upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/common/fdt_support.c

1225 lines
29 KiB

/*
* (C) Copyright 2007
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com
*
* Copyright 2010 Freescale Semiconductor, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <stdio_dev.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include <asm/global_data.h>
#include <fdt.h>
#include <libfdt.h>
#include <fdt_support.h>
#include <exports.h>
/*
* Global data (for the gd->bd)
*/
DECLARE_GLOBAL_DATA_PTR;
/**
* fdt_getprop_u32_default - Find a node and return it's property or a default
*
* @fdt: ptr to device tree
* @path: path of node
* @prop: property name
* @dflt: default value if the property isn't found
*
* Convenience function to find a node and return it's property or a
* default value if it doesn't exist.
*/
u32 fdt_getprop_u32_default(void *fdt, const char *path, const char *prop,
const u32 dflt)
{
const u32 *val;
int off;
off = fdt_path_offset(fdt, path);
if (off < 0)
return dflt;
val = fdt_getprop(fdt, off, prop, NULL);
if (val)
return *val;
else
return dflt;
}
/**
* fdt_find_and_setprop: Find a node and set it's property
*
* @fdt: ptr to device tree
* @node: path of node
* @prop: property name
* @val: ptr to new value
* @len: length of new property value
* @create: flag to create the property if it doesn't exist
*
* Convenience function to directly set a property given the path to the node.
*/
int fdt_find_and_setprop(void *fdt, const char *node, const char *prop,
const void *val, int len, int create)
{
int nodeoff = fdt_path_offset(fdt, node);
if (nodeoff < 0)
return nodeoff;
if ((!create) && (fdt_get_property(fdt, nodeoff, prop, 0) == NULL))
return 0; /* create flag not set; so exit quietly */
return fdt_setprop(fdt, nodeoff, prop, val, len);
}
#ifdef CONFIG_OF_STDOUT_VIA_ALIAS
#ifdef CONFIG_SERIAL_MULTI
static void fdt_fill_multisername(char *sername, size_t maxlen)
{
const char *outname = stdio_devices[stdout]->name;
if (strcmp(outname, "serial") > 0)
strncpy(sername, outname, maxlen);
/* eserial? */
if (strcmp(outname + 1, "serial") > 0)
strncpy(sername, outname + 1, maxlen);
}
#else
static inline void fdt_fill_multisername(char *sername, size_t maxlen) {}
#endif /* CONFIG_SERIAL_MULTI */
static int fdt_fixup_stdout(void *fdt, int chosenoff)
{
int err = 0;
#ifdef CONFIG_CONS_INDEX
int node;
char sername[9] = { 0 };
const char *path;
fdt_fill_multisername(sername, sizeof(sername) - 1);
if (!sername[0])
sprintf(sername, "serial%d", CONFIG_CONS_INDEX - 1);
err = node = fdt_path_offset(fdt, "/aliases");
if (node >= 0) {
int len;
path = fdt_getprop(fdt, node, sername, &len);
if (path) {
char *p = malloc(len);
err = -FDT_ERR_NOSPACE;
if (p) {
memcpy(p, path, len);
err = fdt_setprop(fdt, chosenoff,
"linux,stdout-path", p, len);
free(p);
}
} else {
err = len;
}
}
#endif
if (err < 0)
printf("WARNING: could not set linux,stdout-path %s.\n",
fdt_strerror(err));
return err;
}
#endif
int fdt_initrd(void *fdt, ulong initrd_start, ulong initrd_end, int force)
{
int nodeoffset;
int err, j, total;
u32 tmp;
const char *path;
uint64_t addr, size;
/* Find the "chosen" node. */
nodeoffset = fdt_path_offset (fdt, "/chosen");
/* If there is no "chosen" node in the blob return */
if (nodeoffset < 0) {
printf("fdt_initrd: %s\n", fdt_strerror(nodeoffset));
return nodeoffset;
}
/* just return if initrd_start/end aren't valid */
if ((initrd_start == 0) || (initrd_end == 0))
return 0;
total = fdt_num_mem_rsv(fdt);
/*
* Look for an existing entry and update it. If we don't find
* the entry, we will j be the next available slot.
*/
for (j = 0; j < total; j++) {
err = fdt_get_mem_rsv(fdt, j, &addr, &size);
if (addr == initrd_start) {
fdt_del_mem_rsv(fdt, j);
break;
}
}
err = fdt_add_mem_rsv(fdt, initrd_start, initrd_end - initrd_start + 1);
if (err < 0) {
printf("fdt_initrd: %s\n", fdt_strerror(err));
return err;
}
path = fdt_getprop(fdt, nodeoffset, "linux,initrd-start", NULL);
if ((path == NULL) || force) {
tmp = __cpu_to_be32(initrd_start);
err = fdt_setprop(fdt, nodeoffset,
"linux,initrd-start", &tmp, sizeof(tmp));
if (err < 0) {
printf("WARNING: "
"could not set linux,initrd-start %s.\n",
fdt_strerror(err));
return err;
}
tmp = __cpu_to_be32(initrd_end);
err = fdt_setprop(fdt, nodeoffset,
"linux,initrd-end", &tmp, sizeof(tmp));
if (err < 0) {
printf("WARNING: could not set linux,initrd-end %s.\n",
fdt_strerror(err));
return err;
}
}
return 0;
}
int fdt_chosen(void *fdt, int force)
{
int nodeoffset;
int err;
char *str; /* used to set string properties */
const char *path;
err = fdt_check_header(fdt);
if (err < 0) {
printf("fdt_chosen: %s\n", fdt_strerror(err));
return err;
}
/*
* Find the "chosen" node.
*/
nodeoffset = fdt_path_offset (fdt, "/chosen");
/*
* If there is no "chosen" node in the blob, create it.
*/
if (nodeoffset < 0) {
/*
* Create a new node "/chosen" (offset 0 is root level)
*/
nodeoffset = fdt_add_subnode(fdt, 0, "chosen");
if (nodeoffset < 0) {
printf("WARNING: could not create /chosen %s.\n",
fdt_strerror(nodeoffset));
return nodeoffset;
}
}
/*
* Create /chosen properites that don't exist in the fdt.
* If the property exists, update it only if the "force" parameter
* is true.
*/
str = getenv("bootargs");
if (str != NULL) {
path = fdt_getprop(fdt, nodeoffset, "bootargs", NULL);
if ((path == NULL) || force) {
err = fdt_setprop(fdt, nodeoffset,
"bootargs", str, strlen(str)+1);
if (err < 0)
printf("WARNING: could not set bootargs %s.\n",
fdt_strerror(err));
}
}
#ifdef CONFIG_OF_STDOUT_VIA_ALIAS
path = fdt_getprop(fdt, nodeoffset, "linux,stdout-path", NULL);
if ((path == NULL) || force)
err = fdt_fixup_stdout(fdt, nodeoffset);
#endif
#ifdef OF_STDOUT_PATH
path = fdt_getprop(fdt, nodeoffset, "linux,stdout-path", NULL);
if ((path == NULL) || force) {
err = fdt_setprop(fdt, nodeoffset,
"linux,stdout-path", OF_STDOUT_PATH, strlen(OF_STDOUT_PATH)+1);
if (err < 0)
printf("WARNING: could not set linux,stdout-path %s.\n",
fdt_strerror(err));
}
#endif
return err;
}
void do_fixup_by_path(void *fdt, const char *path, const char *prop,
const void *val, int len, int create)
{
#if defined(DEBUG)
int i;
debug("Updating property '%s/%s' = ", path, prop);
for (i = 0; i < len; i++)
debug(" %.2x", *(u8*)(val+i));
debug("\n");
#endif
int rc = fdt_find_and_setprop(fdt, path, prop, val, len, create);
if (rc)
printf("Unable to update property %s:%s, err=%s\n",
path, prop, fdt_strerror(rc));
}
void do_fixup_by_path_u32(void *fdt, const char *path, const char *prop,
u32 val, int create)
{
val = cpu_to_fdt32(val);
do_fixup_by_path(fdt, path, prop, &val, sizeof(val), create);
}
void do_fixup_by_prop(void *fdt,
const char *pname, const void *pval, int plen,
const char *prop, const void *val, int len,
int create)
{
int off;
#if defined(DEBUG)
int i;
debug("Updating property '%s' = ", prop);
for (i = 0; i < len; i++)
debug(" %.2x", *(u8*)(val+i));
debug("\n");
#endif
off = fdt_node_offset_by_prop_value(fdt, -1, pname, pval, plen);
while (off != -FDT_ERR_NOTFOUND) {
if (create || (fdt_get_property(fdt, off, prop, 0) != NULL))
fdt_setprop(fdt, off, prop, val, len);
off = fdt_node_offset_by_prop_value(fdt, off, pname, pval, plen);
}
}
void do_fixup_by_prop_u32(void *fdt,
const char *pname, const void *pval, int plen,
const char *prop, u32 val, int create)
{
val = cpu_to_fdt32(val);
do_fixup_by_prop(fdt, pname, pval, plen, prop, &val, 4, create);
}
void do_fixup_by_compat(void *fdt, const char *compat,
const char *prop, const void *val, int len, int create)
{
int off = -1;
#if defined(DEBUG)
int i;
debug("Updating property '%s' = ", prop);
for (i = 0; i < len; i++)
debug(" %.2x", *(u8*)(val+i));
debug("\n");
#endif
off = fdt_node_offset_by_compatible(fdt, -1, compat);
while (off != -FDT_ERR_NOTFOUND) {
if (create || (fdt_get_property(fdt, off, prop, 0) != NULL))
fdt_setprop(fdt, off, prop, val, len);
off = fdt_node_offset_by_compatible(fdt, off, compat);
}
}
void do_fixup_by_compat_u32(void *fdt, const char *compat,
const char *prop, u32 val, int create)
{
val = cpu_to_fdt32(val);
do_fixup_by_compat(fdt, compat, prop, &val, 4, create);
}
/*
* Get cells len in bytes
* if #NNNN-cells property is 2 then len is 8
* otherwise len is 4
*/
static int get_cells_len(void *blob, char *nr_cells_name)
{
const u32 *cell;
cell = fdt_getprop(blob, 0, nr_cells_name, NULL);
if (cell && *cell == 2)
return 8;
return 4;
}
/*
* Write a 4 or 8 byte big endian cell
*/
static void write_cell(u8 *addr, u64 val, int size)
{
int shift = (size - 1) * 8;
while (size-- > 0) {
*addr++ = (val >> shift) & 0xff;
shift -= 8;
}
}
int fdt_fixup_memory_banks(void *blob, u64 start[], u64 size[], int banks)
{
int err, nodeoffset;
int addr_cell_len, size_cell_len, len;
u8 tmp[banks * 16]; /* Up to 64-bit address + 64-bit size */
int bank;
err = fdt_check_header(blob);
if (err < 0) {
printf("%s: %s\n", __FUNCTION__, fdt_strerror(err));
return err;
}
/* update, or add and update /memory node */
nodeoffset = fdt_path_offset(blob, "/memory");
if (nodeoffset < 0) {
nodeoffset = fdt_add_subnode(blob, 0, "memory");
if (nodeoffset < 0)
printf("WARNING: could not create /memory: %s.\n",
fdt_strerror(nodeoffset));
return nodeoffset;
}
err = fdt_setprop(blob, nodeoffset, "device_type", "memory",
sizeof("memory"));
if (err < 0) {
printf("WARNING: could not set %s %s.\n", "device_type",
fdt_strerror(err));
return err;
}
addr_cell_len = get_cells_len(blob, "#address-cells");
size_cell_len = get_cells_len(blob, "#size-cells");
for (bank = 0, len = 0; bank < banks; bank++) {
write_cell(tmp + len, start[bank], addr_cell_len);
len += addr_cell_len;
write_cell(tmp + len, size[bank], size_cell_len);
len += size_cell_len;
}
err = fdt_setprop(blob, nodeoffset, "reg", tmp, len);
if (err < 0) {
printf("WARNING: could not set %s %s.\n",
"reg", fdt_strerror(err));
return err;
}
return 0;
}
int fdt_fixup_memory(void *blob, u64 start, u64 size)
{
return fdt_fixup_memory_banks(blob, &start, &size, 1);
}
void fdt_fixup_ethernet(void *fdt)
{
int node, i, j;
char enet[16], *tmp, *end;
char mac[16] = "ethaddr";
const char *path;
unsigned char mac_addr[6];
node = fdt_path_offset(fdt, "/aliases");
if (node < 0)
return;
i = 0;
while ((tmp = getenv(mac)) != NULL) {
sprintf(enet, "ethernet%d", i);
path = fdt_getprop(fdt, node, enet, NULL);
if (!path) {
debug("No alias for %s\n", enet);
sprintf(mac, "eth%daddr", ++i);
continue;
}
for (j = 0; j < 6; j++) {
mac_addr[j] = tmp ? simple_strtoul(tmp, &end, 16) : 0;
if (tmp)
tmp = (*end) ? end+1 : end;
}
do_fixup_by_path(fdt, path, "mac-address", &mac_addr, 6, 0);
do_fixup_by_path(fdt, path, "local-mac-address",
&mac_addr, 6, 1);
sprintf(mac, "eth%daddr", ++i);
}
}
/* Resize the fdt to its actual size + a bit of padding */
int fdt_resize(void *blob)
{
int i;
uint64_t addr, size;
int total, ret;
uint actualsize;
if (!blob)
return 0;
total = fdt_num_mem_rsv(blob);
for (i = 0; i < total; i++) {
fdt_get_mem_rsv(blob, i, &addr, &size);
if (addr == (uint64_t)(u32)blob) {
fdt_del_mem_rsv(blob, i);
break;
}
}
/*
* Calculate the actual size of the fdt
* plus the size needed for 5 fdt_add_mem_rsv, one
* for the fdt itself and 4 for a possible initrd
* ((initrd-start + initrd-end) * 2 (name & value))
*/
actualsize = fdt_off_dt_strings(blob) +
fdt_size_dt_strings(blob) + 5 * sizeof(struct fdt_reserve_entry);
/* Make it so the fdt ends on a page boundary */
actualsize = ALIGN(actualsize + ((uint)blob & 0xfff), 0x1000);
actualsize = actualsize - ((uint)blob & 0xfff);
/* Change the fdt header to reflect the correct size */
fdt_set_totalsize(blob, actualsize);
/* Add the new reservation */
ret = fdt_add_mem_rsv(blob, (uint)blob, actualsize);
if (ret < 0)
return ret;
return actualsize;
}
#ifdef CONFIG_PCI
#define CONFIG_SYS_PCI_NR_INBOUND_WIN 4
#define FDT_PCI_PREFETCH (0x40000000)
#define FDT_PCI_MEM32 (0x02000000)
#define FDT_PCI_IO (0x01000000)
#define FDT_PCI_MEM64 (0x03000000)
int fdt_pci_dma_ranges(void *blob, int phb_off, struct pci_controller *hose) {
int addrcell, sizecell, len, r;
u32 *dma_range;
/* sized based on pci addr cells, size-cells, & address-cells */
u32 dma_ranges[(3 + 2 + 2) * CONFIG_SYS_PCI_NR_INBOUND_WIN];
addrcell = fdt_getprop_u32_default(blob, "/", "#address-cells", 1);
sizecell = fdt_getprop_u32_default(blob, "/", "#size-cells", 1);
dma_range = &dma_ranges[0];
for (r = 0; r < hose->region_count; r++) {
u64 bus_start, phys_start, size;
/* skip if !PCI_REGION_SYS_MEMORY */
if (!(hose->regions[r].flags & PCI_REGION_SYS_MEMORY))
continue;
bus_start = (u64)hose->regions[r].bus_start;
phys_start = (u64)hose->regions[r].phys_start;
size = (u64)hose->regions[r].size;
dma_range[0] = 0;
if (size >= 0x100000000ull)
dma_range[0] |= FDT_PCI_MEM64;
else
dma_range[0] |= FDT_PCI_MEM32;
if (hose->regions[r].flags & PCI_REGION_PREFETCH)
dma_range[0] |= FDT_PCI_PREFETCH;
#ifdef CONFIG_SYS_PCI_64BIT
dma_range[1] = bus_start >> 32;
#else
dma_range[1] = 0;
#endif
dma_range[2] = bus_start & 0xffffffff;
if (addrcell == 2) {
dma_range[3] = phys_start >> 32;
dma_range[4] = phys_start & 0xffffffff;
} else {
dma_range[3] = phys_start & 0xffffffff;
}
if (sizecell == 2) {
dma_range[3 + addrcell + 0] = size >> 32;
dma_range[3 + addrcell + 1] = size & 0xffffffff;
} else {
dma_range[3 + addrcell + 0] = size & 0xffffffff;
}
dma_range += (3 + addrcell + sizecell);
}
len = dma_range - &dma_ranges[0];
if (len)
fdt_setprop(blob, phb_off, "dma-ranges", &dma_ranges[0], len*4);
return 0;
}
#endif
#ifdef CONFIG_FDT_FIXUP_NOR_FLASH_SIZE
/*
* Provide a weak default function to return the flash bank size.
* There might be multiple non-identical flash chips connected to one
* chip-select, so we need to pass an index as well.
*/
u32 __flash_get_bank_size(int cs, int idx)
{
extern flash_info_t flash_info[];
/*
* As default, a simple 1:1 mapping is provided. Boards with
* a different mapping need to supply a board specific mapping
* routine.
*/
return flash_info[cs].size;
}
u32 flash_get_bank_size(int cs, int idx)
__attribute__((weak, alias("__flash_get_bank_size")));
/*
* This function can be used to update the size in the "reg" property
* of all NOR FLASH device nodes. This is necessary for boards with
* non-fixed NOR FLASH sizes.
*/
int fdt_fixup_nor_flash_size(void *blob)
{
char compat[][16] = { "cfi-flash", "jedec-flash" };
int off;
int len;
struct fdt_property *prop;
u32 *reg, *reg2;
int i;
for (i = 0; i < 2; i++) {
off = fdt_node_offset_by_compatible(blob, -1, compat[i]);
while (off != -FDT_ERR_NOTFOUND) {
int idx;
/*
* Found one compatible node, so fixup the size
* int its reg properties
*/
prop = fdt_get_property_w(blob, off, "reg", &len);
if (prop) {
int tuple_size = 3 * sizeof(reg);
/*
* There might be multiple reg-tuples,
* so loop through them all
*/
reg = reg2 = (u32 *)&prop->data[0];
for (idx = 0; idx < (len / tuple_size); idx++) {
/*
* Update size in reg property
*/
reg[2] = flash_get_bank_size(reg[0],
idx);
/*
* Point to next reg tuple
*/
reg += 3;
}
fdt_setprop(blob, off, "reg", reg2, len);
}
/* Move to next compatible node */
off = fdt_node_offset_by_compatible(blob, off,
compat[i]);
}
}
return 0;
}
#endif
int fdt_increase_size(void *fdt, int add_len)
{
int newlen;
newlen = fdt_totalsize(fdt) + add_len;
/* Open in place with a new len */
return fdt_open_into(fdt, fdt, newlen);
}
#ifdef CONFIG_FDT_FIXUP_PARTITIONS
#include <jffs2/load_kernel.h>
#include <mtd_node.h>
struct reg_cell {
unsigned int r0;
unsigned int r1;
};
int fdt_del_subnodes(const void *blob, int parent_offset)
{
int off, ndepth;
int ret;
for (ndepth = 0, off = fdt_next_node(blob, parent_offset, &ndepth);
(off >= 0) && (ndepth > 0);
off = fdt_next_node(blob, off, &ndepth)) {
if (ndepth == 1) {
debug("delete %s: offset: %x\n",
fdt_get_name(blob, off, 0), off);
ret = fdt_del_node((void *)blob, off);
if (ret < 0) {
printf("Can't delete node: %s\n",
fdt_strerror(ret));
return ret;
} else {
ndepth = 0;
off = parent_offset;
}
}
}
return 0;
}
int fdt_del_partitions(void *blob, int parent_offset)
{
const void *prop;
int ndepth = 0;
int off;
int ret;
off = fdt_next_node(blob, parent_offset, &ndepth);
if (off > 0 && ndepth == 1) {
prop = fdt_getprop(blob, off, "label", NULL);
if (prop == NULL) {
/*
* Could not find label property, nand {}; node?
* Check subnode, delete partitions there if any.
*/
return fdt_del_partitions(blob, off);
} else {
ret = fdt_del_subnodes(blob, parent_offset);
if (ret < 0) {
printf("Can't remove subnodes: %s\n",
fdt_strerror(ret));
return ret;
}
}
}
return 0;
}
int fdt_node_set_part_info(void *blob, int parent_offset,
struct mtd_device *dev)
{
struct list_head *pentry;
struct part_info *part;
struct reg_cell cell;
int off, ndepth = 0;
int part_num, ret;
char buf[64];
ret = fdt_del_partitions(blob, parent_offset);
if (ret < 0)
return ret;
/*
* Check if it is nand {}; subnode, adjust
* the offset in this case
*/
off = fdt_next_node(blob, parent_offset, &ndepth);
if (off > 0 && ndepth == 1)
parent_offset = off;
part_num = 0;
list_for_each_prev(pentry, &dev->parts) {
int newoff;
part = list_entry(pentry, struct part_info, link);
debug("%2d: %-20s0x%08x\t0x%08x\t%d\n",
part_num, part->name, part->size,
part->offset, part->mask_flags);
sprintf(buf, "partition@%x", part->offset);
add_sub:
ret = fdt_add_subnode(blob, parent_offset, buf);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_sub;
else
goto err_size;
} else if (ret < 0) {
printf("Can't add partition node: %s\n",
fdt_strerror(ret));
return ret;
}
newoff = ret;
/* Check MTD_WRITEABLE_CMD flag */
if (part->mask_flags & 1) {
add_ro:
ret = fdt_setprop(blob, newoff, "read_only", NULL, 0);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_ro;
else
goto err_size;
} else if (ret < 0)
goto err_prop;
}
cell.r0 = cpu_to_fdt32(part->offset);
cell.r1 = cpu_to_fdt32(part->size);
add_reg:
ret = fdt_setprop(blob, newoff, "reg", &cell, sizeof(cell));
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_reg;
else
goto err_size;
} else if (ret < 0)
goto err_prop;
add_label:
ret = fdt_setprop_string(blob, newoff, "label", part->name);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_label;
else
goto err_size;
} else if (ret < 0)
goto err_prop;
part_num++;
}
return 0;
err_size:
printf("Can't increase blob size: %s\n", fdt_strerror(ret));
return ret;
err_prop:
printf("Can't add property: %s\n", fdt_strerror(ret));
return ret;
}
/*
* Update partitions in nor/nand nodes using info from
* mtdparts environment variable. The nodes to update are
* specified by node_info structure which contains mtd device
* type and compatible string: E. g. the board code in
* ft_board_setup() could use:
*
* struct node_info nodes[] = {
* { "fsl,mpc5121-nfc", MTD_DEV_TYPE_NAND, },
* { "cfi-flash", MTD_DEV_TYPE_NOR, },
* };
*
* fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes));
*/
void fdt_fixup_mtdparts(void *blob, void *node_info, int node_info_size)
{
struct node_info *ni = node_info;
struct mtd_device *dev;
char *parts;
int i, idx;
int noff;
parts = getenv("mtdparts");
if (!parts)
return;
if (mtdparts_init() != 0)
return;
for (i = 0; i < node_info_size; i++) {
idx = 0;
noff = fdt_node_offset_by_compatible(blob, -1, ni[i].compat);
while (noff != -FDT_ERR_NOTFOUND) {
debug("%s: %s, mtd dev type %d\n",
fdt_get_name(blob, noff, 0),
ni[i].compat, ni[i].type);
dev = device_find(ni[i].type, idx++);
if (dev) {
if (fdt_node_set_part_info(blob, noff, dev))
return; /* return on error */
}
/* Jump to next flash node */
noff = fdt_node_offset_by_compatible(blob, noff,
ni[i].compat);
}
}
}
#endif
void fdt_del_node_and_alias(void *blob, const char *alias)
{
int off = fdt_path_offset(blob, alias);
if (off < 0)
return;
fdt_del_node(blob, off);
off = fdt_path_offset(blob, "/aliases");
fdt_delprop(blob, off, alias);
}
/* Helper to read a big number; size is in cells (not bytes) */
static inline u64 of_read_number(const __be32 *cell, int size)
{
u64 r = 0;
while (size--)
r = (r << 32) | be32_to_cpu(*(cell++));
return r;
}
#define PRu64 "%llx"
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
#define OF_BAD_ADDR ((u64)-1)
#define OF_CHECK_COUNTS(na, ns) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS && \
(ns) > 0)
/* Debug utility */
#ifdef DEBUG
static void of_dump_addr(const char *s, const u32 *addr, int na)
{
printf("%s", s);
while(na--)
printf(" %08x", *(addr++));
printf("\n");
}
#else
static void of_dump_addr(const char *s, const u32 *addr, int na) { }
#endif
/* Callbacks for bus specific translators */
struct of_bus {
const char *name;
const char *addresses;
void (*count_cells)(void *blob, int parentoffset,
int *addrc, int *sizec);
u64 (*map)(u32 *addr, const u32 *range,
int na, int ns, int pna);
int (*translate)(u32 *addr, u64 offset, int na);
};
/* Default translator (generic bus) */
static void of_bus_default_count_cells(void *blob, int parentoffset,
int *addrc, int *sizec)
{
const u32 *prop;
if (addrc) {
prop = fdt_getprop(blob, parentoffset, "#address-cells", NULL);
if (prop)
*addrc = be32_to_cpup((u32 *)prop);
else
*addrc = 2;
}
if (sizec) {
prop = fdt_getprop(blob, parentoffset, "#size-cells", NULL);
if (prop)
*sizec = be32_to_cpup((u32 *)prop);
else
*sizec = 1;
}
}
static u64 of_bus_default_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u64 cp, s, da;
cp = of_read_number(range, na);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr, na);
debug("OF: default map, cp="PRu64", s="PRu64", da="PRu64"\n",
cp, s, da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_default_translate(u32 *addr, u64 offset, int na)
{
u64 a = of_read_number(addr, na);
memset(addr, 0, na * 4);
a += offset;
if (na > 1)
addr[na - 2] = a >> 32;
addr[na - 1] = a & 0xffffffffu;
return 0;
}
/* Array of bus specific translators */
static struct of_bus of_busses[] = {
/* Default */
{
.name = "default",
.addresses = "reg",
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.translate = of_bus_default_translate,
},
};
static int of_translate_one(void * blob, int parent, struct of_bus *bus,
struct of_bus *pbus, u32 *addr,
int na, int ns, int pna, const char *rprop)
{
const u32 *ranges;
int rlen;
int rone;
u64 offset = OF_BAD_ADDR;
/* Normally, an absence of a "ranges" property means we are
* crossing a non-translatable boundary, and thus the addresses
* below the current not cannot be converted to CPU physical ones.
* Unfortunately, while this is very clear in the spec, it's not
* what Apple understood, and they do have things like /uni-n or
* /ht nodes with no "ranges" property and a lot of perfectly
* useable mapped devices below them. Thus we treat the absence of
* "ranges" as equivalent to an empty "ranges" property which means
* a 1:1 translation at that level. It's up to the caller not to try
* to translate addresses that aren't supposed to be translated in
* the first place. --BenH.
*/
ranges = (u32 *)fdt_getprop(blob, parent, rprop, &rlen);
if (ranges == NULL || rlen == 0) {
offset = of_read_number(addr, na);
memset(addr, 0, pna * 4);
debug("OF: no ranges, 1:1 translation\n");
goto finish;
}
debug("OF: walking ranges...\n");
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
offset = bus->map(addr, ranges, na, ns, pna);
if (offset != OF_BAD_ADDR)
break;
}
if (offset == OF_BAD_ADDR) {
debug("OF: not found !\n");
return 1;
}
memcpy(addr, ranges + na, 4 * pna);
finish:
of_dump_addr("OF: parent translation for:", addr, pna);
debug("OF: with offset: "PRu64"\n", offset);
/* Translate it into parent bus space */
return pbus->translate(addr, offset, pna);
}
/*
* Translate an address from the device-tree into a CPU physical address,
* this walks up the tree and applies the various bus mappings on the
* way.
*
* Note: We consider that crossing any level with #size-cells == 0 to mean
* that translation is impossible (that is we are not dealing with a value
* that can be mapped to a cpu physical address). This is not really specified
* that way, but this is traditionally the way IBM at least do things
*/
u64 __of_translate_address(void *blob, int node_offset, const u32 *in_addr,
const char *rprop)
{
int parent;
struct of_bus *bus, *pbus;
u32 addr[OF_MAX_ADDR_CELLS];
int na, ns, pna, pns;
u64 result = OF_BAD_ADDR;
debug("OF: ** translation for device %s **\n",
fdt_get_name(blob, node_offset, NULL));
/* Get parent & match bus type */
parent = fdt_parent_offset(blob, node_offset);
if (parent < 0)
goto bail;
bus = &of_busses[0];
/* Cound address cells & copy address locally */
bus->count_cells(blob, parent, &na, &ns);
if (!OF_CHECK_COUNTS(na, ns)) {
printf("%s: Bad cell count for %s\n", __FUNCTION__,
fdt_get_name(blob, node_offset, NULL));
goto bail;
}
memcpy(addr, in_addr, na * 4);
debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
bus->name, na, ns, fdt_get_name(blob, parent, NULL));
of_dump_addr("OF: translating address:", addr, na);
/* Translate */
for (;;) {
/* Switch to parent bus */
node_offset = parent;
parent = fdt_parent_offset(blob, node_offset);
/* If root, we have finished */
if (parent < 0) {
debug("OF: reached root node\n");
result = of_read_number(addr, na);
break;
}
/* Get new parent bus and counts */
pbus = &of_busses[0];
pbus->count_cells(blob, parent, &pna, &pns);
if (!OF_CHECK_COUNTS(pna, pns)) {
printf("%s: Bad cell count for %s\n", __FUNCTION__,
fdt_get_name(blob, node_offset, NULL));
break;
}
debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
pbus->name, pna, pns, fdt_get_name(blob, parent, NULL));
/* Apply bus translation */
if (of_translate_one(blob, node_offset, bus, pbus,
addr, na, ns, pna, rprop))
break;
/* Complete the move up one level */
na = pna;
ns = pns;
bus = pbus;
of_dump_addr("OF: one level translation:", addr, na);
}
bail:
return result;
}
u64 fdt_translate_address(void *blob, int node_offset, const u32 *in_addr)
{
return __of_translate_address(blob, node_offset, in_addr, "ranges");
}
/**
* fdt_node_offset_by_compat_reg: Find a node that matches compatiable and
* who's reg property matches a physical cpu address
*
* @blob: ptr to device tree
* @compat: compatiable string to match
* @compat_off: property name
*
*/
int fdt_node_offset_by_compat_reg(void *blob, const char *compat,
phys_addr_t compat_off)
{
int len, off = fdt_node_offset_by_compatible(blob, -1, compat);
while (off != -FDT_ERR_NOTFOUND) {
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", &len);
if (reg) {
if (compat_off == fdt_translate_address(blob, off, reg))
return off;
}
off = fdt_node_offset_by_compatible(blob, off, compat);
}
return -FDT_ERR_NOTFOUND;
}
/**
* fdt_alloc_phandle: Return next free phandle value
*
* @blob: ptr to device tree
*/
int fdt_alloc_phandle(void *blob)
{
int offset, len, phandle = 0;
const u32 *val;
for (offset = fdt_next_node(blob, -1, NULL); offset >= 0;
offset = fdt_next_node(blob, offset, NULL)) {
val = fdt_getprop(blob, offset, "linux,phandle", &len);
if (val)
phandle = max(*val, phandle);
}
return phandle + 1;
}
#if defined(CONFIG_VIDEO)
int fdt_add_edid(void *blob, const char *compat, unsigned char *edid_buf)
{
int noff;
int ret;
noff = fdt_node_offset_by_compatible(blob, -1, compat);
if (noff != -FDT_ERR_NOTFOUND) {
debug("%s: %s\n", fdt_get_name(blob, noff, 0), compat);
add_edid:
ret = fdt_setprop(blob, noff, "edid", edid_buf, 128);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(blob, 512);
if (!ret)
goto add_edid;
else
goto err_size;
} else if (ret < 0) {
printf("Can't add property: %s\n", fdt_strerror(ret));
return ret;
}
}
return 0;
err_size:
printf("Can't increase blob size: %s\n", fdt_strerror(ret));
return ret;
}
#endif