upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
505 lines
13 KiB
505 lines
13 KiB
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (c) 2013 Google, Inc
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <fdtdec.h>
|
|
#include <malloc.h>
|
|
#include <asm/io.h>
|
|
#include <dm/test.h>
|
|
#include <dm/root.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <dm/util.h>
|
|
#include <test/ut.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
static int testfdt_drv_ping(struct udevice *dev, int pingval, int *pingret)
|
|
{
|
|
const struct dm_test_pdata *pdata = dev->platdata;
|
|
struct dm_test_priv *priv = dev_get_priv(dev);
|
|
|
|
*pingret = pingval + pdata->ping_add;
|
|
priv->ping_total += *pingret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct test_ops test_ops = {
|
|
.ping = testfdt_drv_ping,
|
|
};
|
|
|
|
static int testfdt_ofdata_to_platdata(struct udevice *dev)
|
|
{
|
|
struct dm_test_pdata *pdata = dev_get_platdata(dev);
|
|
|
|
pdata->ping_add = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
|
|
"ping-add", -1);
|
|
pdata->base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
|
|
"ping-expect");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int testfdt_drv_probe(struct udevice *dev)
|
|
{
|
|
struct dm_test_priv *priv = dev_get_priv(dev);
|
|
|
|
priv->ping_total += DM_TEST_START_TOTAL;
|
|
|
|
/*
|
|
* If this device is on a bus, the uclass_flag will be set before
|
|
* calling this function. This is used by
|
|
* dm_test_bus_child_pre_probe_uclass().
|
|
*/
|
|
priv->uclass_total += priv->uclass_flag;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct udevice_id testfdt_ids[] = {
|
|
{
|
|
.compatible = "denx,u-boot-fdt-test",
|
|
.data = DM_TEST_TYPE_FIRST },
|
|
{
|
|
.compatible = "google,another-fdt-test",
|
|
.data = DM_TEST_TYPE_SECOND },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(testfdt_drv) = {
|
|
.name = "testfdt_drv",
|
|
.of_match = testfdt_ids,
|
|
.id = UCLASS_TEST_FDT,
|
|
.ofdata_to_platdata = testfdt_ofdata_to_platdata,
|
|
.probe = testfdt_drv_probe,
|
|
.ops = &test_ops,
|
|
.priv_auto_alloc_size = sizeof(struct dm_test_priv),
|
|
.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
|
|
};
|
|
|
|
/* From here is the testfdt uclass code */
|
|
int testfdt_ping(struct udevice *dev, int pingval, int *pingret)
|
|
{
|
|
const struct test_ops *ops = device_get_ops(dev);
|
|
|
|
if (!ops->ping)
|
|
return -ENOSYS;
|
|
|
|
return ops->ping(dev, pingval, pingret);
|
|
}
|
|
|
|
UCLASS_DRIVER(testfdt) = {
|
|
.name = "testfdt",
|
|
.id = UCLASS_TEST_FDT,
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
};
|
|
|
|
struct dm_testprobe_pdata {
|
|
int probe_err;
|
|
};
|
|
|
|
static int testprobe_drv_probe(struct udevice *dev)
|
|
{
|
|
struct dm_testprobe_pdata *pdata = dev_get_platdata(dev);
|
|
|
|
return pdata->probe_err;
|
|
}
|
|
|
|
static const struct udevice_id testprobe_ids[] = {
|
|
{ .compatible = "denx,u-boot-probe-test" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(testprobe_drv) = {
|
|
.name = "testprobe_drv",
|
|
.of_match = testprobe_ids,
|
|
.id = UCLASS_TEST_PROBE,
|
|
.probe = testprobe_drv_probe,
|
|
.platdata_auto_alloc_size = sizeof(struct dm_testprobe_pdata),
|
|
};
|
|
|
|
UCLASS_DRIVER(testprobe) = {
|
|
.name = "testprobe",
|
|
.id = UCLASS_TEST_PROBE,
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
};
|
|
|
|
int dm_check_devices(struct unit_test_state *uts, int num_devices)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
int i;
|
|
|
|
/*
|
|
* Now check that the ping adds are what we expect. This is using the
|
|
* ping-add property in each node.
|
|
*/
|
|
for (i = 0; i < num_devices; i++) {
|
|
uint32_t base;
|
|
|
|
ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
|
|
ut_assert(!ret);
|
|
|
|
/*
|
|
* Get the 'ping-expect' property, which tells us what the
|
|
* ping add should be. We don't use the platdata because we
|
|
* want to test the code that sets that up
|
|
* (testfdt_drv_probe()).
|
|
*/
|
|
base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
|
|
"ping-expect");
|
|
debug("dev=%d, base=%d: %s\n", i, base,
|
|
fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
|
|
|
|
ut_assert(!dm_check_operations(uts, dev, base,
|
|
dev_get_priv(dev)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test that FDT-based binding works correctly */
|
|
static int dm_test_fdt(struct unit_test_state *uts)
|
|
{
|
|
const int num_devices = 7;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = dm_scan_fdt(gd->fdt_blob, false);
|
|
ut_assert(!ret);
|
|
|
|
ret = uclass_get(UCLASS_TEST_FDT, &uc);
|
|
ut_assert(!ret);
|
|
|
|
/* These are num_devices compatible root-level device tree nodes */
|
|
ut_asserteq(num_devices, list_count_items(&uc->dev_head));
|
|
|
|
/* Each should have platform data but no private data */
|
|
for (i = 0; i < num_devices; i++) {
|
|
ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
|
|
ut_assert(!ret);
|
|
ut_assert(!dev_get_priv(dev));
|
|
ut_assert(dev->platdata);
|
|
}
|
|
|
|
ut_assertok(dm_check_devices(uts, num_devices));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt, 0);
|
|
|
|
static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
|
|
{
|
|
struct uclass *uc;
|
|
int ret;
|
|
|
|
ret = dm_scan_fdt(gd->fdt_blob, true);
|
|
ut_assert(!ret);
|
|
|
|
ret = uclass_get(UCLASS_TEST_FDT, &uc);
|
|
ut_assert(!ret);
|
|
|
|
/* These is only one pre-reloc device */
|
|
ut_asserteq(1, list_count_items(&uc->dev_head));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_pre_reloc, 0);
|
|
|
|
/* Test that sequence numbers are allocated properly */
|
|
static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
/* A few basic santiy tests */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, true, &dev));
|
|
ut_asserteq_str("b-test", dev->name);
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, true, &dev));
|
|
ut_asserteq_str("a-test", dev->name);
|
|
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 5,
|
|
true, &dev));
|
|
ut_asserteq_ptr(NULL, dev);
|
|
|
|
/* Test aliases */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
|
|
ut_asserteq_str("e-test", dev->name);
|
|
|
|
ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
|
|
true, &dev));
|
|
|
|
/*
|
|
* Note that c-test nodes are not probed since it is not a top-level
|
|
* node
|
|
*/
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
|
|
ut_asserteq_str("b-test", dev->name);
|
|
|
|
/*
|
|
* d-test wants sequence number 3 also, but it can't have it because
|
|
* b-test gets it first.
|
|
*/
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
|
|
ut_asserteq_str("d-test", dev->name);
|
|
|
|
/* d-test actually gets 0 */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 0, &dev));
|
|
ut_asserteq_str("d-test", dev->name);
|
|
|
|
/* initially no one wants seq 1 */
|
|
ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_TEST_FDT, 1,
|
|
&dev));
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev));
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 4, &dev));
|
|
|
|
/* But now that it is probed, we can find it */
|
|
ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev));
|
|
ut_asserteq_str("f-test", dev->name);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_uclass_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test that we can find a device by device tree offset */
|
|
static int dm_test_fdt_offset(struct unit_test_state *uts)
|
|
{
|
|
const void *blob = gd->fdt_blob;
|
|
struct udevice *dev;
|
|
int node;
|
|
|
|
node = fdt_path_offset(blob, "/e-test");
|
|
ut_assert(node > 0);
|
|
ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
|
|
&dev));
|
|
ut_asserteq_str("e-test", dev->name);
|
|
|
|
/* This node should not be bound */
|
|
node = fdt_path_offset(blob, "/junk");
|
|
ut_assert(node > 0);
|
|
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
|
|
node, &dev));
|
|
|
|
/* This is not a top level node so should not be probed */
|
|
node = fdt_path_offset(blob, "/some-bus/c-test@5");
|
|
ut_assert(node > 0);
|
|
ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
|
|
node, &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_offset,
|
|
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
|
|
|
|
/**
|
|
* Test various error conditions with uclass_first_device() and
|
|
* uclass_next_device()
|
|
*/
|
|
static int dm_test_first_next_device(struct unit_test_state *uts)
|
|
{
|
|
struct dm_testprobe_pdata *pdata;
|
|
struct udevice *dev, *parent = NULL;
|
|
int count;
|
|
int ret;
|
|
|
|
/* There should be 4 devices */
|
|
for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
|
|
dev;
|
|
ret = uclass_next_device(&dev)) {
|
|
count++;
|
|
parent = dev_get_parent(dev);
|
|
}
|
|
ut_assertok(ret);
|
|
ut_asserteq(4, count);
|
|
|
|
/* Remove them and try again, with an error on the second one */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
|
|
pdata = dev_get_platdata(dev);
|
|
pdata->probe_err = -ENOMEM;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
|
|
ut_asserteq(-ENOMEM, uclass_next_device(&dev));
|
|
ut_asserteq_ptr(dev, NULL);
|
|
|
|
/* Now an error on the first one */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
|
|
pdata = dev_get_platdata(dev);
|
|
pdata->probe_err = -ENOENT;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_first_next_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/**
|
|
* check_devices() - Check return values and pointers
|
|
*
|
|
* This runs through a full sequence of uclass_first_device_check()...
|
|
* uclass_next_device_check() checking that the return values and devices
|
|
* are correct.
|
|
*
|
|
* @uts: Test state
|
|
* @devlist: List of expected devices
|
|
* @mask: Indicates which devices should return an error. Device n should
|
|
* return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
|
|
* bit n is clear.
|
|
*/
|
|
static int check_devices(struct unit_test_state *uts,
|
|
struct udevice *devlist[], int mask)
|
|
{
|
|
int expected_ret;
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
expected_ret = (mask & 1) ? -ENOENT : 0;
|
|
mask >>= 1;
|
|
ut_asserteq(expected_ret,
|
|
uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
|
|
for (i = 0; i < 4; i++) {
|
|
ut_asserteq_ptr(devlist[i], dev);
|
|
expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
|
|
mask >>= 1;
|
|
ut_asserteq(expected_ret, uclass_next_device_check(&dev));
|
|
}
|
|
ut_asserteq_ptr(NULL, dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test uclass_first_device_check() and uclass_next_device_check() */
|
|
static int dm_test_first_next_ok_device(struct unit_test_state *uts)
|
|
{
|
|
struct dm_testprobe_pdata *pdata;
|
|
struct udevice *dev, *parent = NULL, *devlist[4];
|
|
int count;
|
|
int ret;
|
|
|
|
/* There should be 4 devices */
|
|
count = 0;
|
|
for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
|
|
dev;
|
|
ret = uclass_next_device_check(&dev)) {
|
|
ut_assertok(ret);
|
|
devlist[count++] = dev;
|
|
parent = dev_get_parent(dev);
|
|
}
|
|
ut_asserteq(4, count);
|
|
ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
|
|
ut_assertok(check_devices(uts, devlist, 0));
|
|
|
|
/* Remove them and try again, with an error on the second one */
|
|
pdata = dev_get_platdata(devlist[1]);
|
|
pdata->probe_err = -ENOENT - 1;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(check_devices(uts, devlist, 1 << 1));
|
|
|
|
/* Now an error on the first one */
|
|
pdata = dev_get_platdata(devlist[0]);
|
|
pdata->probe_err = -ENOENT - 0;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(check_devices(uts, devlist, 3 << 0));
|
|
|
|
/* Now errors on all */
|
|
pdata = dev_get_platdata(devlist[2]);
|
|
pdata->probe_err = -ENOENT - 2;
|
|
pdata = dev_get_platdata(devlist[3]);
|
|
pdata->probe_err = -ENOENT - 3;
|
|
device_remove(parent, DM_REMOVE_NORMAL);
|
|
ut_assertok(check_devices(uts, devlist, 0xf << 0));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_first_next_ok_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
static const struct udevice_id fdt_dummy_ids[] = {
|
|
{ .compatible = "denx,u-boot-fdt-dummy", },
|
|
{ }
|
|
};
|
|
|
|
UCLASS_DRIVER(fdt_dummy) = {
|
|
.name = "fdt-dummy",
|
|
.id = UCLASS_TEST_DUMMY,
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
};
|
|
|
|
U_BOOT_DRIVER(fdt_dummy_drv) = {
|
|
.name = "fdt_dummy_drv",
|
|
.of_match = fdt_dummy_ids,
|
|
.id = UCLASS_TEST_DUMMY,
|
|
};
|
|
|
|
static int dm_test_fdt_translation(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
/* Some simple translations */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
|
|
ut_asserteq_str("dev@0,0", dev->name);
|
|
ut_asserteq(0x8000, dev_read_addr(dev));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev));
|
|
ut_asserteq_str("dev@1,100", dev->name);
|
|
ut_asserteq(0x9000, dev_read_addr(dev));
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, true, &dev));
|
|
ut_asserteq_str("dev@2,200", dev->name);
|
|
ut_asserteq(0xA000, dev_read_addr(dev));
|
|
|
|
/* No translation for busses with #size-cells == 0 */
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, true, &dev));
|
|
ut_asserteq_str("dev@42", dev->name);
|
|
ut_asserteq(0x42, dev_read_addr(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|
|
/* Test devfdt_remap_addr_index() */
|
|
static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
|
|
|
|
addr = devfdt_get_addr(dev);
|
|
ut_asserteq(0x8000, addr);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_flat,
|
|
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
|
|
|
|
/* Test dev_remap_addr_index() */
|
|
static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
fdt_addr_t addr;
|
|
void *paddr;
|
|
|
|
ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
|
|
|
|
addr = dev_read_addr(dev);
|
|
ut_asserteq(0x8000, addr);
|
|
|
|
paddr = map_physmem(addr, 0, MAP_NOCACHE);
|
|
ut_assertnonnull(paddr);
|
|
ut_asserteq_ptr(paddr, dev_remap_addr(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_fdt_remap_addr_live,
|
|
DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
|
|
|