upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mmc/mmc.c

1568 lines
33 KiB

/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <errno.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <div64.h>
#include "mmc_private.h"
static struct list_head mmc_devices;
static int cur_dev_num = -1;
__weak int board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (wp < 0) {
if (mmc->cfg->ops->getwp)
wp = mmc->cfg->ops->getwp(mmc);
else
wp = 0;
}
return wp;
}
__weak int board_mmc_getcd(struct mmc *mmc)
{
return -1;
}
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
int ret;
#ifdef CONFIG_MMC_TRACE
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
#else
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
#endif
return ret;
}
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
int err, retries = 5;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Status Error: 0x%08X\n",
cmd.response[0]);
#endif
return COMM_ERR;
}
} else if (--retries < 0)
return err;
udelay(1000);
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
if (timeout <= 0) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Timeout waiting card ready\n");
#endif
return TIMEOUT;
}
if (cmd.response[0] & MMC_STATUS_SWITCH_ERROR)
return SWITCH_ERR;
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
if (mmc->card_caps & MMC_MODE_DDR_52MHz)
return 0;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC Device %d not found\n", dev_num);
#endif
return NULL;
}
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
lbaint_t blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("mmc fail to send stop cmd\n");
#endif
return 0;
}
}
return blkcnt;
}
static ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst)
{
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if ((start + blkcnt) > mmc->block_dev.lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, mmc->block_dev.lba);
#endif
return 0;
}
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->cfg->b_max) ?
mmc->cfg->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
static int mmc_go_idle(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
static int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->cfg->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd,
int use_arg)
{
int err;
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = MMC_RSP_R3;
cmd->cmdarg = 0;
if (use_arg && !mmc_host_is_spi(mmc)) {
cmd->cmdarg =
(mmc->cfg->voltages &
(mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
(mmc->op_cond_response & OCR_ACCESS_MODE);
if (mmc->cfg->host_caps & MMC_MODE_HC)
cmd->cmdarg |= OCR_HCS;
}
err = mmc_send_cmd(mmc, cmd, NULL);
if (err)
return err;
mmc->op_cond_response = cmd->response[0];
return 0;
}
static int mmc_send_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
mmc->op_cond_pending = 1;
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
if (err)
return err;
/* exit if not busy (flag seems to be inverted) */
if (mmc->op_cond_response & OCR_BUSY)
return 0;
}
return IN_PROGRESS;
}
static int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
uint start;
int err;
mmc->op_cond_pending = 0;
start = get_timer(0);
do {
err = mmc_send_op_cond_iter(mmc, &cmd, 1);
if (err)
return err;
if (get_timer(start) > timeout)
return UNUSABLE_ERR;
udelay(100);
} while (!(mmc->op_cond_response & OCR_BUSY));
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 1;
return 0;
}
static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
}
static int mmc_change_freq(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err == SWITCH_ERR ? 0 : err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
if (!ext_csd[EXT_CSD_HS_TIMING])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & EXT_CSD_CARD_TYPE_52) {
if (cardtype & EXT_CSD_CARD_TYPE_DDR_52)
mmc->card_caps |= MMC_MODE_DDR_52MHz;
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
} else {
mmc->card_caps |= MMC_MODE_HS;
}
return 0;
}
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
int mmc_select_hwpart(int dev_num, int hwpart)
{
struct mmc *mmc = find_mmc_device(dev_num);
int ret;
if (!mmc)
return -ENODEV;
if (mmc->part_num == hwpart)
return 0;
if (mmc->part_config == MMCPART_NOAVAILABLE) {
printf("Card doesn't support part_switch\n");
return -EMEDIUMTYPE;
}
ret = mmc_switch_part(dev_num, hwpart);
if (ret)
return ret;
mmc->part_num = hwpart;
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
int ret;
if (!mmc)
return -1;
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
if (ret)
return ret;
return mmc_set_capacity(mmc, part_num);
}
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (cd < 0) {
if (mmc->cfg->ops->getcd)
cd = mmc->cfg->ops->getcd(mmc);
else
cd = 1;
}
return cd;
}
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->cfg->host_caps & MMC_MODE_HS)))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if (err)
return err;
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const int multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
static void mmc_set_ios(struct mmc *mmc)
{
if (mmc->cfg->ops->set_ios)
mmc->cfg->ops->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->cfg->f_max)
clock = mmc->cfg->f_max;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
static void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
static int mmc_startup(struct mmc *mmc)
{
int err, i;
uint mult, freq;
u64 cmult, csize, capacity;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN);
int timeout = 1000;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
/* Put the Card in Identify Mode */
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err)
return err;
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1);
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity_user = (csize + 1) << (cmult + 2);
mmc->capacity_user *= mmc->read_bl_len;
mmc->capacity_boot = 0;
mmc->capacity_rpmb = 0;
for (i = 0; i < 4; i++)
mmc->capacity_gp[i] = 0;
if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) {
cmd.cmdidx = MMC_CMD_SET_DSR;
cmd.cmdarg = (mmc->dsr & 0xffff) << 16;
cmd.resp_type = MMC_RSP_NONE;
if (mmc_send_cmd(mmc, &cmd, NULL))
printf("MMC: SET_DSR failed\n");
}
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err && (ext_csd[EXT_CSD_REV] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
capacity *= MMC_MAX_BLOCK_LEN;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity_user = capacity;
}
switch (ext_csd[EXT_CSD_REV]) {
case 1:
mmc->version = MMC_VERSION_4_1;
break;
case 2:
mmc->version = MMC_VERSION_4_2;
break;
case 3:
mmc->version = MMC_VERSION_4_3;
break;
case 5:
mmc->version = MMC_VERSION_4_41;
break;
case 6:
mmc->version = MMC_VERSION_4_5;
break;
}
/*
* Host needs to enable ERASE_GRP_DEF bit if device is
* partitioned. This bit will be lost every time after a reset
* or power off. This will affect erase size.
*/
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) &&
(ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
/* Read out group size from ext_csd */
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] *
MMC_MAX_BLOCK_LEN * 1024;
} else {
/* Calculate the group size from the csd value. */
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size = (erase_gsz + 1)
* (erase_gmul + 1);
}
/* store the partition info of emmc */
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) ||
ext_csd[EXT_CSD_BOOT_MULT])
mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17;
for (i = 0; i < 4; i++) {
int idx = EXT_CSD_GP_SIZE_MULT + i * 3;
mmc->capacity_gp[i] = (ext_csd[idx + 2] << 16) +
(ext_csd[idx + 1] << 8) + ext_csd[idx];
mmc->capacity_gp[i] *=
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
}
}
err = mmc_set_capacity(mmc, mmc->part_num);
if (err)
return err;
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->cfg->host_caps;
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc->tran_speed = 50000000;
else
mmc->tran_speed = 25000000;
} else {
int idx;
/* An array of possible bus widths in order of preference */
static unsigned ext_csd_bits[] = {
EXT_CSD_DDR_BUS_WIDTH_8,
EXT_CSD_DDR_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_8,
EXT_CSD_BUS_WIDTH_4,
EXT_CSD_BUS_WIDTH_1,
};
/* An array to map CSD bus widths to host cap bits */
static unsigned ext_to_hostcaps[] = {
[EXT_CSD_DDR_BUS_WIDTH_4] = MMC_MODE_DDR_52MHz,
[EXT_CSD_DDR_BUS_WIDTH_8] = MMC_MODE_DDR_52MHz,
[EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT,
[EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT,
};
/* An array to map chosen bus width to an integer */
static unsigned widths[] = {
8, 4, 8, 4, 1,
};
for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) {
unsigned int extw = ext_csd_bits[idx];
/*
* Check to make sure the controller supports
* this bus width, if it's more than 1
*/
if (extw != EXT_CSD_BUS_WIDTH_1 &&
!(mmc->cfg->host_caps & ext_to_hostcaps[extw]))
continue;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, extw);
if (err)
continue;
mmc_set_bus_width(mmc, widths[idx]);
err = mmc_send_ext_csd(mmc, test_csd);
if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \
== test_csd[EXT_CSD_PARTITIONING_SUPPORT]
&& ext_csd[EXT_CSD_ERASE_GROUP_DEF] \
== test_csd[EXT_CSD_ERASE_GROUP_DEF] \
&& ext_csd[EXT_CSD_REV] \
== test_csd[EXT_CSD_REV]
&& ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \
== test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
&& memcmp(&ext_csd[EXT_CSD_SEC_CNT], \
&test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
mmc->card_caps |= ext_to_hostcaps[extw];
break;
}
}
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc->tran_speed = 52000000;
else
mmc->tran_speed = 26000000;
}
}
mmc_set_clock(mmc, mmc->tran_speed);
/* fill in device description */
mmc->block_dev.lun = 0;
mmc->block_dev.type = 0;
mmc->block_dev.blksz = mmc->read_bl_len;
mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz);
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
sprintf(mmc->block_dev.vendor, "Man %06x Snr %04x%04x",
mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff),
(mmc->cid[3] >> 16) & 0xffff);
sprintf(mmc->block_dev.product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
(mmc->cid[2] >> 24) & 0xff);
sprintf(mmc->block_dev.revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf,
(mmc->cid[2] >> 16) & 0xf);
#else
mmc->block_dev.vendor[0] = 0;
mmc->block_dev.product[0] = 0;
mmc->block_dev.revision[0] = 0;
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT)
init_part(&mmc->block_dev);
#endif
return 0;
}
static int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
/* not used any more */
int __deprecated mmc_register(struct mmc *mmc)
{
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("%s is deprecated! use mmc_create() instead.\n", __func__);
#endif
return -1;
}
struct mmc *mmc_create(const struct mmc_config *cfg, void *priv)
{
struct mmc *mmc;
/* quick validation */
if (cfg == NULL || cfg->ops == NULL || cfg->ops->send_cmd == NULL ||
cfg->f_min == 0 || cfg->f_max == 0 || cfg->b_max == 0)
return NULL;
mmc = calloc(1, sizeof(*mmc));
if (mmc == NULL)
return NULL;
mmc->cfg = cfg;
mmc->priv = priv;
/* the following chunk was mmc_register() */
/* Setup dsr related values */
mmc->dsr_imp = 0;
mmc->dsr = 0xffffffff;
/* Setup the universal parts of the block interface just once */
mmc->block_dev.if_type = IF_TYPE_MMC;
mmc->block_dev.dev = cur_dev_num++;
mmc->block_dev.removable = 1;
mmc->block_dev.block_read = mmc_bread;
mmc->block_dev.block_write = mmc_bwrite;
mmc->block_dev.block_erase = mmc_berase;
/* setup initial part type */
mmc->block_dev.part_type = mmc->cfg->part_type;
INIT_LIST_HEAD(&mmc->link);
list_add_tail(&mmc->link, &mmc_devices);
return mmc;
}
void mmc_destroy(struct mmc *mmc)
{
/* only freeing memory for now */
free(mmc);
}
#ifdef CONFIG_PARTITIONS
block_dev_desc_t *mmc_get_dev(int dev)
{
struct mmc *mmc = find_mmc_device(dev);
if (!mmc || mmc_init(mmc))
return NULL;
return &mmc->block_dev;
}
#endif
int mmc_start_init(struct mmc *mmc)
{
int err;
/* we pretend there's no card when init is NULL */
if (mmc_getcd(mmc) == 0 || mmc->cfg->ops->init == NULL) {
mmc->has_init = 0;
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: no card present\n");
#endif
return NO_CARD_ERR;
}
if (mmc->has_init)
return 0;
/* made sure it's not NULL earlier */
err = mmc->cfg->ops->init(mmc);
if (err)
return err;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == TIMEOUT) {
err = mmc_send_op_cond(mmc);
if (err && err != IN_PROGRESS) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Card did not respond to voltage select!\n");
#endif
return UNUSABLE_ERR;
}
}
if (err == IN_PROGRESS)
mmc->init_in_progress = 1;
return err;
}
static int mmc_complete_init(struct mmc *mmc)
{
int err = 0;
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (!err)
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
mmc->init_in_progress = 0;
return err;
}
int mmc_init(struct mmc *mmc)
{
int err = IN_PROGRESS;
unsigned start;
if (mmc->has_init)
return 0;
start = get_timer(0);
if (!mmc->init_in_progress)
err = mmc_start_init(mmc);
if (!err || err == IN_PROGRESS)
err = mmc_complete_init(mmc);
debug("%s: %d, time %lu\n", __func__, err, get_timer(start));
return err;
}
int mmc_set_dsr(struct mmc *mmc, u16 val)
{
mmc->dsr = val;
return 0;
}
/* CPU-specific MMC initializations */
__weak int cpu_mmc_init(bd_t *bis)
{
return -1;
}
/* board-specific MMC initializations. */
__weak int board_mmc_init(bd_t *bis)
{
return -1;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
void print_mmc_devices(char separator)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
printf("%s: %d", m->cfg->name, m->block_dev.dev);
if (entry->next != &mmc_devices)
printf("%c ", separator);
}
printf("\n");
}
#else
void print_mmc_devices(char separator) { }
#endif
int get_mmc_num(void)
{
return cur_dev_num;
}
void mmc_set_preinit(struct mmc *mmc, int preinit)
{
mmc->preinit = preinit;
}
static void do_preinit(void)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->preinit)
mmc_start_init(m);
}
}
int mmc_initialize(bd_t *bis)
{
INIT_LIST_HEAD (&mmc_devices);
cur_dev_num = 0;
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
#ifndef CONFIG_SPL_BUILD
print_mmc_devices(',');
#endif
do_preinit();
return 0;
}
#ifdef CONFIG_SUPPORT_EMMC_BOOT
/*
* This function changes the size of boot partition and the size of rpmb
* partition present on EMMC devices.
*
* Input Parameters:
* struct *mmc: pointer for the mmc device strcuture
* bootsize: size of boot partition
* rpmbsize: size of rpmb partition
*
* Returns 0 on success.
*/
int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize,
unsigned long rpmbsize)
{
int err;
struct mmc_cmd cmd;
/* Only use this command for raw EMMC moviNAND. Enter backdoor mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error1 = %d\n", err);
return err;
}
/* Boot partition changing mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error2 = %d\n", err);
return err;
}
/* boot partition size is multiple of 128KB */
bootsize = (bootsize * 1024) / 128;
/* Arg: boot partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = bootsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error3 = %d\n", err);
return err;
}
/* RPMB partition size is multiple of 128KB */
rpmbsize = (rpmbsize * 1024) / 128;
/* Arg: RPMB partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = rpmbsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error4 = %d\n", err);
return err;
}
return 0;
}
/*
* Modify EXT_CSD[177] which is BOOT_BUS_WIDTH
* based on the passed in values for BOOT_BUS_WIDTH, RESET_BOOT_BUS_WIDTH
* and BOOT_MODE.
*
* Returns 0 on success.
*/
int mmc_set_boot_bus_width(struct mmc *mmc, u8 width, u8 reset, u8 mode)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_WIDTH,
EXT_CSD_BOOT_BUS_WIDTH_MODE(mode) |
EXT_CSD_BOOT_BUS_WIDTH_RESET(reset) |
EXT_CSD_BOOT_BUS_WIDTH_WIDTH(width));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[179] which is PARTITION_CONFIG (formerly BOOT_CONFIG)
* based on the passed in values for BOOT_ACK, BOOT_PARTITION_ENABLE and
* PARTITION_ACCESS.
*
* Returns 0 on success.
*/
int mmc_set_part_conf(struct mmc *mmc, u8 ack, u8 part_num, u8 access)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
EXT_CSD_BOOT_ACK(ack) |
EXT_CSD_BOOT_PART_NUM(part_num) |
EXT_CSD_PARTITION_ACCESS(access));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[162] which is RST_n_FUNCTION based on the given value
* for enable. Note that this is a write-once field for non-zero values.
*
* Returns 0 on success.
*/
int mmc_set_rst_n_function(struct mmc *mmc, u8 enable)
{
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_RST_N_FUNCTION,
enable);
}
#endif