upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/arm/cpu/armv7/mx6/ddr.c

1499 lines
46 KiB

/*
* Copyright (C) 2014 Gateworks Corporation
* Author: Tim Harvey <tharvey@gateworks.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <linux/types.h>
#include <asm/arch/clock.h>
#include <asm/arch/mx6-ddr.h>
#include <asm/arch/sys_proto.h>
#include <asm/io.h>
#include <asm/types.h>
#include <wait_bit.h>
#if defined(CONFIG_MX6QDL) || defined(CONFIG_MX6Q) || defined(CONFIG_MX6D)
static void reset_read_data_fifos(void)
{
struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
/* Reset data FIFOs twice. */
setbits_le32(&mmdc0->mpdgctrl0, 1 << 31);
wait_for_bit("MMDC", &mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0);
setbits_le32(&mmdc0->mpdgctrl0, 1 << 31);
wait_for_bit("MMDC", &mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0);
}
static void precharge_all(const bool cs0_enable, const bool cs1_enable)
{
struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
/*
* Issue the Precharge-All command to the DDR device for both
* chip selects. Note, CON_REQ bit should also remain set. If
* only using one chip select, then precharge only the desired
* chip select.
*/
if (cs0_enable) { /* CS0 */
writel(0x04008050, &mmdc0->mdscr);
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 1, 100, 0);
}
if (cs1_enable) { /* CS1 */
writel(0x04008058, &mmdc0->mdscr);
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 1, 100, 0);
}
}
static void force_delay_measurement(int bus_size)
{
struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR;
writel(0x800, &mmdc0->mpmur0);
if (bus_size == 0x2)
writel(0x800, &mmdc1->mpmur0);
}
static void modify_dg_result(u32 *reg_st0, u32 *reg_st1, u32 *reg_ctrl)
{
u32 dg_tmp_val, dg_dl_abs_offset, dg_hc_del, val_ctrl;
/*
* DQS gating absolute offset should be modified from reflecting
* (HW_DG_LOWx + HW_DG_UPx)/2 to reflecting (HW_DG_UPx - 0x80)
*/
val_ctrl = readl(reg_ctrl);
val_ctrl &= 0xf0000000;
dg_tmp_val = ((readl(reg_st0) & 0x07ff0000) >> 16) - 0xc0;
dg_dl_abs_offset = dg_tmp_val & 0x7f;
dg_hc_del = (dg_tmp_val & 0x780) << 1;
val_ctrl |= dg_dl_abs_offset + dg_hc_del;
dg_tmp_val = ((readl(reg_st1) & 0x07ff0000) >> 16) - 0xc0;
dg_dl_abs_offset = dg_tmp_val & 0x7f;
dg_hc_del = (dg_tmp_val & 0x780) << 1;
val_ctrl |= (dg_dl_abs_offset + dg_hc_del) << 16;
writel(val_ctrl, reg_ctrl);
}
int mmdc_do_write_level_calibration(void)
{
struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR;
u32 esdmisc_val, zq_val;
u32 errors = 0;
u32 ldectrl[4];
u32 ddr_mr1 = 0x4;
/*
* Stash old values in case calibration fails,
* we need to restore them
*/
ldectrl[0] = readl(&mmdc0->mpwldectrl0);
ldectrl[1] = readl(&mmdc0->mpwldectrl1);
ldectrl[2] = readl(&mmdc1->mpwldectrl0);
ldectrl[3] = readl(&mmdc1->mpwldectrl1);
/* disable DDR logic power down timer */
clrbits_le32(&mmdc0->mdpdc, 0xff00);
/* disable Adopt power down timer */
setbits_le32(&mmdc0->mapsr, 0x1);
debug("Starting write leveling calibration.\n");
/*
* 2. disable auto refresh and ZQ calibration
* before proceeding with Write Leveling calibration
*/
esdmisc_val = readl(&mmdc0->mdref);
writel(0x0000C000, &mmdc0->mdref);
zq_val = readl(&mmdc0->mpzqhwctrl);
writel(zq_val & ~0x3, &mmdc0->mpzqhwctrl);
/* 3. increase walat and ralat to maximum */
setbits_le32(&mmdc0->mdmisc,
(1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17));
setbits_le32(&mmdc1->mdmisc,
(1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17));
/*
* 4 & 5. Configure the external DDR device to enter write-leveling
* mode through Load Mode Register command.
* Register setting:
* Bits[31:16] MR1 value (0x0080 write leveling enable)
* Bit[9] set WL_EN to enable MMDC DQS output
* Bits[6:4] set CMD bits for Load Mode Register programming
* Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming
*/
writel(0x00808231, &mmdc0->mdscr);
/* 6. Activate automatic calibration by setting MPWLGCR[HW_WL_EN] */
writel(0x00000001, &mmdc0->mpwlgcr);
/*
* 7. Upon completion of this process the MMDC de-asserts
* the MPWLGCR[HW_WL_EN]
*/
wait_for_bit("MMDC", &mmdc0->mpwlgcr, 1 << 0, 0, 100, 0);
/*
* 8. check for any errors: check both PHYs for x64 configuration,
* if x32, check only PHY0
*/
if (readl(&mmdc0->mpwlgcr) & 0x00000F00)
errors |= 1;
if (readl(&mmdc1->mpwlgcr) & 0x00000F00)
errors |= 2;
debug("Ending write leveling calibration. Error mask: 0x%x\n", errors);
/* check to see if cal failed */
if ((readl(&mmdc0->mpwldectrl0) == 0x001F001F) &&
(readl(&mmdc0->mpwldectrl1) == 0x001F001F) &&
(readl(&mmdc1->mpwldectrl0) == 0x001F001F) &&
(readl(&mmdc1->mpwldectrl1) == 0x001F001F)) {
debug("Cal seems to have soft-failed due to memory not supporting write leveling on all channels. Restoring original write leveling values.\n");
writel(ldectrl[0], &mmdc0->mpwldectrl0);
writel(ldectrl[1], &mmdc0->mpwldectrl1);
writel(ldectrl[2], &mmdc1->mpwldectrl0);
writel(ldectrl[3], &mmdc1->mpwldectrl1);
errors |= 4;
}
/*
* User should issue MRS command to exit write leveling mode
* through Load Mode Register command
* Register setting:
* Bits[31:16] MR1 value "ddr_mr1" value from initialization
* Bit[9] clear WL_EN to disable MMDC DQS output
* Bits[6:4] set CMD bits for Load Mode Register programming
* Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming
*/
writel((ddr_mr1 << 16) + 0x8031, &mmdc0->mdscr);
/* re-enable auto refresh and zq cal */
writel(esdmisc_val, &mmdc0->mdref);
writel(zq_val, &mmdc0->mpzqhwctrl);
debug("\tMMDC_MPWLDECTRL0 after write level cal: 0x%08X\n",
readl(&mmdc0->mpwldectrl0));
debug("\tMMDC_MPWLDECTRL1 after write level cal: 0x%08X\n",
readl(&mmdc0->mpwldectrl1));
debug("\tMMDC_MPWLDECTRL0 after write level cal: 0x%08X\n",
readl(&mmdc1->mpwldectrl0));
debug("\tMMDC_MPWLDECTRL1 after write level cal: 0x%08X\n",
readl(&mmdc1->mpwldectrl1));
/* We must force a readback of these values, to get them to stick */
readl(&mmdc0->mpwldectrl0);
readl(&mmdc0->mpwldectrl1);
readl(&mmdc1->mpwldectrl0);
readl(&mmdc1->mpwldectrl1);
/* enable DDR logic power down timer: */
setbits_le32(&mmdc0->mdpdc, 0x00005500);
/* Enable Adopt power down timer: */
clrbits_le32(&mmdc0->mapsr, 0x1);
/* Clear CON_REQ */
writel(0, &mmdc0->mdscr);
return errors;
}
int mmdc_do_dqs_calibration(void)
{
struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR;
struct mx6dq_iomux_ddr_regs *mx6_ddr_iomux =
(struct mx6dq_iomux_ddr_regs *)MX6DQ_IOM_DDR_BASE;
bool cs0_enable;
bool cs1_enable;
bool cs0_enable_initial;
bool cs1_enable_initial;
u32 esdmisc_val;
u32 bus_size;
u32 temp_ref;
u32 pddword = 0x00ffff00; /* best so far, place into MPPDCMPR1 */
u32 errors = 0;
u32 initdelay = 0x40404040;
/* check to see which chip selects are enabled */
cs0_enable_initial = readl(&mmdc0->mdctl) & 0x80000000;
cs1_enable_initial = readl(&mmdc0->mdctl) & 0x40000000;
/* disable DDR logic power down timer: */
clrbits_le32(&mmdc0->mdpdc, 0xff00);
/* disable Adopt power down timer: */
setbits_le32(&mmdc0->mapsr, 0x1);
/* set DQS pull ups */
setbits_le32(&mx6_ddr_iomux->dram_sdqs0, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs1, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs2, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs3, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs4, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs5, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs6, 0x7000);
setbits_le32(&mx6_ddr_iomux->dram_sdqs7, 0x7000);
/* Save old RALAT and WALAT values */
esdmisc_val = readl(&mmdc0->mdmisc);
setbits_le32(&mmdc0->mdmisc,
(1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17));
/* Disable auto refresh before proceeding with calibration */
temp_ref = readl(&mmdc0->mdref);
writel(0x0000c000, &mmdc0->mdref);
/*
* Per the ref manual, issue one refresh cycle MDSCR[CMD]= 0x2,
* this also sets the CON_REQ bit.
*/
if (cs0_enable_initial)
writel(0x00008020, &mmdc0->mdscr);
if (cs1_enable_initial)
writel(0x00008028, &mmdc0->mdscr);
/* poll to make sure the con_ack bit was asserted */
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 1, 100, 0);
/*
* Check MDMISC register CALIB_PER_CS to see which CS calibration
* is targeted to (under normal cases, it should be cleared
* as this is the default value, indicating calibration is directed
* to CS0).
* Disable the other chip select not being target for calibration
* to avoid any potential issues. This will get re-enabled at end
* of calibration.
*/
if ((readl(&mmdc0->mdmisc) & 0x00100000) == 0)
clrbits_le32(&mmdc0->mdctl, 1 << 30); /* clear SDE_1 */
else
clrbits_le32(&mmdc0->mdctl, 1 << 31); /* clear SDE_0 */
/*
* Check to see which chip selects are now enabled for
* the remainder of the calibration.
*/
cs0_enable = readl(&mmdc0->mdctl) & 0x80000000;
cs1_enable = readl(&mmdc0->mdctl) & 0x40000000;
/* Check to see what the data bus size is */
bus_size = (readl(&mmdc0->mdctl) & 0x30000) >> 16;
debug("Data bus size: %d (%d bits)\n", bus_size, 1 << (bus_size + 4));
precharge_all(cs0_enable, cs1_enable);
/* Write the pre-defined value into MPPDCMPR1 */
writel(pddword, &mmdc0->mppdcmpr1);
/*
* Issue a write access to the external DDR device by setting
* the bit SW_DUMMY_WR (bit 0) in the MPSWDAR0 and then poll
* this bit until it clears to indicate completion of the write access.
*/
setbits_le32(&mmdc0->mpswdar0, 1);
wait_for_bit("MMDC", &mmdc0->mpswdar0, 1 << 0, 0, 100, 0);
/* Set the RD_DL_ABS# bits to their default values
* (will be calibrated later in the read delay-line calibration).
* Both PHYs for x64 configuration, if x32, do only PHY0.
*/
writel(initdelay, &mmdc0->mprddlctl);
if (bus_size == 0x2)
writel(initdelay, &mmdc1->mprddlctl);
/* Force a measurment, for previous delay setup to take effect. */
force_delay_measurement(bus_size);
/*
* ***************************
* Read DQS Gating calibration
* ***************************
*/
debug("Starting Read DQS Gating calibration.\n");
/*
* Reset the read data FIFOs (two resets); only need to issue reset
* to PHY0 since in x64 mode, the reset will also go to PHY1.
*/
reset_read_data_fifos();
/*
* Start the automatic read DQS gating calibration process by
* asserting MPDGCTRL0[HW_DG_EN] and MPDGCTRL0[DG_CMP_CYC]
* and then poll MPDGCTRL0[HW_DG_EN]] until this bit clears
* to indicate completion.
* Also, ensure that MPDGCTRL0[HW_DG_ERR] is clear to indicate
* no errors were seen during calibration.
*/
/*
* Set bit 30: chooses option to wait 32 cycles instead of
* 16 before comparing read data.
*/
setbits_le32(&mmdc0->mpdgctrl0, 1 << 30);
/* Set bit 28 to start automatic read DQS gating calibration */
setbits_le32(&mmdc0->mpdgctrl0, 5 << 28);
/* Poll for completion. MPDGCTRL0[HW_DG_EN] should be 0 */
wait_for_bit("MMDC", &mmdc0->mpdgctrl0, 1 << 28, 0, 100, 0);
/*
* Check to see if any errors were encountered during calibration
* (check MPDGCTRL0[HW_DG_ERR]).
* Check both PHYs for x64 configuration, if x32, check only PHY0.
*/
if (readl(&mmdc0->mpdgctrl0) & 0x00001000)
errors |= 1;
if ((bus_size == 0x2) && (readl(&mmdc1->mpdgctrl0) & 0x00001000))
errors |= 2;
/*
* DQS gating absolute offset should be modified from
* reflecting (HW_DG_LOWx + HW_DG_UPx)/2 to
* reflecting (HW_DG_UPx - 0x80)
*/
modify_dg_result(&mmdc0->mpdghwst0, &mmdc0->mpdghwst1,
&mmdc0->mpdgctrl0);
modify_dg_result(&mmdc0->mpdghwst2, &mmdc0->mpdghwst3,
&mmdc0->mpdgctrl1);
if (bus_size == 0x2) {
modify_dg_result(&mmdc1->mpdghwst0, &mmdc1->mpdghwst1,
&mmdc1->mpdgctrl0);
modify_dg_result(&mmdc1->mpdghwst2, &mmdc1->mpdghwst3,
&mmdc1->mpdgctrl1);
}
debug("Ending Read DQS Gating calibration. Error mask: 0x%x\n", errors);
/*
* **********************
* Read Delay calibration
* **********************
*/
debug("Starting Read Delay calibration.\n");
reset_read_data_fifos();
/*
* 4. Issue the Precharge-All command to the DDR device for both
* chip selects. If only using one chip select, then precharge
* only the desired chip select.
*/
precharge_all(cs0_enable, cs1_enable);
/*
* 9. Read delay-line calibration
* Start the automatic read calibration process by asserting
* MPRDDLHWCTL[HW_RD_DL_EN].
*/
writel(0x00000030, &mmdc0->mprddlhwctl);
/*
* 10. poll for completion
* MMDC indicates that the write data calibration had finished by
* setting MPRDDLHWCTL[HW_RD_DL_EN] = 0. Also, ensure that
* no error bits were set.
*/
wait_for_bit("MMDC", &mmdc0->mprddlhwctl, 1 << 4, 0, 100, 0);
/* check both PHYs for x64 configuration, if x32, check only PHY0 */
if (readl(&mmdc0->mprddlhwctl) & 0x0000000f)
errors |= 4;
if ((bus_size == 0x2) && (readl(&mmdc1->mprddlhwctl) & 0x0000000f))
errors |= 8;
debug("Ending Read Delay calibration. Error mask: 0x%x\n", errors);
/*
* ***********************
* Write Delay Calibration
* ***********************
*/
debug("Starting Write Delay calibration.\n");
reset_read_data_fifos();
/*
* 4. Issue the Precharge-All command to the DDR device for both
* chip selects. If only using one chip select, then precharge
* only the desired chip select.
*/
precharge_all(cs0_enable, cs1_enable);
/*
* 8. Set the WR_DL_ABS# bits to their default values.
* Both PHYs for x64 configuration, if x32, do only PHY0.
*/
writel(initdelay, &mmdc0->mpwrdlctl);
if (bus_size == 0x2)
writel(initdelay, &mmdc1->mpwrdlctl);
/*
* XXX This isn't in the manual. Force a measurement,
* for previous delay setup to effect.
*/
force_delay_measurement(bus_size);
/*
* 9. 10. Start the automatic write calibration process
* by asserting MPWRDLHWCTL0[HW_WR_DL_EN].
*/
writel(0x00000030, &mmdc0->mpwrdlhwctl);
/*
* Poll for completion.
* MMDC indicates that the write data calibration had finished
* by setting MPWRDLHWCTL[HW_WR_DL_EN] = 0.
* Also, ensure that no error bits were set.
*/
wait_for_bit("MMDC", &mmdc0->mpwrdlhwctl, 1 << 4, 0, 100, 0);
/* Check both PHYs for x64 configuration, if x32, check only PHY0 */
if (readl(&mmdc0->mpwrdlhwctl) & 0x0000000f)
errors |= 16;
if ((bus_size == 0x2) && (readl(&mmdc1->mpwrdlhwctl) & 0x0000000f))
errors |= 32;
debug("Ending Write Delay calibration. Error mask: 0x%x\n", errors);
reset_read_data_fifos();
/* Enable DDR logic power down timer */
setbits_le32(&mmdc0->mdpdc, 0x00005500);
/* Enable Adopt power down timer */
clrbits_le32(&mmdc0->mapsr, 0x1);
/* Restore MDMISC value (RALAT, WALAT) to MMDCP1 */
writel(esdmisc_val, &mmdc0->mdmisc);
/* Clear DQS pull ups */
clrbits_le32(&mx6_ddr_iomux->dram_sdqs0, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs1, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs2, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs3, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs4, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs5, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs6, 0x7000);
clrbits_le32(&mx6_ddr_iomux->dram_sdqs7, 0x7000);
/* Re-enable SDE (chip selects) if they were set initially */
if (cs1_enable_initial)
/* Set SDE_1 */
setbits_le32(&mmdc0->mdctl, 1 << 30);
if (cs0_enable_initial)
/* Set SDE_0 */
setbits_le32(&mmdc0->mdctl, 1 << 31);
/* Re-enable to auto refresh */
writel(temp_ref, &mmdc0->mdref);
/* Clear the MDSCR (including the con_req bit) */
writel(0x0, &mmdc0->mdscr); /* CS0 */
/* Poll to make sure the con_ack bit is clear */
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 0, 100, 0);
/*
* Print out the registers that were updated as a result
* of the calibration process.
*/
debug("MMDC registers updated from calibration\n");
debug("Read DQS gating calibration:\n");
debug("\tMPDGCTRL0 PHY0 = 0x%08X\n", readl(&mmdc0->mpdgctrl0));
debug("\tMPDGCTRL1 PHY0 = 0x%08X\n", readl(&mmdc0->mpdgctrl1));
debug("\tMPDGCTRL0 PHY1 = 0x%08X\n", readl(&mmdc1->mpdgctrl0));
debug("\tMPDGCTRL1 PHY1 = 0x%08X\n", readl(&mmdc1->mpdgctrl1));
debug("Read calibration:\n");
debug("\tMPRDDLCTL PHY0 = 0x%08X\n", readl(&mmdc0->mprddlctl));
debug("\tMPRDDLCTL PHY1 = 0x%08X\n", readl(&mmdc1->mprddlctl));
debug("Write calibration:\n");
debug("\tMPWRDLCTL PHY0 = 0x%08X\n", readl(&mmdc0->mpwrdlctl));
debug("\tMPWRDLCTL PHY1 = 0x%08X\n", readl(&mmdc1->mpwrdlctl));
/*
* Registers below are for debugging purposes. These print out
* the upper and lower boundaries captured during
* read DQS gating calibration.
*/
debug("Status registers bounds for read DQS gating:\n");
debug("\tMPDGHWST0 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst0));
debug("\tMPDGHWST1 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst1));
debug("\tMPDGHWST2 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst2));
debug("\tMPDGHWST3 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst3));
debug("\tMPDGHWST0 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst0));
debug("\tMPDGHWST1 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst1));
debug("\tMPDGHWST2 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst2));
debug("\tMPDGHWST3 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst3));
debug("Final do_dqs_calibration error mask: 0x%x\n", errors);
return errors;
}
#endif
#if defined(CONFIG_MX6SX)
/* Configure MX6SX mmdc iomux */
void mx6sx_dram_iocfg(unsigned width,
const struct mx6sx_iomux_ddr_regs *ddr,
const struct mx6sx_iomux_grp_regs *grp)
{
struct mx6sx_iomux_ddr_regs *mx6_ddr_iomux;
struct mx6sx_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6sx_iomux_ddr_regs *)MX6SX_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6sx_iomux_grp_regs *)MX6SX_IOM_GRP_BASE;
/* DDR IO TYPE */
writel(grp->grp_ddr_type, &mx6_grp_iomux->grp_ddr_type);
writel(grp->grp_ddrpke, &mx6_grp_iomux->grp_ddrpke);
/* CLOCK */
writel(ddr->dram_sdclk_0, &mx6_ddr_iomux->dram_sdclk_0);
/* ADDRESS */
writel(ddr->dram_cas, &mx6_ddr_iomux->dram_cas);
writel(ddr->dram_ras, &mx6_ddr_iomux->dram_ras);
writel(grp->grp_addds, &mx6_grp_iomux->grp_addds);
/* Control */
writel(ddr->dram_reset, &mx6_ddr_iomux->dram_reset);
writel(ddr->dram_sdba2, &mx6_ddr_iomux->dram_sdba2);
writel(ddr->dram_sdcke0, &mx6_ddr_iomux->dram_sdcke0);
writel(ddr->dram_sdcke1, &mx6_ddr_iomux->dram_sdcke1);
writel(ddr->dram_odt0, &mx6_ddr_iomux->dram_odt0);
writel(ddr->dram_odt1, &mx6_ddr_iomux->dram_odt1);
writel(grp->grp_ctlds, &mx6_grp_iomux->grp_ctlds);
/* Data Strobes */
writel(grp->grp_ddrmode_ctl, &mx6_grp_iomux->grp_ddrmode_ctl);
writel(ddr->dram_sdqs0, &mx6_ddr_iomux->dram_sdqs0);
writel(ddr->dram_sdqs1, &mx6_ddr_iomux->dram_sdqs1);
if (width >= 32) {
writel(ddr->dram_sdqs2, &mx6_ddr_iomux->dram_sdqs2);
writel(ddr->dram_sdqs3, &mx6_ddr_iomux->dram_sdqs3);
}
/* Data */
writel(grp->grp_ddrmode, &mx6_grp_iomux->grp_ddrmode);
writel(grp->grp_b0ds, &mx6_grp_iomux->grp_b0ds);
writel(grp->grp_b1ds, &mx6_grp_iomux->grp_b1ds);
if (width >= 32) {
writel(grp->grp_b2ds, &mx6_grp_iomux->grp_b2ds);
writel(grp->grp_b3ds, &mx6_grp_iomux->grp_b3ds);
}
writel(ddr->dram_dqm0, &mx6_ddr_iomux->dram_dqm0);
writel(ddr->dram_dqm1, &mx6_ddr_iomux->dram_dqm1);
if (width >= 32) {
writel(ddr->dram_dqm2, &mx6_ddr_iomux->dram_dqm2);
writel(ddr->dram_dqm3, &mx6_ddr_iomux->dram_dqm3);
}
}
#endif
#ifdef CONFIG_MX6UL
void mx6ul_dram_iocfg(unsigned width,
const struct mx6ul_iomux_ddr_regs *ddr,
const struct mx6ul_iomux_grp_regs *grp)
{
struct mx6ul_iomux_ddr_regs *mx6_ddr_iomux;
struct mx6ul_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6ul_iomux_ddr_regs *)MX6UL_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6ul_iomux_grp_regs *)MX6UL_IOM_GRP_BASE;
/* DDR IO TYPE */
writel(grp->grp_ddr_type, &mx6_grp_iomux->grp_ddr_type);
writel(grp->grp_ddrpke, &mx6_grp_iomux->grp_ddrpke);
/* CLOCK */
writel(ddr->dram_sdclk_0, &mx6_ddr_iomux->dram_sdclk_0);
/* ADDRESS */
writel(ddr->dram_cas, &mx6_ddr_iomux->dram_cas);
writel(ddr->dram_ras, &mx6_ddr_iomux->dram_ras);
writel(grp->grp_addds, &mx6_grp_iomux->grp_addds);
/* Control */
writel(ddr->dram_reset, &mx6_ddr_iomux->dram_reset);
writel(ddr->dram_sdba2, &mx6_ddr_iomux->dram_sdba2);
writel(ddr->dram_odt0, &mx6_ddr_iomux->dram_odt0);
writel(ddr->dram_odt1, &mx6_ddr_iomux->dram_odt1);
writel(grp->grp_ctlds, &mx6_grp_iomux->grp_ctlds);
/* Data Strobes */
writel(grp->grp_ddrmode_ctl, &mx6_grp_iomux->grp_ddrmode_ctl);
writel(ddr->dram_sdqs0, &mx6_ddr_iomux->dram_sdqs0);
writel(ddr->dram_sdqs1, &mx6_ddr_iomux->dram_sdqs1);
/* Data */
writel(grp->grp_ddrmode, &mx6_grp_iomux->grp_ddrmode);
writel(grp->grp_b0ds, &mx6_grp_iomux->grp_b0ds);
writel(grp->grp_b1ds, &mx6_grp_iomux->grp_b1ds);
writel(ddr->dram_dqm0, &mx6_ddr_iomux->dram_dqm0);
writel(ddr->dram_dqm1, &mx6_ddr_iomux->dram_dqm1);
}
#endif
#if defined(CONFIG_MX6SL)
void mx6sl_dram_iocfg(unsigned width,
const struct mx6sl_iomux_ddr_regs *ddr,
const struct mx6sl_iomux_grp_regs *grp)
{
struct mx6sl_iomux_ddr_regs *mx6_ddr_iomux;
struct mx6sl_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6sl_iomux_ddr_regs *)MX6SL_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6sl_iomux_grp_regs *)MX6SL_IOM_GRP_BASE;
/* DDR IO TYPE */
mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type;
mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke;
/* CLOCK */
mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0;
/* ADDRESS */
mx6_ddr_iomux->dram_cas = ddr->dram_cas;
mx6_ddr_iomux->dram_ras = ddr->dram_ras;
mx6_grp_iomux->grp_addds = grp->grp_addds;
/* Control */
mx6_ddr_iomux->dram_reset = ddr->dram_reset;
mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2;
mx6_grp_iomux->grp_ctlds = grp->grp_ctlds;
/* Data Strobes */
mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl;
mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0;
mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1;
if (width >= 32) {
mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2;
mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3;
}
/* Data */
mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode;
mx6_grp_iomux->grp_b0ds = grp->grp_b0ds;
mx6_grp_iomux->grp_b1ds = grp->grp_b1ds;
if (width >= 32) {
mx6_grp_iomux->grp_b2ds = grp->grp_b2ds;
mx6_grp_iomux->grp_b3ds = grp->grp_b3ds;
}
mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0;
mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1;
if (width >= 32) {
mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2;
mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3;
}
}
#endif
#if defined(CONFIG_MX6QDL) || defined(CONFIG_MX6Q) || defined(CONFIG_MX6D)
/* Configure MX6DQ mmdc iomux */
void mx6dq_dram_iocfg(unsigned width,
const struct mx6dq_iomux_ddr_regs *ddr,
const struct mx6dq_iomux_grp_regs *grp)
{
volatile struct mx6dq_iomux_ddr_regs *mx6_ddr_iomux;
volatile struct mx6dq_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6dq_iomux_ddr_regs *)MX6DQ_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6dq_iomux_grp_regs *)MX6DQ_IOM_GRP_BASE;
/* DDR IO Type */
mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type;
mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke;
/* Clock */
mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0;
mx6_ddr_iomux->dram_sdclk_1 = ddr->dram_sdclk_1;
/* Address */
mx6_ddr_iomux->dram_cas = ddr->dram_cas;
mx6_ddr_iomux->dram_ras = ddr->dram_ras;
mx6_grp_iomux->grp_addds = grp->grp_addds;
/* Control */
mx6_ddr_iomux->dram_reset = ddr->dram_reset;
mx6_ddr_iomux->dram_sdcke0 = ddr->dram_sdcke0;
mx6_ddr_iomux->dram_sdcke1 = ddr->dram_sdcke1;
mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2;
mx6_ddr_iomux->dram_sdodt0 = ddr->dram_sdodt0;
mx6_ddr_iomux->dram_sdodt1 = ddr->dram_sdodt1;
mx6_grp_iomux->grp_ctlds = grp->grp_ctlds;
/* Data Strobes */
mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl;
mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0;
mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1;
if (width >= 32) {
mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2;
mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_sdqs4 = ddr->dram_sdqs4;
mx6_ddr_iomux->dram_sdqs5 = ddr->dram_sdqs5;
mx6_ddr_iomux->dram_sdqs6 = ddr->dram_sdqs6;
mx6_ddr_iomux->dram_sdqs7 = ddr->dram_sdqs7;
}
/* Data */
mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode;
mx6_grp_iomux->grp_b0ds = grp->grp_b0ds;
mx6_grp_iomux->grp_b1ds = grp->grp_b1ds;
if (width >= 32) {
mx6_grp_iomux->grp_b2ds = grp->grp_b2ds;
mx6_grp_iomux->grp_b3ds = grp->grp_b3ds;
}
if (width >= 64) {
mx6_grp_iomux->grp_b4ds = grp->grp_b4ds;
mx6_grp_iomux->grp_b5ds = grp->grp_b5ds;
mx6_grp_iomux->grp_b6ds = grp->grp_b6ds;
mx6_grp_iomux->grp_b7ds = grp->grp_b7ds;
}
mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0;
mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1;
if (width >= 32) {
mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2;
mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_dqm4 = ddr->dram_dqm4;
mx6_ddr_iomux->dram_dqm5 = ddr->dram_dqm5;
mx6_ddr_iomux->dram_dqm6 = ddr->dram_dqm6;
mx6_ddr_iomux->dram_dqm7 = ddr->dram_dqm7;
}
}
#endif
#if defined(CONFIG_MX6QDL) || defined(CONFIG_MX6DL) || defined(CONFIG_MX6S)
/* Configure MX6SDL mmdc iomux */
void mx6sdl_dram_iocfg(unsigned width,
const struct mx6sdl_iomux_ddr_regs *ddr,
const struct mx6sdl_iomux_grp_regs *grp)
{
volatile struct mx6sdl_iomux_ddr_regs *mx6_ddr_iomux;
volatile struct mx6sdl_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6sdl_iomux_ddr_regs *)MX6SDL_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6sdl_iomux_grp_regs *)MX6SDL_IOM_GRP_BASE;
/* DDR IO Type */
mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type;
mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke;
/* Clock */
mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0;
mx6_ddr_iomux->dram_sdclk_1 = ddr->dram_sdclk_1;
/* Address */
mx6_ddr_iomux->dram_cas = ddr->dram_cas;
mx6_ddr_iomux->dram_ras = ddr->dram_ras;
mx6_grp_iomux->grp_addds = grp->grp_addds;
/* Control */
mx6_ddr_iomux->dram_reset = ddr->dram_reset;
mx6_ddr_iomux->dram_sdcke0 = ddr->dram_sdcke0;
mx6_ddr_iomux->dram_sdcke1 = ddr->dram_sdcke1;
mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2;
mx6_ddr_iomux->dram_sdodt0 = ddr->dram_sdodt0;
mx6_ddr_iomux->dram_sdodt1 = ddr->dram_sdodt1;
mx6_grp_iomux->grp_ctlds = grp->grp_ctlds;
/* Data Strobes */
mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl;
mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0;
mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1;
if (width >= 32) {
mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2;
mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_sdqs4 = ddr->dram_sdqs4;
mx6_ddr_iomux->dram_sdqs5 = ddr->dram_sdqs5;
mx6_ddr_iomux->dram_sdqs6 = ddr->dram_sdqs6;
mx6_ddr_iomux->dram_sdqs7 = ddr->dram_sdqs7;
}
/* Data */
mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode;
mx6_grp_iomux->grp_b0ds = grp->grp_b0ds;
mx6_grp_iomux->grp_b1ds = grp->grp_b1ds;
if (width >= 32) {
mx6_grp_iomux->grp_b2ds = grp->grp_b2ds;
mx6_grp_iomux->grp_b3ds = grp->grp_b3ds;
}
if (width >= 64) {
mx6_grp_iomux->grp_b4ds = grp->grp_b4ds;
mx6_grp_iomux->grp_b5ds = grp->grp_b5ds;
mx6_grp_iomux->grp_b6ds = grp->grp_b6ds;
mx6_grp_iomux->grp_b7ds = grp->grp_b7ds;
}
mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0;
mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1;
if (width >= 32) {
mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2;
mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_dqm4 = ddr->dram_dqm4;
mx6_ddr_iomux->dram_dqm5 = ddr->dram_dqm5;
mx6_ddr_iomux->dram_dqm6 = ddr->dram_dqm6;
mx6_ddr_iomux->dram_dqm7 = ddr->dram_dqm7;
}
}
#endif
/*
* Configure mx6 mmdc registers based on:
* - board-specific memory configuration
* - board-specific calibration data
* - ddr3/lpddr2 chip details
*
* The various calculations here are derived from the Freescale
* 1. i.Mx6DQSDL DDR3 Script Aid spreadsheet (DOC-94917) designed to generate
* MMDC configuration registers based on memory system and memory chip
* parameters.
*
* 2. i.Mx6SL LPDDR2 Script Aid spreadsheet V0.04 designed to generate MMDC
* configuration registers based on memory system and memory chip
* parameters.
*
* The defaults here are those which were specified in the spreadsheet.
* For details on each register, refer to the IMX6DQRM and/or IMX6SDLRM
* and/or IMX6SLRM section titled MMDC initialization.
*/
#define MR(val, ba, cmd, cs1) \
((val << 16) | (1 << 15) | (cmd << 4) | (cs1 << 3) | ba)
#define MMDC1(entry, value) do { \
if (!is_cpu_type(MXC_CPU_MX6SX) && !is_cpu_type(MXC_CPU_MX6UL) && \
!is_cpu_type(MXC_CPU_MX6SL)) \
mmdc1->entry = value; \
} while (0)
/*
* According JESD209-2B-LPDDR2: Table 103
* WL: write latency
*/
static int lpddr2_wl(uint32_t mem_speed)
{
switch (mem_speed) {
case 1066:
case 933:
return 4;
case 800:
return 3;
case 677:
case 533:
return 2;
case 400:
case 333:
return 1;
default:
puts("invalid memory speed\n");
hang();
}
return 0;
}
/*
* According JESD209-2B-LPDDR2: Table 103
* RL: read latency
*/
static int lpddr2_rl(uint32_t mem_speed)
{
switch (mem_speed) {
case 1066:
return 8;
case 933:
return 7;
case 800:
return 6;
case 677:
return 5;
case 533:
return 4;
case 400:
case 333:
return 3;
default:
puts("invalid memory speed\n");
hang();
}
return 0;
}
void mx6_lpddr2_cfg(const struct mx6_ddr_sysinfo *sysinfo,
const struct mx6_mmdc_calibration *calib,
const struct mx6_lpddr2_cfg *lpddr2_cfg)
{
volatile struct mmdc_p_regs *mmdc0;
u32 val;
u8 tcke, tcksrx, tcksre, trrd;
u8 twl, txp, tfaw, tcl;
u16 tras, twr, tmrd, trtp, twtr, trfc, txsr;
u16 trcd_lp, trppb_lp, trpab_lp, trc_lp;
u16 cs0_end;
u8 coladdr;
int clkper; /* clock period in picoseconds */
int clock; /* clock freq in mHz */
int cs;
/* only support 16/32 bits */
if (sysinfo->dsize > 1)
hang();
mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
clock = mxc_get_clock(MXC_DDR_CLK) / 1000000U;
clkper = (1000 * 1000) / clock; /* pico seconds */
twl = lpddr2_wl(lpddr2_cfg->mem_speed) - 1;
/* LPDDR2-S2 and LPDDR2-S4 have the same tRFC value. */
switch (lpddr2_cfg->density) {
case 1:
case 2:
case 4:
trfc = DIV_ROUND_UP(130000, clkper) - 1;
txsr = DIV_ROUND_UP(140000, clkper) - 1;
break;
case 8:
trfc = DIV_ROUND_UP(210000, clkper) - 1;
txsr = DIV_ROUND_UP(220000, clkper) - 1;
break;
default:
/*
* 64Mb, 128Mb, 256Mb, 512Mb are not supported currently.
*/
hang();
break;
}
/*
* txpdll, txpr, taonpd and taofpd are not relevant in LPDDR2 mode,
* set them to 0. */
txp = DIV_ROUND_UP(7500, clkper) - 1;
tcke = 3;
if (lpddr2_cfg->mem_speed == 333)
tfaw = DIV_ROUND_UP(60000, clkper) - 1;
else
tfaw = DIV_ROUND_UP(50000, clkper) - 1;
trrd = DIV_ROUND_UP(10000, clkper) - 1;
/* tckesr for LPDDR2 */
tcksre = DIV_ROUND_UP(15000, clkper);
tcksrx = tcksre;
twr = DIV_ROUND_UP(15000, clkper) - 1;
/*
* tMRR: 2, tMRW: 5
* tMRD should be set to max(tMRR, tMRW)
*/
tmrd = 5;
tras = DIV_ROUND_UP(lpddr2_cfg->trasmin, clkper / 10) - 1;
/* LPDDR2 mode use tRCD_LP filed in MDCFG3. */
trcd_lp = DIV_ROUND_UP(lpddr2_cfg->trcd_lp, clkper / 10) - 1;
trc_lp = DIV_ROUND_UP(lpddr2_cfg->trasmin + lpddr2_cfg->trppb_lp,
clkper / 10) - 1;
trppb_lp = DIV_ROUND_UP(lpddr2_cfg->trppb_lp, clkper / 10) - 1;
trpab_lp = DIV_ROUND_UP(lpddr2_cfg->trpab_lp, clkper / 10) - 1;
/* To LPDDR2, CL in MDCFG0 refers to RL */
tcl = lpddr2_rl(lpddr2_cfg->mem_speed) - 3;
twtr = DIV_ROUND_UP(7500, clkper) - 1;
trtp = DIV_ROUND_UP(7500, clkper) - 1;
cs0_end = 4 * sysinfo->cs_density - 1;
debug("density:%d Gb (%d Gb per chip)\n",
sysinfo->cs_density, lpddr2_cfg->density);
debug("clock: %dMHz (%d ps)\n", clock, clkper);
debug("memspd:%d\n", lpddr2_cfg->mem_speed);
debug("trcd_lp=%d\n", trcd_lp);
debug("trppb_lp=%d\n", trppb_lp);
debug("trpab_lp=%d\n", trpab_lp);
debug("trc_lp=%d\n", trc_lp);
debug("tcke=%d\n", tcke);
debug("tcksrx=%d\n", tcksrx);
debug("tcksre=%d\n", tcksre);
debug("trfc=%d\n", trfc);
debug("txsr=%d\n", txsr);
debug("txp=%d\n", txp);
debug("tfaw=%d\n", tfaw);
debug("tcl=%d\n", tcl);
debug("tras=%d\n", tras);
debug("twr=%d\n", twr);
debug("tmrd=%d\n", tmrd);
debug("twl=%d\n", twl);
debug("trtp=%d\n", trtp);
debug("twtr=%d\n", twtr);
debug("trrd=%d\n", trrd);
debug("cs0_end=%d\n", cs0_end);
debug("ncs=%d\n", sysinfo->ncs);
/*
* board-specific configuration:
* These values are determined empirically and vary per board layout
*/
mmdc0->mpwldectrl0 = calib->p0_mpwldectrl0;
mmdc0->mpwldectrl1 = calib->p0_mpwldectrl1;
mmdc0->mpdgctrl0 = calib->p0_mpdgctrl0;
mmdc0->mpdgctrl1 = calib->p0_mpdgctrl1;
mmdc0->mprddlctl = calib->p0_mprddlctl;
mmdc0->mpwrdlctl = calib->p0_mpwrdlctl;
mmdc0->mpzqlp2ctl = calib->mpzqlp2ctl;
/* Read data DQ Byte0-3 delay */
mmdc0->mprddqby0dl = 0x33333333;
mmdc0->mprddqby1dl = 0x33333333;
if (sysinfo->dsize > 0) {
mmdc0->mprddqby2dl = 0x33333333;
mmdc0->mprddqby3dl = 0x33333333;
}
/* Write data DQ Byte0-3 delay */
mmdc0->mpwrdqby0dl = 0xf3333333;
mmdc0->mpwrdqby1dl = 0xf3333333;
if (sysinfo->dsize > 0) {
mmdc0->mpwrdqby2dl = 0xf3333333;
mmdc0->mpwrdqby3dl = 0xf3333333;
}
/*
* In LPDDR2 mode this register should be cleared,
* so no termination will be activated.
*/
mmdc0->mpodtctrl = 0;
/* complete calibration */
val = (1 << 11); /* Force measurement on delay-lines */
mmdc0->mpmur0 = val;
/* Step 1: configuration request */
mmdc0->mdscr = (u32)(1 << 15); /* config request */
/* Step 2: Timing configuration */
mmdc0->mdcfg0 = (trfc << 24) | (txsr << 16) | (txp << 13) |
(tfaw << 4) | tcl;
mmdc0->mdcfg1 = (tras << 16) | (twr << 9) | (tmrd << 5) | twl;
mmdc0->mdcfg2 = (trtp << 6) | (twtr << 3) | trrd;
mmdc0->mdcfg3lp = (trc_lp << 16) | (trcd_lp << 8) |
(trppb_lp << 4) | trpab_lp;
mmdc0->mdotc = 0;
mmdc0->mdasp = cs0_end; /* CS addressing */
/* Step 3: Configure DDR type */
mmdc0->mdmisc = (sysinfo->cs1_mirror << 19) | (sysinfo->walat << 16) |
(sysinfo->bi_on << 12) | (sysinfo->mif3_mode << 9) |
(sysinfo->ralat << 6) | (1 << 3);
/* Step 4: Configure delay while leaving reset */
mmdc0->mdor = (sysinfo->sde_to_rst << 8) |
(sysinfo->rst_to_cke << 0);
/* Step 5: Configure DDR physical parameters (density and burst len) */
coladdr = lpddr2_cfg->coladdr;
if (lpddr2_cfg->coladdr == 8) /* 8-bit COL is 0x3 */
coladdr += 4;
else if (lpddr2_cfg->coladdr == 12) /* 12-bit COL is 0x4 */
coladdr += 1;
mmdc0->mdctl = (lpddr2_cfg->rowaddr - 11) << 24 | /* ROW */
(coladdr - 9) << 20 | /* COL */
(0 << 19) | /* Burst Length = 4 for LPDDR2 */
(sysinfo->dsize << 16); /* DDR data bus size */
/* Step 6: Perform ZQ calibration */
val = 0xa1390003; /* one-time HW ZQ calib */
mmdc0->mpzqhwctrl = val;
/* Step 7: Enable MMDC with desired chip select */
mmdc0->mdctl |= (1 << 31) | /* SDE_0 for CS0 */
((sysinfo->ncs == 2) ? 1 : 0) << 30; /* SDE_1 for CS1 */
/* Step 8: Write Mode Registers to Init LPDDR2 devices */
for (cs = 0; cs < sysinfo->ncs; cs++) {
/* MR63: reset */
mmdc0->mdscr = MR(63, 0, 3, cs);
/* MR10: calibration,
* 0xff is calibration command after intilization.
*/
val = 0xA | (0xff << 8);
mmdc0->mdscr = MR(val, 0, 3, cs);
/* MR1 */
val = 0x1 | (0x82 << 8);
mmdc0->mdscr = MR(val, 0, 3, cs);
/* MR2 */
val = 0x2 | (0x04 << 8);
mmdc0->mdscr = MR(val, 0, 3, cs);
/* MR3 */
val = 0x3 | (0x02 << 8);
mmdc0->mdscr = MR(val, 0, 3, cs);
}
/* Step 10: Power down control and self-refresh */
mmdc0->mdpdc = (tcke & 0x7) << 16 |
5 << 12 | /* PWDT_1: 256 cycles */
5 << 8 | /* PWDT_0: 256 cycles */
1 << 6 | /* BOTH_CS_PD */
(tcksrx & 0x7) << 3 |
(tcksre & 0x7);
mmdc0->mapsr = 0x00001006; /* ADOPT power down enabled */
/* Step 11: Configure ZQ calibration: one-time and periodic 1ms */
val = 0xa1310003;
mmdc0->mpzqhwctrl = val;
/* Step 12: Configure and activate periodic refresh */
mmdc0->mdref = (0 << 14) | /* REF_SEL: Periodic refresh cycle: 64kHz */
(3 << 11); /* REFR: Refresh Rate - 4 refreshes */
/* Step 13: Deassert config request - init complete */
mmdc0->mdscr = 0x00000000;
/* wait for auto-ZQ calibration to complete */
mdelay(1);
}
void mx6_ddr3_cfg(const struct mx6_ddr_sysinfo *sysinfo,
const struct mx6_mmdc_calibration *calib,
const struct mx6_ddr3_cfg *ddr3_cfg)
{
volatile struct mmdc_p_regs *mmdc0;
volatile struct mmdc_p_regs *mmdc1;
u32 val;
u8 tcke, tcksrx, tcksre, txpdll, taofpd, taonpd, trrd;
u8 todtlon, taxpd, tanpd, tcwl, txp, tfaw, tcl;
u8 todt_idle_off = 0x4; /* from DDR3 Script Aid spreadsheet */
u16 trcd, trc, tras, twr, tmrd, trtp, trp, twtr, trfc, txs, txpr;
u16 cs0_end;
u16 tdllk = 0x1ff; /* DLL locking time: 512 cycles (JEDEC DDR3) */
u8 coladdr;
int clkper; /* clock period in picoseconds */
int clock; /* clock freq in MHz */
int cs;
u16 mem_speed = ddr3_cfg->mem_speed;
mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR;
if (!is_cpu_type(MXC_CPU_MX6SX) && !is_cpu_type(MXC_CPU_MX6UL) &&
!is_cpu_type(MXC_CPU_MX6SL))
mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR;
/* Limit mem_speed for MX6D/MX6Q */
if (is_cpu_type(MXC_CPU_MX6Q) || is_cpu_type(MXC_CPU_MX6D)) {
if (mem_speed > 1066)
mem_speed = 1066; /* 1066 MT/s */
tcwl = 4;
}
/* Limit mem_speed for MX6S/MX6DL */
else {
if (mem_speed > 800)
mem_speed = 800; /* 800 MT/s */
tcwl = 3;
}
clock = mem_speed / 2;
/*
* Data rate of 1066 MT/s requires 533 MHz DDR3 clock, but MX6D/Q supports
* up to 528 MHz, so reduce the clock to fit chip specs
*/
if (is_cpu_type(MXC_CPU_MX6Q) || is_cpu_type(MXC_CPU_MX6D)) {
if (clock > 528)
clock = 528; /* 528 MHz */
}
clkper = (1000 * 1000) / clock; /* pico seconds */
todtlon = tcwl;
taxpd = tcwl;
tanpd = tcwl;
switch (ddr3_cfg->density) {
case 1: /* 1Gb per chip */
trfc = DIV_ROUND_UP(110000, clkper) - 1;
txs = DIV_ROUND_UP(120000, clkper) - 1;
break;
case 2: /* 2Gb per chip */
trfc = DIV_ROUND_UP(160000, clkper) - 1;
txs = DIV_ROUND_UP(170000, clkper) - 1;
break;
case 4: /* 4Gb per chip */
trfc = DIV_ROUND_UP(260000, clkper) - 1;
txs = DIV_ROUND_UP(270000, clkper) - 1;
break;
case 8: /* 8Gb per chip */
trfc = DIV_ROUND_UP(350000, clkper) - 1;
txs = DIV_ROUND_UP(360000, clkper) - 1;
break;
default:
/* invalid density */
puts("invalid chip density\n");
hang();
break;
}
txpr = txs;
switch (mem_speed) {
case 800:
txp = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1;
tcke = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1;
if (ddr3_cfg->pagesz == 1) {
tfaw = DIV_ROUND_UP(40000, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1;
} else {
tfaw = DIV_ROUND_UP(50000, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1;
}
break;
case 1066:
txp = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1;
tcke = DIV_ROUND_UP(max(3 * clkper, 5625), clkper) - 1;
if (ddr3_cfg->pagesz == 1) {
tfaw = DIV_ROUND_UP(37500, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 7500), clkper) - 1;
} else {
tfaw = DIV_ROUND_UP(50000, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1;
}
break;
default:
puts("invalid memory speed\n");
hang();
break;
}
txpdll = DIV_ROUND_UP(max(10 * clkper, 24000), clkper) - 1;
tcksre = DIV_ROUND_UP(max(5 * clkper, 10000), clkper);
taonpd = DIV_ROUND_UP(2000, clkper) - 1;
tcksrx = tcksre;
taofpd = taonpd;
twr = DIV_ROUND_UP(15000, clkper) - 1;
tmrd = DIV_ROUND_UP(max(12 * clkper, 15000), clkper) - 1;
trc = DIV_ROUND_UP(ddr3_cfg->trcmin, clkper / 10) - 1;
tras = DIV_ROUND_UP(ddr3_cfg->trasmin, clkper / 10) - 1;
tcl = DIV_ROUND_UP(ddr3_cfg->trcd, clkper / 10) - 3;
trp = DIV_ROUND_UP(ddr3_cfg->trcd, clkper / 10) - 1;
twtr = ROUND(max(4 * clkper, 7500) / clkper, 1) - 1;
trcd = trp;
trtp = twtr;
cs0_end = 4 * sysinfo->cs_density - 1;
debug("density:%d Gb (%d Gb per chip)\n",
sysinfo->cs_density, ddr3_cfg->density);
debug("clock: %dMHz (%d ps)\n", clock, clkper);
debug("memspd:%d\n", mem_speed);
debug("tcke=%d\n", tcke);
debug("tcksrx=%d\n", tcksrx);
debug("tcksre=%d\n", tcksre);
debug("taofpd=%d\n", taofpd);
debug("taonpd=%d\n", taonpd);
debug("todtlon=%d\n", todtlon);
debug("tanpd=%d\n", tanpd);
debug("taxpd=%d\n", taxpd);
debug("trfc=%d\n", trfc);
debug("txs=%d\n", txs);
debug("txp=%d\n", txp);
debug("txpdll=%d\n", txpdll);
debug("tfaw=%d\n", tfaw);
debug("tcl=%d\n", tcl);
debug("trcd=%d\n", trcd);
debug("trp=%d\n", trp);
debug("trc=%d\n", trc);
debug("tras=%d\n", tras);
debug("twr=%d\n", twr);
debug("tmrd=%d\n", tmrd);
debug("tcwl=%d\n", tcwl);
debug("tdllk=%d\n", tdllk);
debug("trtp=%d\n", trtp);
debug("twtr=%d\n", twtr);
debug("trrd=%d\n", trrd);
debug("txpr=%d\n", txpr);
debug("cs0_end=%d\n", cs0_end);
debug("ncs=%d\n", sysinfo->ncs);
debug("Rtt_wr=%d\n", sysinfo->rtt_wr);
debug("Rtt_nom=%d\n", sysinfo->rtt_nom);
debug("SRT=%d\n", ddr3_cfg->SRT);
debug("twr=%d\n", twr);
/*
* board-specific configuration:
* These values are determined empirically and vary per board layout
* see:
* appnote, ddr3 spreadsheet
*/
mmdc0->mpwldectrl0 = calib->p0_mpwldectrl0;
mmdc0->mpwldectrl1 = calib->p0_mpwldectrl1;
mmdc0->mpdgctrl0 = calib->p0_mpdgctrl0;
mmdc0->mpdgctrl1 = calib->p0_mpdgctrl1;
mmdc0->mprddlctl = calib->p0_mprddlctl;
mmdc0->mpwrdlctl = calib->p0_mpwrdlctl;
if (sysinfo->dsize > 1) {
MMDC1(mpwldectrl0, calib->p1_mpwldectrl0);
MMDC1(mpwldectrl1, calib->p1_mpwldectrl1);
MMDC1(mpdgctrl0, calib->p1_mpdgctrl0);
MMDC1(mpdgctrl1, calib->p1_mpdgctrl1);
MMDC1(mprddlctl, calib->p1_mprddlctl);
MMDC1(mpwrdlctl, calib->p1_mpwrdlctl);
}
/* Read data DQ Byte0-3 delay */
mmdc0->mprddqby0dl = 0x33333333;
mmdc0->mprddqby1dl = 0x33333333;
if (sysinfo->dsize > 0) {
mmdc0->mprddqby2dl = 0x33333333;
mmdc0->mprddqby3dl = 0x33333333;
}
if (sysinfo->dsize > 1) {
MMDC1(mprddqby0dl, 0x33333333);
MMDC1(mprddqby1dl, 0x33333333);
MMDC1(mprddqby2dl, 0x33333333);
MMDC1(mprddqby3dl, 0x33333333);
}
/* MMDC Termination: rtt_nom:2 RZQ/2(120ohm), rtt_nom:1 RZQ/4(60ohm) */
val = (sysinfo->rtt_nom == 2) ? 0x00011117 : 0x00022227;
mmdc0->mpodtctrl = val;
if (sysinfo->dsize > 1)
MMDC1(mpodtctrl, val);
/* complete calibration */
val = (1 << 11); /* Force measurement on delay-lines */
mmdc0->mpmur0 = val;
if (sysinfo->dsize > 1)
MMDC1(mpmur0, val);
/* Step 1: configuration request */
mmdc0->mdscr = (u32)(1 << 15); /* config request */
/* Step 2: Timing configuration */
mmdc0->mdcfg0 = (trfc << 24) | (txs << 16) | (txp << 13) |
(txpdll << 9) | (tfaw << 4) | tcl;
mmdc0->mdcfg1 = (trcd << 29) | (trp << 26) | (trc << 21) |
(tras << 16) | (1 << 15) /* trpa */ |
(twr << 9) | (tmrd << 5) | tcwl;
mmdc0->mdcfg2 = (tdllk << 16) | (trtp << 6) | (twtr << 3) | trrd;
mmdc0->mdotc = (taofpd << 27) | (taonpd << 24) | (tanpd << 20) |
(taxpd << 16) | (todtlon << 12) | (todt_idle_off << 4);
mmdc0->mdasp = cs0_end; /* CS addressing */
/* Step 3: Configure DDR type */
mmdc0->mdmisc = (sysinfo->cs1_mirror << 19) | (sysinfo->walat << 16) |
(sysinfo->bi_on << 12) | (sysinfo->mif3_mode << 9) |
(sysinfo->ralat << 6);
/* Step 4: Configure delay while leaving reset */
mmdc0->mdor = (txpr << 16) | (sysinfo->sde_to_rst << 8) |
(sysinfo->rst_to_cke << 0);
/* Step 5: Configure DDR physical parameters (density and burst len) */
coladdr = ddr3_cfg->coladdr;
if (ddr3_cfg->coladdr == 8) /* 8-bit COL is 0x3 */
coladdr += 4;
else if (ddr3_cfg->coladdr == 12) /* 12-bit COL is 0x4 */
coladdr += 1;
mmdc0->mdctl = (ddr3_cfg->rowaddr - 11) << 24 | /* ROW */
(coladdr - 9) << 20 | /* COL */
(1 << 19) | /* Burst Length = 8 for DDR3 */
(sysinfo->dsize << 16); /* DDR data bus size */
/* Step 6: Perform ZQ calibration */
val = 0xa1390001; /* one-time HW ZQ calib */
mmdc0->mpzqhwctrl = val;
if (sysinfo->dsize > 1)
MMDC1(mpzqhwctrl, val);
/* Step 7: Enable MMDC with desired chip select */
mmdc0->mdctl |= (1 << 31) | /* SDE_0 for CS0 */
((sysinfo->ncs == 2) ? 1 : 0) << 30; /* SDE_1 for CS1 */
/* Step 8: Write Mode Registers to Init DDR3 devices */
for (cs = 0; cs < sysinfo->ncs; cs++) {
/* MR2 */
val = (sysinfo->rtt_wr & 3) << 9 | (ddr3_cfg->SRT & 1) << 7 |
((tcwl - 3) & 3) << 3;
debug("MR2 CS%d: 0x%08x\n", cs, (u32)MR(val, 2, 3, cs));
mmdc0->mdscr = MR(val, 2, 3, cs);
/* MR3 */
debug("MR3 CS%d: 0x%08x\n", cs, (u32)MR(0, 3, 3, cs));
mmdc0->mdscr = MR(0, 3, 3, cs);
/* MR1 */
val = ((sysinfo->rtt_nom & 1) ? 1 : 0) << 2 |
((sysinfo->rtt_nom & 2) ? 1 : 0) << 6;
debug("MR1 CS%d: 0x%08x\n", cs, (u32)MR(val, 1, 3, cs));
mmdc0->mdscr = MR(val, 1, 3, cs);
/* MR0 */
val = ((tcl - 1) << 4) | /* CAS */
(1 << 8) | /* DLL Reset */
((twr - 3) << 9) | /* Write Recovery */
(sysinfo->pd_fast_exit << 12); /* Precharge PD PLL on */
debug("MR0 CS%d: 0x%08x\n", cs, (u32)MR(val, 0, 3, cs));
mmdc0->mdscr = MR(val, 0, 3, cs);
/* ZQ calibration */
val = (1 << 10);
mmdc0->mdscr = MR(val, 0, 4, cs);
}
/* Step 10: Power down control and self-refresh */
mmdc0->mdpdc = (tcke & 0x7) << 16 |
5 << 12 | /* PWDT_1: 256 cycles */
5 << 8 | /* PWDT_0: 256 cycles */
1 << 6 | /* BOTH_CS_PD */
(tcksrx & 0x7) << 3 |
(tcksre & 0x7);
if (!sysinfo->pd_fast_exit)
mmdc0->mdpdc |= (1 << 7); /* SLOW_PD */
mmdc0->mapsr = 0x00001006; /* ADOPT power down enabled */
/* Step 11: Configure ZQ calibration: one-time and periodic 1ms */
val = 0xa1390003;
mmdc0->mpzqhwctrl = val;
if (sysinfo->dsize > 1)
MMDC1(mpzqhwctrl, val);
/* Step 12: Configure and activate periodic refresh */
mmdc0->mdref = (1 << 14) | /* REF_SEL: Periodic refresh cycle: 32kHz */
(7 << 11); /* REFR: Refresh Rate - 8 refreshes */
/* Step 13: Deassert config request - init complete */
mmdc0->mdscr = 0x00000000;
/* wait for auto-ZQ calibration to complete */
mdelay(1);
}
void mx6_dram_cfg(const struct mx6_ddr_sysinfo *sysinfo,
const struct mx6_mmdc_calibration *calib,
const void *ddr_cfg)
{
if (sysinfo->ddr_type == DDR_TYPE_DDR3) {
mx6_ddr3_cfg(sysinfo, calib, ddr_cfg);
} else if (sysinfo->ddr_type == DDR_TYPE_LPDDR2) {
mx6_lpddr2_cfg(sysinfo, calib, ddr_cfg);
} else {
puts("Unsupported ddr type\n");
hang();
}
}