upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/cpu/mpc8260/i2c.c

733 lines
19 KiB

/*
* (C) Copyright 2000
* Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
*
* (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#if defined(CONFIG_HARD_I2C)
#include <asm/cpm_8260.h>
#include <i2c.h>
/* define to enable debug messages */
#undef DEBUG_I2C
/* uSec to wait between polls of the i2c */
#define DELAY_US 100
/* uSec to wait for the CPM to start processing the buffer */
#define START_DELAY_US 1000
/*
* tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
* timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
*/
#define TOUT_LOOP 5
/*-----------------------------------------------------------------------
* Set default values
*/
#ifndef CFG_I2C_SPEED
#define CFG_I2C_SPEED 50000
#endif
#ifndef CFG_I2C_SLAVE
#define CFG_I2C_SLAVE 0xFE
#endif
/*-----------------------------------------------------------------------
*/
typedef void (*i2c_ecb_t)(int, int); /* error callback function */
/* This structure keeps track of the bd and buffer space usage. */
typedef struct i2c_state {
int rx_idx; /* index to next free Rx BD */
int tx_idx; /* index to next free Tx BD */
void *rxbd; /* pointer to next free Rx BD */
void *txbd; /* pointer to next free Tx BD */
int tx_space; /* number of Tx bytes left */
unsigned char *tx_buf; /* pointer to free Tx area */
i2c_ecb_t err_cb; /* error callback function */
} i2c_state_t;
/* flags for i2c_send() and i2c_receive() */
#define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
#define I2CF_START_COND 0x02 /* tx: generate start condition */
#define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
/* return codes */
#define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
#define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
#define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
#define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
/* error callback flags */
#define I2CECB_RX_ERR 0x10 /* this is a receive error */
#define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
#define I2CECB_RX_MASK 0x0f /* mask for error bits */
#define I2CECB_TX_ERR 0x20 /* this is a transmit error */
#define I2CECB_TX_CL 0x01 /* transmit collision error */
#define I2CECB_TX_UN 0x02 /* transmit underflow error */
#define I2CECB_TX_NAK 0x04 /* transmit no ack error */
#define I2CECB_TX_MASK 0x0f /* mask for error bits */
#define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
#define ERROR_I2C_NONE 0
#define ERROR_I2C_LENGTH 1
#define I2C_WRITE_BIT 0x00
#define I2C_READ_BIT 0x01
#define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
#define NUM_RX_BDS 4
#define NUM_TX_BDS 4
#define MAX_TX_SPACE 256
typedef struct I2C_BD
{
unsigned short status;
unsigned short length;
unsigned char *addr;
} I2C_BD;
#define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
#define BD_I2C_TX_CL 0x0001 /* collision error */
#define BD_I2C_TX_UN 0x0002 /* underflow error */
#define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
#define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
#define BD_I2C_RX_ERR BD_SC_OV
#ifdef DEBUG_I2C
#define PRINTD(x) printf x
#else
#define PRINTD(x)
#endif
/*
* Returns the best value of I2BRG to meet desired clock speed of I2C with
* input parameters (clock speed, filter, and predivider value).
* It returns computer speed value and the difference between it and desired
* speed.
*/
static inline int
i2c_roundrate(int hz, int speed, int filter, int modval,
int *brgval, int *totspeed)
{
int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
hz, speed, filter, modval));
div = moddiv * speed;
brgdiv = (hz + div - 1) / div;
PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
*brgval = (brgdiv / 2) - 3 - (2*filter);
if ((*brgval < 0) || (*brgval > 255)) {
PRINTD(("\t\trejected brgval=%d\n", *brgval));
return -1;
}
brgdiv = 2 * (*brgval + 3 + (2 * filter));
div = moddiv * brgdiv ;
*totspeed = (hz + div - 1) / div;
PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
return 0;
}
/*
* Sets the I2C clock predivider and divider to meet required clock speed.
*/
static int i2c_setrate(int hz, int speed)
{
immap_t *immap = (immap_t *)CFG_IMMR ;
volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
int brgval,
modval, /* 0-3 */
bestspeed_diff = speed,
bestspeed_brgval=0,
bestspeed_modval=0,
bestspeed_filter=0,
totspeed,
filter = 0; /* Use this fixed value */
for (modval = 0; modval < 4; modval++)
{
if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0)
{
int diff = speed - totspeed ;
if ((diff >= 0) && (diff < bestspeed_diff))
{
bestspeed_diff = diff ;
bestspeed_modval = modval;
bestspeed_brgval = brgval;
bestspeed_filter = filter;
}
}
}
PRINTD(("[I2C] Best is:\n"));
PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
hz, speed,
bestspeed_filter, bestspeed_modval, bestspeed_brgval,
bestspeed_diff));
i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
i2c->i2c_i2brg = bestspeed_brgval & 0xff;
PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg));
return 1 ;
}
void i2c_init(int speed, int slaveadd)
{
DECLARE_GLOBAL_DATA_PTR;
volatile immap_t *immap = (immap_t *)CFG_IMMR ;
volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
volatile iic_t *iip;
ulong rbase, tbase;
volatile I2C_BD *rxbd, *txbd;
uint dpaddr;
dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
if (dpaddr == 0) {
/* need to allocate dual port ram */
dpaddr = m8260_cpm_dpalloc(64 +
(NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
MAX_TX_SPACE, 64);
*((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr;
}
/*
* initialise data in dual port ram:
*
* dpaddr -> parameter ram (64 bytes)
* rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
* tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
* tx buffer (MAX_TX_SPACE bytes)
*/
iip = (iic_t *)&immap->im_dprambase[dpaddr];
memset((void*)iip, 0, sizeof(iic_t));
rbase = dpaddr + 64;
tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
/* Disable interrupts */
i2c->i2c_i2mod = 0x00;
i2c->i2c_i2cmr = 0x00;
i2c->i2c_i2cer = 0xff;
i2c->i2c_i2add = slaveadd;
/*
* Set the I2C BRG Clock division factor from desired i2c rate
* and current CPU rate (we assume sccr dfbgr field is 0;
* divide BRGCLK by 1)
*/
PRINTD(("[I2C] Setting rate...\n"));
i2c_setrate (gd->brg_clk, CFG_I2C_SPEED) ;
/* Set I2C controller in master mode */
i2c->i2c_i2com = 0x01;
/* Initialize Tx/Rx parameters */
iip->iic_rbase = rbase;
iip->iic_tbase = tbase;
rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]);
txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]);
PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
/* Set big endian byte order */
iip->iic_tfcr = 0x10;
iip->iic_rfcr = 0x10;
/* Set maximum receive size. */
iip->iic_mrblr = I2C_RXTX_LEN;
cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
CPM_CR_I2C_SBLOCK,
0x00,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
do {
__asm__ __volatile__ ("eieio");
} while (cp->cp_cpcr & CPM_CR_FLG);
/* Clear events and interrupts */
i2c->i2c_i2cer = 0xff;
i2c->i2c_i2cmr = 0x00;
}
static
void i2c_newio(i2c_state_t *state)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR ;
volatile iic_t *iip;
uint dpaddr;
PRINTD(("[I2C] i2c_newio\n"));
dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
iip = (iic_t *)&immap->im_dprambase[dpaddr];
state->rx_idx = 0;
state->tx_idx = 0;
state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase];
state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase];
state->tx_space = MAX_TX_SPACE;
state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
state->err_cb = NULL;
PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
/* clear the buffer memory */
memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
}
static
int i2c_send(i2c_state_t *state,
unsigned char address,
unsigned char secondary_address,
unsigned int flags,
unsigned short size,
unsigned char *dataout)
{
volatile I2C_BD *txbd;
int i,j;
PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
address, secondary_address, flags, size));
/* trying to send message larger than BD */
if (size > I2C_RXTX_LEN)
return I2CERR_MSG_TOO_LONG;
/* no more free bds */
if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
return I2CERR_NO_BUFFERS;
txbd = (I2C_BD *)state->txbd;
txbd->addr = state->tx_buf;
PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
if (flags & I2CF_START_COND)
{
PRINTD(("[I2C] Formatting addresses...\n"));
if (flags & I2CF_ENABLE_SECONDARY)
{
txbd->length = size + 2; /* Length of message plus dest addresses */
txbd->addr[0] = address << 1;
txbd->addr[1] = secondary_address;
i = 2;
}
else
{
txbd->length = size + 1; /* Length of message plus dest address */
txbd->addr[0] = address << 1; /* Write destination address to BD */
i = 1;
}
}
else
{
txbd->length = size; /* Length of message */
i = 0;
}
/* set up txbd */
txbd->status = BD_SC_READY;
if (flags & I2CF_START_COND)
txbd->status |= BD_I2C_TX_START;
if (flags & I2CF_STOP_COND)
txbd->status |= BD_SC_LAST | BD_SC_WRAP;
/* Copy data to send into buffer */
PRINTD(("[I2C] copy data...\n"));
for(j = 0; j < size; i++, j++)
txbd->addr[i] = dataout[j];
PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
txbd->length,
txbd->status,
txbd->addr[0],
txbd->addr[1]));
/* advance state */
state->tx_buf += txbd->length;
state->tx_space -= txbd->length;
state->tx_idx++;
state->txbd = (void*)(txbd + 1);
return 0;
}
static
int i2c_receive(i2c_state_t *state,
unsigned char address,
unsigned char secondary_address,
unsigned int flags,
unsigned short size_to_expect,
unsigned char *datain)
{
volatile I2C_BD *rxbd, *txbd;
PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
/* Expected to receive too much */
if (size_to_expect > I2C_RXTX_LEN)
return I2CERR_MSG_TOO_LONG;
/* no more free bds */
if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
|| state->tx_space < 2)
return I2CERR_NO_BUFFERS;
rxbd = (I2C_BD *)state->rxbd;
txbd = (I2C_BD *)state->txbd;
PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
txbd->addr = state->tx_buf;
/* set up TXBD for destination address */
if (flags & I2CF_ENABLE_SECONDARY)
{
txbd->length = 2;
txbd->addr[0] = address << 1; /* Write data */
txbd->addr[1] = secondary_address; /* Internal address */
txbd->status = BD_SC_READY;
}
else
{
txbd->length = 1 + size_to_expect;
txbd->addr[0] = (address << 1) | 0x01;
txbd->status = BD_SC_READY;
memset(&txbd->addr[1], 0, txbd->length);
}
/* set up rxbd for reception */
rxbd->status = BD_SC_EMPTY;
rxbd->length = size_to_expect;
rxbd->addr = datain;
txbd->status |= BD_I2C_TX_START;
if (flags & I2CF_STOP_COND)
{
txbd->status |= BD_SC_LAST | BD_SC_WRAP;
rxbd->status |= BD_SC_WRAP;
}
PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
txbd->length,
txbd->status,
txbd->addr[0],
txbd->addr[1]));
PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
rxbd->length,
rxbd->status,
rxbd->addr[0],
rxbd->addr[1]));
/* advance state */
state->tx_buf += txbd->length;
state->tx_space -= txbd->length;
state->tx_idx++;
state->txbd = (void*)(txbd + 1);
state->rx_idx++;
state->rxbd = (void*)(rxbd + 1);
return 0;
}
static
int i2c_doio(i2c_state_t *state)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR ;
volatile iic_t *iip;
volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
volatile I2C_BD *txbd, *rxbd;
int j;
int timeout;
uint dpaddr;
PRINTD(("[I2C] i2c_doio\n"));
timeout = TOUT_LOOP * 256; /* arbitrarily long */
if (state->tx_idx <= 0 && state->rx_idx <= 0) {
PRINTD(("[I2C] No I/O is queued\n"));
return I2CERR_QUEUE_EMPTY;
}
dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
iip = (iic_t *)&immap->im_dprambase[dpaddr];
iip->iic_rbptr = iip->iic_rbase;
iip->iic_tbptr = iip->iic_tbase;
/* Enable I2C */
PRINTD(("[I2C] Enabling I2C...\n"));
i2c->i2c_i2mod |= 0x01;
/* Begin transmission */
i2c->i2c_i2com |= 0x80;
/* Loop until transmit & receive completed */
txbd = ((I2C_BD*)state->txbd) - 1;
j = 0;
if (state->tx_idx > 0) {
timeout = TOUT_LOOP * txbd->length;
PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
udelay(START_DELAY_US); /* give it time to start */
while((txbd->status & BD_SC_READY) && (j++ < timeout)) {
udelay(DELAY_US);
if (ctrlc())
return (-1);
__asm__ __volatile__ ("eieio");
}
}
rxbd = ((I2C_BD*)state->rxbd) - 1;
j = 0;
if ((state->rx_idx > 0) && (j < timeout)) {
timeout = TOUT_LOOP * rxbd->length;
PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
udelay(START_DELAY_US); /* give it time to start */
while((rxbd->status & BD_SC_EMPTY) && (j++ < timeout)) {
udelay(DELAY_US);
if (ctrlc())
return (-1);
__asm__ __volatile__ ("eieio");
}
}
/* Turn off I2C */
i2c->i2c_i2mod &= ~0x01;
if (state->err_cb != NULL) {
int n, i, b;
/*
* if we have an error callback function, look at the
* error bits in the bd status and pass them back
*/
if ((n = state->tx_idx) > 0) {
for (i = 0; i < n; i++) {
txbd = ((I2C_BD*)state->txbd) - (n - i);
if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
(*state->err_cb)(I2CECB_TX_ERR|b, i);
}
}
if ((n = state->rx_idx) > 0) {
for (i = 0; i < n; i++) {
rxbd = ((I2C_BD*)state->rxbd) - (n - i);
if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
(*state->err_cb)(I2CECB_RX_ERR|b, i);
}
}
if (j >= timeout)
(*state->err_cb)(I2CECB_TIMEOUT, 0);
}
/* sort out errors and return appropriate good/error status */
if(j >= timeout)
return(I2CERR_TIMEOUT);
if((txbd->status & BD_I2C_TX_ERR) != 0)
return(I2CECB_TX_ERR | (txbd->status & I2CECB_TX_MASK));
if((rxbd->status & BD_I2C_RX_ERR) != 0)
return(I2CECB_RX_ERR | (rxbd->status & I2CECB_RX_MASK));
return(0);
}
static int had_tx_nak;
static void
i2c_test_callback(int flags, int xnum)
{
if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
had_tx_nak = 1;
}
int i2c_probe(uchar chip)
{
i2c_state_t state;
int rc;
uchar buf[1];
i2c_newio(&state);
state.err_cb = i2c_test_callback;
had_tx_nak = 0;
rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
if (rc != 0)
return (rc);
rc = i2c_doio(&state);
if ((rc != 0) && (rc != I2CERR_TIMEOUT))
return (rc);
return (had_tx_nak);
}
int
i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
i2c_state_t state;
uchar xaddr[4];
int rc;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
* and the extra bits end up in the "chip address" bit slots.
* This makes a 24WC08 (1Kbyte) chip look like four 256 byte
* chips.
*
* Note that we consider the length of the address field to still
* be one byte because the extra address bits are hidden in the
* chip address.
*/
chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c_newio(&state);
rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
if (rc != 0) {
printf("i2c_read: i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
if (rc != 0) {
printf("i2c_read: i2c_receive failed (%d)\n", rc);
return 1;
}
rc = i2c_doio(&state);
if (rc != 0) {
printf("i2c_read: i2c_doio failed (%d)\n", rc);
return 1;
}
return 0;
}
int
i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
i2c_state_t state;
uchar xaddr[4];
int rc;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
* and the extra bits end up in the "chip address" bit slots.
* This makes a 24WC08 (1Kbyte) chip look like four 256 byte
* chips.
*
* Note that we consider the length of the address field to still
* be one byte because the extra address bits are hidden in the
* chip address.
*/
chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c_newio(&state);
rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
if (rc != 0) {
printf("i2c_write: first i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
if (rc != 0) {
printf("i2c_write: second i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_doio(&state);
if (rc != 0) {
printf("i2c_write: i2c_doio failed (%d)\n", rc);
return 1;
}
return 0;
}
uchar
i2c_reg_read(uchar chip, uchar reg)
{
char buf;
i2c_read(chip, reg, 1, &buf, 1);
return (buf);
}
void
i2c_reg_write(uchar chip, uchar reg, uchar val)
{
i2c_write(chip, reg, 1, &val, 1);
}
#endif /* CONFIG_HARD_I2C */