upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/arm/lib/crt0.S

123 lines
3.7 KiB

/*
* crt0 - C-runtime startup Code for ARM U-Boot
*
* Copyright (c) 2012 Albert ARIBAUD <albert.u.boot@aribaud.net>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <asm-offsets.h>
#include <linux/linkage.h>
/*
* This file handles the target-independent stages of the U-Boot
* start-up where a C runtime environment is needed. Its entry point
* is _main and is branched into from the target's start.S file.
*
* _main execution sequence is:
*
* 1. Set up initial environment for calling board_init_f().
* This environment only provides a stack and a place to store
* the GD ('global data') structure, both located in some readily
* available RAM (SRAM, locked cache...). In this context, VARIABLE
* global data, initialized or not (BSS), are UNAVAILABLE; only
* CONSTANT initialized data are available.
*
* 2. Call board_init_f(). This function prepares the hardware for
* execution from system RAM (DRAM, DDR...) As system RAM may not
* be available yet, , board_init_f() must use the current GD to
* store any data which must be passed on to later stages. These
* data include the relocation destination, the future stack, and
* the future GD location.
*
* (the following applies only to non-SPL builds)
*
* 3. Set up intermediate environment where the stack and GD are the
* ones allocated by board_init_f() in system RAM, but BSS and
* initialized non-const data are still not available.
*
* 4. Call relocate_code(). This function relocates U-Boot from its
* current location into the relocation destination computed by
* board_init_f().
*
* 5. Set up final environment for calling board_init_r(). This
* environment has BSS (initialized to 0), initialized non-const
* data (initialized to their intended value), and stack in system
* RAM. GD has retained values set by board_init_f(). Some CPUs
* have some work left to do at this point regarding memory, so
* call c_runtime_cpu_setup.
*
* 6. Branch to board_init_r().
*/
/*
* entry point of crt0 sequence
*/
ENTRY(_main)
/*
* Set up initial C runtime environment and call board_init_f(0).
*/
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
ldr sp, =(CONFIG_SPL_STACK)
#else
ldr sp, =(CONFIG_SYS_INIT_SP_ADDR)
#endif
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
sub sp, #GD_SIZE /* allocate one GD above SP */
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
mov r8, sp /* GD is above SP */
mov r0, #0
bl board_init_f
#if ! defined(CONFIG_SPL_BUILD)
/*
* Set up intermediate environment (new sp and gd) and call
* relocate_code(addr_moni). Trick here is that we'll return
* 'here' but relocated.
*/
ldr sp, [r8, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
ldr r8, [r8, #GD_BD] /* r8 = gd->bd */
sub r8, r8, #GD_SIZE /* new GD is below bd */
adr lr, here
ldr r0, [r8, #GD_RELOC_OFF] /* r0 = gd->reloc_off */
add lr, lr, r0
ldr r0, [r8, #GD_RELOCADDR] /* r0 = gd->relocaddr */
b relocate_code
here:
/* Set up final (full) environment */
bl c_runtime_cpu_setup /* we still call old routine here */
ldr r0, =__bss_start /* this is auto-relocated! */
ldr r1, =__bss_end /* this is auto-relocated! */
mov r2, #0x00000000 /* prepare zero to clear BSS */
clbss_l:cmp r0, r1 /* while not at end of BSS */
strlo r2, [r0] /* clear 32-bit BSS word */
addlo r0, r0, #4 /* move to next */
blo clbss_l
bl coloured_LED_init
bl red_led_on
/* call board_init_r(gd_t *id, ulong dest_addr) */
mov r0, r8 /* gd_t */
ldr r1, [r8, #GD_RELOCADDR] /* dest_addr */
/* call board_init_r */
ldr pc, =board_init_r /* this is auto-relocated! */
/* we should not return here. */
#endif
ENDPROC(_main)