((data & 0x01) != 0) caslatency = 1;
else if((data & 0x02) != 0) caslatency = 2;
else if((data & 0x04) != 0) caslatency = 3;
#endif
else {
printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n",
data);
}
}
else if(j == 63) {
if(data != cksum) {
printf ("WARNING: Configuration data checksum failure:"
" is 0x%02x, calculated 0x%02x\n",
data, cksum);
}
}
cksum += data;
}
/* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
if(caslatency < 2) {
printf("CL was %d, forcing to 2\n", caslatency);
caslatency = 2;
}
if(rows > 14) {
printf("This doesn't look good, rows = %d, should be <= 14\n", rows);
rows = 14;
}
if(cols > 11) {
printf("This doesn't look good, columns = %d, should be <= 11\n", cols);
cols = 11;
}
if((data_width != 64) && (data_width != 72))
{
printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
data_width);
}
width = 3; /* 2^3 = 8 bytes = 64 bits wide */
/*
* Convert banks into log2(banks)
*/
if (banks == 2) banks = 1;
else if(banks == 4) banks = 2;
else if(banks == 8) banks = 3;
sdram_size = 1 << (rows + cols + banks + width);
#if(CONFIG_PBI == 0) /* bank-based interleaving */
rowst = ((32 - 6) - (rows + cols + width)) * 2;
#else
rowst = 32 - (rows + banks + cols + width);
#endif
or = ~(sdram_size - 1) | /* SDAM address mask */
((banks-1) << 13) | /* banks per device */
(rowst << 9) | /* rowst */
((rows - 9) << 6); /* numr */
memctl->memc_or2 = or;
/*
* SDAM specifies the number of columns that are multiplexed
* (reference AN2165/D), defined to be (columns - 6) for page
* interleave, (columns - 8) for bank interleave.
*
* BSMA is 14 - max(rows, cols). The bank select lines come
* into play above the highest "address" line going into the
* the SDRAM.
*/
#if(CONFIG_PBI == 0) /* bank-based interleaving */
sdam = cols - 8;
bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
sda10 = sdam + 2;
#else
sdam = cols - 6;
bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
sda10 = sdam;
#endif
#if(PESSIMISTIC_SDRAM)
psdmr = (CONFIG_PBI |\
PSDMR_RFEN |\
PSDMR_RFRC_16_CLK |\
PSDMR_PRETOACT_8W |\
PSDMR_ACTTORW_8W |\
PSDMR_WRC_4C |\
PSDMR_EAMUX |\
PSDMR_BUFCMD) |\
caslatency |\
((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
(sdam << 24) |\
(bsma << 21) |\
(sda10 << 18);
#else
psdmr = (CONFIG_PBI |\
PSDMR_RFEN |\
PSDMR_RFRC_7_CLK |\
PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \
PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \
PSDMR_WRC_1C | /* 1 clock + 7nSec */
EAMUX |\
BUFCMD) |\
caslatency |\
((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
(sdam << 24) |\
(bsma << 21) |\
(sda10 << 18);
#endif
#endif
/*
* Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
*
* "At system reset, initialization software must set up the
* programmable parameters in the memory controller banks registers
* (ORx, BRx, P/LSDMR). After all memory parameters are configured,
* system software should execute the following initialization sequence
* for each SDRAM device.
*
* 1. Issue a PRECHARGE-ALL-BANKS command
* 2. Issue eight CBR REFRESH commands
* 3. Issue a MODE-SET command to initialize the mode register
*
* Quote from Micron MT48LC8M16A2 data sheet:
*
* "...the SDRAM requires a 100uS delay prior to issuing any
* command other than a COMMAND INHIBIT or NOP. Starting at some
* point during this 100uS period and continuing at least through
* the end of this period, COMMAND INHIBIT or NOP commands should
* be applied."
*
* "Once the 100uS delay has been satisfied with at least one COMMAND
* INHIBIT or NOP command having been applied, a /PRECHARGE command/
* should be applied. All banks must then be precharged, thereby
* placing the device in the all banks idle state."
*
* "Once in the idle state, /two/ AUTO REFRESH cycles must be
* performed. After the AUTO REFRESH cycles are complete, the
* SDRAM is ready for mode register programming."
*
* (/emphasis/ mine, gvb)
*
* The way I interpret this, Micron start up sequence is:
* 1. Issue a PRECHARGE-BANK command (initial precharge)
* 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
* 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
* 4. Issue a MODE-SET command to initialize the mode register
*
* --------
*
* The initial commands are executed by setting P/LSDMR[OP] and
* accessing the SDRAM with a single-byte transaction."
*
* The appropriate BRx/ORx registers have already been set when we
* get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE.
*/
memctl->memc_mptpr = CFG_MPTPR;
memctl->memc_psrt = psrt;
memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
for (i = 0; i < 8; i++)
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
*ramaddr = c;
/*
* Do it a second time for the second set of chips if the DIMM has
* two chip selects (double sided).
*/
if(chipselects > 1) {
ramaddr += sdram_size;
memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size;
memctl->memc_or3 = or;
memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
for (i = 0; i < 8; i++)
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
*ramaddr = c;
memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
*ramaddr = c;
}
/* return total ram size */
return (sdram_size * chipselects);
}
/*-----------------------------------------------------------------------
* Board Control Functions
*/
void board_poweroff (void)
{
while (1); /* hang forever */
}
#ifdef CONFIG_MISC_INIT_R
/* ------------------------------------------------------------------------- */
int misc_init_r(void)
{
/*
* Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
*/
volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */);
volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
int reg; /* I2C register value */
char *ep; /* Environment pointer */
char str_buf[12] ; /* sprintf output buffer */
int sample_rate; /* ADC/DAC sample rate */
int sample_64x; /* Use 64/4 clocking for the ADC/DAC */
int sample_128x; /* Use 128/4 clocking for the ADC/DAC */
int right_just; /* Is the data to the DAC right justified? */
int mclk_divide; /* MCLK Divide */
/*
* SACSng custom initialization:
* Start the ADC and DAC clocks, since the Crystal parts do not
* work on the I2C bus until the clocks are running.
*/
sample_rate = INITIAL_SAMPLE_RATE;
if ((ep = getenv("DaqSampleRate")) != NULL) {
sample_rate = simple_strtol(ep, NULL, 10);
}
sample_64x = INITIAL_SAMPLE_64X;
sample_128x = INITIAL_SAMPLE_128X;
if ((ep = getenv("Daq64xSampling")) != NULL) {
sample_64x = simple_strtol(ep, NULL, 10);
if (sample_64x) {
sample_128x = 0;
}
else {
sample_128x = 1;
}
}
else {
if ((ep = getenv("Daq128xSampling")) != NULL) {
sample_128x = simple_strtol(ep, NULL, 10);
if (sample_128x) {
sample_64x = 0;
}
else {
sample_64x = 1;
}
}
}
/*
* Stop the clocks and wait for at least 1 LRCLK period
* to make sure the clocking has really stopped.
*/
Daq_Stop_Clocks();
udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
/*
* Initialize the clocks with the new rates
*/
Daq_Init_Clocks(sample_rate, sample_64x);
sample_rate = Daq_Get_SampleRate();
/*
* Start the clocks and wait for at least 1 LRCLK period
* to make sure the clocking has become stable.
*/
Daq_Start_Clocks(sample_rate);
udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
sprintf(str_buf, "%d", sample_rate);
setenv("DaqSampleRate", str_buf);
if (sample_64x) {
setenv("Daq64xSampling", "1");
setenv("Daq128xSampling", NULL);
}
else {
setenv("Daq64xSampling", NULL);
setenv("Daq128xSampling", "1");
}
/* Display the ADC/DAC clocking information */
Daq_Display_Clocks();
/*
* Determine the DAC data justification
*/
right_just = INITIAL_RIGHT_JUST;
if ((ep = getenv("DaqDACRightJustified")) != NULL) {
right_just = simple_strtol(ep, NULL, 10);
}
sprintf(str_buf, "%d", right_just);
setenv("DaqDACRightJustified", str_buf);
/*
* Determine the DAC MCLK Divide
*/
mclk_divide = INITIAL_MCLK_DIVIDE;
if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
mclk_divide = simple_strtol(ep, NULL, 10);
}
sprintf(str_buf, "%d", mclk_divide);
setenv("DaqDACMClockDivide", str_buf);
/*
* Initializing the I2C address in the Crystal A/Ds:
*
* 1) Wait for VREF cap to settle (10uSec per uF)
* 2) Release pullup on SDATA
* 3) Write the I2C address to register 6
* 4) Enable address matching by setting the MSB in register 7
*/
printf("Initializing the ADC...\n");
udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */
iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */
i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */
ADC_REG7_ADDR_ENABLE);
i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
(sample_64x ? 0 : ADC_REG2_128x) |
ADC_REG2_HIGH_PASS_DIS |
ADC_REG2_SLAVE_MODE);
reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
if(reg != I2C_ADC_1_ADDR)
printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
reg, I2C_ADC_1_ADDR);
iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */
i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
(sample_64x ? 0 : ADC_REG2_128x) |
ADC_REG2_HIGH_PASS_DIS |
ADC_REG2_SLAVE_MODE);
reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
if(reg != I2C_ADC_2_ADDR)
printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
reg, I2C_ADC_2_ADDR);
i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
ADC_REG1_FRAME_START |
ADC_REG1_GROUND_CAL);
i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
(sample_64x ? 0 : ADC_REG2_128x) |
ADC_REG2_CAL |
ADC_REG2_HIGH_PASS_DIS |
ADC_REG2_SLAVE_MODE);
udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */
i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */
/*
* Now that we have synchronized the ADC's, enable address
* selection on the second ADC as well as the first.
*/
i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
/*
* Initialize the Crystal DAC
*
* Two of the config lines are used for I2C so we have to set them
* to the proper initialization state without inadvertantly
* sending an I2C "start" sequence. When we bring the I2C back to
* the normal state, we send an I2C "stop" sequence.
*/
printf("Initializing the DAC...\n");
/*
* Bring the I2C clock and data lines low for initialization
*/
I2C_SCL(0);
I2C_DELAY;
I2C_SDA(0);
I2C_ACTIVE;
I2C_DELAY;
/* Reset the DAC */
iopa->pdat &= ~DAC_RST_MASK;
udelay(DAC_RESET_DELAY);
/* Release the DAC reset */
iopa->pdat |= DAC_RST_MASK;
udelay(DAC_INITIAL_DELAY);
/*
* Cause the DAC to:
* Enable control port (I2C mode)
* Going into power down
*/
i2c_reg_write(I2C_DAC_ADDR, 0x05,
DAC_REG5_I2C_MODE |
DAC_REG5_POWER_DOWN);
/*
* Cause the DAC to:
* Enable control port (I2C mode)
* Going into power down
* . MCLK divide by 1
* . MCLK divide by 2
*/
i2c_reg_write(I2C_DAC_ADDR, 0x05,
DAC_REG5_I2C_MODE |
DAC_REG5_POWER_DOWN |
(mclk_divide ? DAC_REG5_MCLK_DIV : 0));
/*
* Cause the DAC to:
* Auto-mute disabled
* . Format 0, left justified 24 bits
* . Format 3, right justified 24 bits
* No de-emphasis
* . Single speed mode
* . Double speed mode
*/
i2c_reg_write(I2C_DAC_ADDR, 0x01,
(right_just ? DAC_REG1_RIGHT_JUST_24BIT :
DAC_REG1_LEFT_JUST_24_BIT) |
DAC_REG1_DEM_NO |
(sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
sprintf(str_buf, "%d",
sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
setenv("DaqDACFunctionalMode", str_buf);
/*
* Cause the DAC to:
* Enable control port (I2C mode)
* Remove power down
* . MCLK divide by 1
* . MCLK divide by 2
*/
i2c_reg_write(I2C_DAC_ADDR, 0x05,
DAC_REG5_I2C_MODE |
(mclk_divide ? DAC_REG5_MCLK_DIV : 0));
/*
* Create a I2C stop condition:
* low->high on data while clock is high.
*/
I2C_SCL(1);
I2C_DELAY;
I2C_SDA(1);
I2C_DELAY;
I2C_TRISTATE;
printf("\n");
#ifdef CONFIG_SHOW_BOOT_PROGRESS
/*
* Turn off the RED fail LED now that we are up and running.
*/
status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
#endif
return 0;
}
#ifdef CONFIG_SHOW_BOOT_PROGRESS
/*
* Show boot status: flash the LED if something goes wrong, indicating
* that last thing that worked and thus, by implication, what is broken.
*
* This stores the last OK value in RAM so this will not work properly
* before RAM is initialized. Since it is being used for indicating
* boot status (i.e. after RAM is initialized), that is OK.
*/
static void flash_code(uchar number, uchar modulo, uchar digits)
{
int j;
/*
* Recursively do upper digits.
*/
if(digits > 1) {
flash_code(number / modulo, modulo, digits - 1);
}
number = number % modulo;
/*
* Zero is indicated by one long flash (dash).
*/
if(number == 0) {
status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
udelay(1000000);
status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
udelay(200000);
} else {
/*
* Non-zero is indicated by short flashes, one per count.
*/
for(j = 0; j < number; j++) {
status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
udelay(100000);
status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
udelay(200000);
}
}
/*
* Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
*/
udelay(700000);
}
static int last_boot_progress;
void show_boot_progress (int status)
{
if(status != -1) {
last_boot_progress = status;
} else {
/*
* Houston, we have a problem. Blink the last OK status which
* indicates where things failed.
*/
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
flash_code(last_boot_progress, 5, 3);
udelay(1000000);
status_led_set(STATUS_LED_RED, STATUS_LED_BLINKING);
}
}
#endif /* CONFIG_SHOW_BOOT_PROGRESS */
/*
* The following are used to control the SPI chip selects for the SPI command.
*/
#if (CONFIG_COMMANDS & CFG_CMD_SPI)
#define SPI_ADC_CS_MASK 0x00000800
#define SPI_DAC_CS_MASK 0x00001000
void spi_adc_chipsel(int cs)
{
volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);
if(cs)
iopd->pdat &= ~SPI_ADC_CS_MASK; /* activate the chip select */
else
iopd->pdat |= SPI_ADC_CS_MASK; /* deactivate the chip select */
}
void spi_dac_chipsel(int cs)
{
volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);
if(cs)
iopd->pdat &= ~SPI_DAC_CS_MASK; /* activate the chip select */
else
iopd->pdat |= SPI_DAC_CS_MASK; /* deactivate the chip select */
}
/*
* The SPI command uses this table of functions for controlling the SPI
* chip selects: it calls the appropriate function to control the SPI
* chip selects.
*/
spi_chipsel_type spi_chipsel[] = {
spi_adc_chipsel,
spi_dac_chipsel
};
int spi_chipsel_cnt = sizeof(spi_chipsel) / sizeof(spi_chipsel[0]);
#endif /* CFG_CMD_SPI */
#endif /* CONFIG_MISC_INIT_R */
#ifdef CONFIG_POST
/*
* Returns 1 if keys pressed to start the power-on long-running tests
* Called from board_init_f().
*/
int post_hotkeys_pressed(void)
{
return 0; /* No hotkeys supported */
}
#endif