upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
848 lines
23 KiB
848 lines
23 KiB
/*
|
|
* (C) Copyright 2002
|
|
* Custom IDEAS, Inc. <www.cideas.com>
|
|
* Gerald Van Baren <vanbaren@cideas.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/u-boot.h>
|
|
#include <ioports.h>
|
|
#include <mpc8260.h>
|
|
#include <i2c.h>
|
|
#include <spi.h>
|
|
#include <command.h>
|
|
|
|
#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
#include <status_led.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_ETHER_LOOPBACK_TEST
|
|
extern void eth_loopback_test(void);
|
|
#endif /* CONFIG_ETHER_LOOPBACK_TEST */
|
|
|
|
#include "clkinit.h"
|
|
#include "ioconfig.h" /* I/O configuration table */
|
|
|
|
/*
|
|
* PBI Page Based Interleaving
|
|
* PSDMR_PBI page based interleaving
|
|
* 0 bank based interleaving
|
|
* External Address Multiplexing (EAMUX) adds a clock to address cycles
|
|
* (this can help with marginal board layouts)
|
|
* PSDMR_EAMUX adds a clock
|
|
* 0 no extra clock
|
|
* Buffer Command (BUFCMD) adds a clock to command cycles.
|
|
* PSDMR_BUFCMD adds a clock
|
|
* 0 no extra clock
|
|
*/
|
|
#define CONFIG_PBI PSDMR_PBI
|
|
#define PESSIMISTIC_SDRAM 0
|
|
#define EAMUX 0 /* EST requires EAMUX */
|
|
#define BUFCMD 0
|
|
|
|
/*
|
|
* ADC/DAC Defines:
|
|
*/
|
|
#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */
|
|
#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */
|
|
#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */
|
|
#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */
|
|
#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */
|
|
|
|
/*
|
|
* ADC Defines:
|
|
*/
|
|
#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */
|
|
#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */
|
|
|
|
#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */
|
|
#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */
|
|
|
|
#define ADC_VREF_CAP 100 /* VREF capacitor in uF */
|
|
#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
|
|
#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */
|
|
#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
|
|
/* Wait at least 4100 LRCLK's */
|
|
|
|
#define ADC_REG1_FRAME_START 0x80 /* Frame start */
|
|
#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */
|
|
#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */
|
|
#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */
|
|
|
|
#define ADC_REG2_128x 0x80 /* Oversample at 128x */
|
|
#define ADC_REG2_CAL 0x40 /* System calibration enable */
|
|
#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */
|
|
#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */
|
|
#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */
|
|
#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */
|
|
#define ADC_REG2_DFS 0x02 /* Digital format select */
|
|
#define ADC_REG2_MUTE 0x01 /* Mute */
|
|
|
|
#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */
|
|
#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */
|
|
#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */
|
|
#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */
|
|
#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */
|
|
#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */
|
|
#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */
|
|
|
|
/*
|
|
* DAC Defines:
|
|
*/
|
|
|
|
#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */
|
|
|
|
#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */
|
|
#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */
|
|
#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
|
|
|
|
#define DAC_REG1_AMUTE 0x80 /* Auto-mute */
|
|
|
|
#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */
|
|
#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */
|
|
#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
|
|
#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
|
|
#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
|
|
#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
|
|
|
|
#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */
|
|
#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */
|
|
#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */
|
|
#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */
|
|
|
|
#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */
|
|
#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */
|
|
#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */
|
|
#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */
|
|
|
|
#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */
|
|
#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */
|
|
#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */
|
|
#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */
|
|
#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */
|
|
#define DAC_REG5_FREEZE 0x04 /* Freeze */
|
|
#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */
|
|
#define DAC_REG5_RESERVED 0x01 /* Reserved */
|
|
|
|
/*
|
|
* Check Board Identity:
|
|
*/
|
|
|
|
int checkboard(void)
|
|
{
|
|
printf("SACSng\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
phys_size_t initdram(int board_type)
|
|
{
|
|
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
|
|
volatile memctl8260_t *memctl = &immap->im_memctl;
|
|
volatile uchar c = 0;
|
|
volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
|
|
uint psdmr = CONFIG_SYS_PSDMR;
|
|
int i;
|
|
uint psrt = 14; /* for no SPD */
|
|
uint chipselects = 1; /* for no SPD */
|
|
uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
|
|
uint or = CONFIG_SYS_OR2_PRELIM; /* for no SPD */
|
|
|
|
#ifdef SDRAM_SPD_ADDR
|
|
uint data_width;
|
|
uint rows;
|
|
uint banks;
|
|
uint cols;
|
|
uint caslatency;
|
|
uint width;
|
|
uint rowst;
|
|
uint sdam;
|
|
uint bsma;
|
|
uint sda10;
|
|
u_char data;
|
|
u_char cksum;
|
|
int j;
|
|
#endif
|
|
|
|
#ifdef SDRAM_SPD_ADDR
|
|
/* Keep the compiler from complaining about potentially uninitialized vars */
|
|
data_width = chipselects = rows = banks = cols = caslatency = psrt =
|
|
0;
|
|
|
|
/*
|
|
* Read the SDRAM SPD EEPROM via I2C.
|
|
*/
|
|
i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
|
|
cksum = data;
|
|
for (j = 1; j < 64; j++) { /* read only the checksummed bytes */
|
|
/* note: the I2C address autoincrements when alen == 0 */
|
|
i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
|
|
if (j == 5)
|
|
chipselects = data & 0x0F;
|
|
else if (j == 6)
|
|
data_width = data;
|
|
else if (j == 7)
|
|
data_width |= data << 8;
|
|
else if (j == 3)
|
|
rows = data & 0x0F;
|
|
else if (j == 4)
|
|
cols = data & 0x0F;
|
|
else if (j == 12) {
|
|
/*
|
|
* Refresh rate: this assumes the prescaler is set to
|
|
* approximately 1uSec per tick.
|
|
*/
|
|
switch (data & 0x7F) {
|
|
default:
|
|
case 0:
|
|
psrt = 14; /* 15.625uS */
|
|
break;
|
|
case 1:
|
|
psrt = 2; /* 3.9uS */
|
|
break;
|
|
case 2:
|
|
psrt = 6; /* 7.8uS */
|
|
break;
|
|
case 3:
|
|
psrt = 29; /* 31.3uS */
|
|
break;
|
|
case 4:
|
|
psrt = 60; /* 62.5uS */
|
|
break;
|
|
case 5:
|
|
psrt = 120; /* 125uS */
|
|
break;
|
|
}
|
|
} else if (j == 17)
|
|
banks = data;
|
|
else if (j == 18) {
|
|
caslatency = 3; /* default CL */
|
|
#if(PESSIMISTIC_SDRAM)
|
|
if ((data & 0x04) != 0)
|
|
caslatency = 3;
|
|
else if ((data & 0x02) != 0)
|
|
caslatency = 2;
|
|
else if ((data & 0x01) != 0)
|
|
caslatency = 1;
|
|
#else
|
|
if ((data & 0x01) != 0)
|
|
caslatency = 1;
|
|
else if ((data & 0x02) != 0)
|
|
caslatency = 2;
|
|
else if ((data & 0x04) != 0)
|
|
caslatency = 3;
|
|
#endif
|
|
else {
|
|
printf("WARNING: Unknown CAS latency 0x%02X, using 3\n", data);
|
|
}
|
|
} else if (j == 63) {
|
|
if (data != cksum) {
|
|
printf("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum);
|
|
}
|
|
}
|
|
cksum += data;
|
|
}
|
|
|
|
/* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
|
|
if (caslatency < 2) {
|
|
printf("WARNING: CL was %d, forcing to 2\n", caslatency);
|
|
caslatency = 2;
|
|
}
|
|
if (rows > 14) {
|
|
printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n",
|
|
rows);
|
|
rows = 14;
|
|
}
|
|
if (cols > 11) {
|
|
printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n",
|
|
cols);
|
|
cols = 11;
|
|
}
|
|
|
|
if ((data_width != 64) && (data_width != 72)) {
|
|
printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
|
|
data_width);
|
|
}
|
|
width = 3; /* 2^3 = 8 bytes = 64 bits wide */
|
|
/*
|
|
* Convert banks into log2(banks)
|
|
*/
|
|
if (banks == 2)
|
|
banks = 1;
|
|
else if (banks == 4)
|
|
banks = 2;
|
|
else if (banks == 8)
|
|
banks = 3;
|
|
|
|
sdram_size = 1 << (rows + cols + banks + width);
|
|
|
|
#if(CONFIG_PBI == 0) /* bank-based interleaving */
|
|
rowst = ((32 - 6) - (rows + cols + width)) * 2;
|
|
#else
|
|
rowst = 32 - (rows + banks + cols + width);
|
|
#endif
|
|
|
|
or = ~(sdram_size - 1) | /* SDAM address mask */
|
|
((banks - 1) << 13) | /* banks per device */
|
|
(rowst << 9) | /* rowst */
|
|
((rows - 9) << 6); /* numr */
|
|
|
|
memctl->memc_or2 = or;
|
|
|
|
/*
|
|
* SDAM specifies the number of columns that are multiplexed
|
|
* (reference AN2165/D), defined to be (columns - 6) for page
|
|
* interleave, (columns - 8) for bank interleave.
|
|
*
|
|
* BSMA is 14 - max(rows, cols). The bank select lines come
|
|
* into play above the highest "address" line going into the
|
|
* the SDRAM.
|
|
*/
|
|
#if(CONFIG_PBI == 0) /* bank-based interleaving */
|
|
sdam = cols - 8;
|
|
bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
|
|
sda10 = sdam + 2;
|
|
#else
|
|
sdam = cols - 6;
|
|
bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
|
|
sda10 = sdam;
|
|
#endif
|
|
#if(PESSIMISTIC_SDRAM)
|
|
psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_16_CLK |
|
|
PSDMR_PRETOACT_8W | PSDMR_ACTTORW_8W | PSDMR_WRC_4C |
|
|
PSDMR_EAMUX | PSDMR_BUFCMD) | caslatency |
|
|
((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */
|
|
(sdam << 24) | (bsma << 21) | (sda10 << 18);
|
|
#else
|
|
psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_7_CLK |
|
|
PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */
|
|
PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */
|
|
PSDMR_WRC_1C | /* 1 clock + 7nSec */
|
|
EAMUX | BUFCMD) |
|
|
caslatency | ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */
|
|
(sdam << 24) | (bsma << 21) | (sda10 << 18);
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
|
|
*
|
|
* "At system reset, initialization software must set up the
|
|
* programmable parameters in the memory controller banks registers
|
|
* (ORx, BRx, P/LSDMR). After all memory parameters are configured,
|
|
* system software should execute the following initialization sequence
|
|
* for each SDRAM device.
|
|
*
|
|
* 1. Issue a PRECHARGE-ALL-BANKS command
|
|
* 2. Issue eight CBR REFRESH commands
|
|
* 3. Issue a MODE-SET command to initialize the mode register
|
|
*
|
|
* Quote from Micron MT48LC8M16A2 data sheet:
|
|
*
|
|
* "...the SDRAM requires a 100uS delay prior to issuing any
|
|
* command other than a COMMAND INHIBIT or NOP. Starting at some
|
|
* point during this 100uS period and continuing at least through
|
|
* the end of this period, COMMAND INHIBIT or NOP commands should
|
|
* be applied."
|
|
*
|
|
* "Once the 100uS delay has been satisfied with at least one COMMAND
|
|
* INHIBIT or NOP command having been applied, a /PRECHARGE command/
|
|
* should be applied. All banks must then be precharged, thereby
|
|
* placing the device in the all banks idle state."
|
|
*
|
|
* "Once in the idle state, /two/ AUTO REFRESH cycles must be
|
|
* performed. After the AUTO REFRESH cycles are complete, the
|
|
* SDRAM is ready for mode register programming."
|
|
*
|
|
* (/emphasis/ mine, gvb)
|
|
*
|
|
* The way I interpret this, Micron start up sequence is:
|
|
* 1. Issue a PRECHARGE-BANK command (initial precharge)
|
|
* 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
|
|
* 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
|
|
* 4. Issue a MODE-SET command to initialize the mode register
|
|
*
|
|
* --------
|
|
*
|
|
* The initial commands are executed by setting P/LSDMR[OP] and
|
|
* accessing the SDRAM with a single-byte transaction."
|
|
*
|
|
* The appropriate BRx/ORx registers have already been set when we
|
|
* get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
|
|
*/
|
|
|
|
memctl->memc_mptpr = CONFIG_SYS_MPTPR;
|
|
memctl->memc_psrt = psrt;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
|
|
*ramaddr = c;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
|
|
for (i = 0; i < 8; i++)
|
|
*ramaddr = c;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
|
|
*ramaddr = c;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
|
|
*ramaddr = c;
|
|
|
|
/*
|
|
* Do it a second time for the second set of chips if the DIMM has
|
|
* two chip selects (double sided).
|
|
*/
|
|
if (chipselects > 1) {
|
|
ramaddr += sdram_size;
|
|
|
|
memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
|
|
memctl->memc_or3 = or;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
|
|
*ramaddr = c;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
|
|
for (i = 0; i < 8; i++)
|
|
*ramaddr = c;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
|
|
*ramaddr = c;
|
|
|
|
memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
|
|
*ramaddr = c;
|
|
}
|
|
|
|
/* return total ram size */
|
|
return (sdram_size * chipselects);
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------
|
|
* Board Control Functions
|
|
*/
|
|
void board_poweroff(void)
|
|
{
|
|
while (1); /* hang forever */
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_MISC_INIT_R
|
|
/* ------------------------------------------------------------------------- */
|
|
int misc_init_r(void)
|
|
{
|
|
/*
|
|
* Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
|
|
*/
|
|
volatile ioport_t *iopa =
|
|
ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */ );
|
|
volatile ioport_t *iop =
|
|
ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);
|
|
|
|
int reg; /* I2C register value */
|
|
char *ep; /* Environment pointer */
|
|
char str_buf[12]; /* sprintf output buffer */
|
|
int sample_rate; /* ADC/DAC sample rate */
|
|
int sample_64x; /* Use 64/4 clocking for the ADC/DAC */
|
|
int sample_128x; /* Use 128/4 clocking for the ADC/DAC */
|
|
int right_just; /* Is the data to the DAC right justified? */
|
|
int mclk_divide; /* MCLK Divide */
|
|
int quiet; /* Quiet or minimal output mode */
|
|
|
|
quiet = 0;
|
|
|
|
if ((ep = getenv("quiet")) != NULL)
|
|
quiet = simple_strtol(ep, NULL, 10);
|
|
else
|
|
setenv("quiet", "0");
|
|
|
|
/*
|
|
* SACSng custom initialization:
|
|
* Start the ADC and DAC clocks, since the Crystal parts do not
|
|
* work on the I2C bus until the clocks are running.
|
|
*/
|
|
|
|
sample_rate = INITIAL_SAMPLE_RATE;
|
|
if ((ep = getenv("DaqSampleRate")) != NULL)
|
|
sample_rate = simple_strtol(ep, NULL, 10);
|
|
|
|
sample_64x = INITIAL_SAMPLE_64X;
|
|
sample_128x = INITIAL_SAMPLE_128X;
|
|
if ((ep = getenv("Daq64xSampling")) != NULL) {
|
|
sample_64x = simple_strtol(ep, NULL, 10);
|
|
if (sample_64x)
|
|
sample_128x = 0;
|
|
else
|
|
sample_128x = 1;
|
|
} else {
|
|
if ((ep = getenv("Daq128xSampling")) != NULL) {
|
|
sample_128x = simple_strtol(ep, NULL, 10);
|
|
if (sample_128x)
|
|
sample_64x = 0;
|
|
else
|
|
sample_64x = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop the clocks and wait for at least 1 LRCLK period
|
|
* to make sure the clocking has really stopped.
|
|
*/
|
|
Daq_Stop_Clocks();
|
|
udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
|
|
|
|
/*
|
|
* Initialize the clocks with the new rates
|
|
*/
|
|
Daq_Init_Clocks(sample_rate, sample_64x);
|
|
sample_rate = Daq_Get_SampleRate();
|
|
|
|
/*
|
|
* Start the clocks and wait for at least 1 LRCLK period
|
|
* to make sure the clocking has become stable.
|
|
*/
|
|
Daq_Start_Clocks(sample_rate);
|
|
udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
|
|
|
|
sprintf(str_buf, "%d", sample_rate);
|
|
setenv("DaqSampleRate", str_buf);
|
|
|
|
if (sample_64x) {
|
|
setenv("Daq64xSampling", "1");
|
|
setenv("Daq128xSampling", NULL);
|
|
} else {
|
|
setenv("Daq64xSampling", NULL);
|
|
setenv("Daq128xSampling", "1");
|
|
}
|
|
|
|
/*
|
|
* Display the ADC/DAC clocking information
|
|
*/
|
|
if (!quiet)
|
|
Daq_Display_Clocks();
|
|
|
|
/*
|
|
* Determine the DAC data justification
|
|
*/
|
|
|
|
right_just = INITIAL_RIGHT_JUST;
|
|
if ((ep = getenv("DaqDACRightJustified")) != NULL)
|
|
right_just = simple_strtol(ep, NULL, 10);
|
|
|
|
sprintf(str_buf, "%d", right_just);
|
|
setenv("DaqDACRightJustified", str_buf);
|
|
|
|
/*
|
|
* Determine the DAC MCLK Divide
|
|
*/
|
|
|
|
mclk_divide = INITIAL_MCLK_DIVIDE;
|
|
if ((ep = getenv("DaqDACMClockDivide")) != NULL)
|
|
mclk_divide = simple_strtol(ep, NULL, 10);
|
|
|
|
sprintf(str_buf, "%d", mclk_divide);
|
|
setenv("DaqDACMClockDivide", str_buf);
|
|
|
|
/*
|
|
* Initializing the I2C address in the Crystal A/Ds:
|
|
*
|
|
* 1) Wait for VREF cap to settle (10uSec per uF)
|
|
* 2) Release pullup on SDATA
|
|
* 3) Write the I2C address to register 6
|
|
* 4) Enable address matching by setting the MSB in register 7
|
|
*/
|
|
|
|
if (!quiet)
|
|
printf("Initializing the ADC...\n");
|
|
|
|
udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */
|
|
|
|
iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
|
|
udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
|
|
|
|
i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */
|
|
i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */
|
|
ADC_REG7_ADDR_ENABLE);
|
|
|
|
i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
|
|
(sample_64x ? 0 : ADC_REG2_128x) |
|
|
ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
|
|
|
|
reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
|
|
if (reg != I2C_ADC_1_ADDR) {
|
|
printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
|
|
reg, I2C_ADC_1_ADDR);
|
|
}
|
|
|
|
iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
|
|
udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
|
|
|
|
/* set address (do not set ADDREN yet) */
|
|
i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);
|
|
|
|
i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
|
|
(sample_64x ? 0 : ADC_REG2_128x) |
|
|
ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
|
|
|
|
reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
|
|
if (reg != I2C_ADC_2_ADDR) {
|
|
printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
|
|
reg, I2C_ADC_2_ADDR);
|
|
}
|
|
|
|
i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
|
|
ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL);
|
|
|
|
i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
|
|
(sample_64x ? 0 : ADC_REG2_128x) |
|
|
ADC_REG2_CAL |
|
|
ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);
|
|
|
|
udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */
|
|
i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */
|
|
|
|
/*
|
|
* Now that we have synchronized the ADC's, enable address
|
|
* selection on the second ADC as well as the first.
|
|
*/
|
|
i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
|
|
|
|
/*
|
|
* Initialize the Crystal DAC
|
|
*
|
|
* Two of the config lines are used for I2C so we have to set them
|
|
* to the proper initialization state without inadvertantly
|
|
* sending an I2C "start" sequence. When we bring the I2C back to
|
|
* the normal state, we send an I2C "stop" sequence.
|
|
*/
|
|
if (!quiet)
|
|
printf("Initializing the DAC...\n");
|
|
|
|
/*
|
|
* Bring the I2C clock and data lines low for initialization
|
|
*/
|
|
I2C_SCL(0);
|
|
I2C_DELAY;
|
|
I2C_SDA(0);
|
|
I2C_ACTIVE;
|
|
I2C_DELAY;
|
|
|
|
/* Reset the DAC */
|
|
iopa->pdat &= ~DAC_RST_MASK;
|
|
udelay(DAC_RESET_DELAY);
|
|
|
|
/* Release the DAC reset */
|
|
iopa->pdat |= DAC_RST_MASK;
|
|
udelay(DAC_INITIAL_DELAY);
|
|
|
|
/*
|
|
* Cause the DAC to:
|
|
* Enable control port (I2C mode)
|
|
* Going into power down
|
|
*/
|
|
i2c_reg_write(I2C_DAC_ADDR, 0x05,
|
|
DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN);
|
|
|
|
/*
|
|
* Cause the DAC to:
|
|
* Enable control port (I2C mode)
|
|
* Going into power down
|
|
* . MCLK divide by 1
|
|
* . MCLK divide by 2
|
|
*/
|
|
i2c_reg_write(I2C_DAC_ADDR, 0x05,
|
|
DAC_REG5_I2C_MODE |
|
|
DAC_REG5_POWER_DOWN |
|
|
(mclk_divide ? DAC_REG5_MCLK_DIV : 0));
|
|
|
|
/*
|
|
* Cause the DAC to:
|
|
* Auto-mute disabled
|
|
* . Format 0, left justified 24 bits
|
|
* . Format 3, right justified 24 bits
|
|
* No de-emphasis
|
|
* . Single speed mode
|
|
* . Double speed mode
|
|
*/
|
|
i2c_reg_write(I2C_DAC_ADDR, 0x01,
|
|
(right_just ? DAC_REG1_RIGHT_JUST_24BIT :
|
|
DAC_REG1_LEFT_JUST_24_BIT) |
|
|
DAC_REG1_DEM_NO |
|
|
(sample_rate >=
|
|
50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
|
|
|
|
sprintf(str_buf, "%d",
|
|
sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
|
|
setenv("DaqDACFunctionalMode", str_buf);
|
|
|
|
/*
|
|
* Cause the DAC to:
|
|
* Enable control port (I2C mode)
|
|
* Remove power down
|
|
* . MCLK divide by 1
|
|
* . MCLK divide by 2
|
|
*/
|
|
i2c_reg_write(I2C_DAC_ADDR, 0x05,
|
|
DAC_REG5_I2C_MODE |
|
|
(mclk_divide ? DAC_REG5_MCLK_DIV : 0));
|
|
|
|
/*
|
|
* Create a I2C stop condition:
|
|
* low->high on data while clock is high.
|
|
*/
|
|
I2C_SCL(1);
|
|
I2C_DELAY;
|
|
I2C_SDA(1);
|
|
I2C_DELAY;
|
|
I2C_TRISTATE;
|
|
|
|
if (!quiet)
|
|
printf("\n");
|
|
#ifdef CONFIG_ETHER_LOOPBACK_TEST
|
|
/*
|
|
* Run the Ethernet loopback test
|
|
*/
|
|
eth_loopback_test();
|
|
#endif /* CONFIG_ETHER_LOOPBACK_TEST */
|
|
|
|
#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
/*
|
|
* Turn off the RED fail LED now that we are up and running.
|
|
*/
|
|
status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
/*
|
|
* Show boot status: flash the LED if something goes wrong, indicating
|
|
* that last thing that worked and thus, by implication, what is broken.
|
|
*
|
|
* This stores the last OK value in RAM so this will not work properly
|
|
* before RAM is initialized. Since it is being used for indicating
|
|
* boot status (i.e. after RAM is initialized), that is OK.
|
|
*/
|
|
static void flash_code(uchar number, uchar modulo, uchar digits)
|
|
{
|
|
int j;
|
|
|
|
/*
|
|
* Recursively do upper digits.
|
|
*/
|
|
if (digits > 1)
|
|
flash_code(number / modulo, modulo, digits - 1);
|
|
|
|
number = number % modulo;
|
|
|
|
/*
|
|
* Zero is indicated by one long flash (dash).
|
|
*/
|
|
if (number == 0) {
|
|
status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
|
|
udelay(1000000);
|
|
status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
|
|
udelay(200000);
|
|
} else {
|
|
/*
|
|
* Non-zero is indicated by short flashes, one per count.
|
|
*/
|
|
for (j = 0; j < number; j++) {
|
|
status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
|
|
udelay(100000);
|
|
status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
|
|
udelay(200000);
|
|
}
|
|
}
|
|
/*
|
|
* Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
|
|
*/
|
|
udelay(700000);
|
|
}
|
|
|
|
static int last_boot_progress;
|
|
|
|
void show_boot_progress(int status)
|
|
{
|
|
int i, j;
|
|
|
|
if (status > 0) {
|
|
last_boot_progress = status;
|
|
} else {
|
|
/*
|
|
* If a specific failure code is given, flash this code
|
|
* else just use the last success code we've seen
|
|
*/
|
|
if (status < -1)
|
|
last_boot_progress = -status;
|
|
|
|
/*
|
|
* Flash this code 5 times
|
|
*/
|
|
for (j = 0; j < 5; j++) {
|
|
/*
|
|
* Houston, we have a problem.
|
|
* Blink the last OK status which indicates where things failed.
|
|
*/
|
|
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
|
|
flash_code(last_boot_progress, 5, 3);
|
|
|
|
/*
|
|
* Delay 5 seconds between repetitions,
|
|
* with the fault LED blinking
|
|
*/
|
|
for (i = 0; i < 5; i++) {
|
|
status_led_set(STATUS_LED_RED,
|
|
STATUS_LED_OFF);
|
|
udelay(500000);
|
|
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
|
|
udelay(500000);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the board to retry initialization.
|
|
*/
|
|
do_reset(NULL, 0, 0, NULL);
|
|
}
|
|
}
|
|
#endif /* CONFIG_SHOW_BOOT_PROGRESS */
|
|
|
|
|
|
/*
|
|
* The following are used to control the SPI chip selects for the SPI command.
|
|
*/
|
|
#if defined(CONFIG_CMD_SPI)
|
|
|
|
#define SPI_ADC_CS_MASK 0x00000800
|
|
#define SPI_DAC_CS_MASK 0x00001000
|
|
|
|
static const u32 cs_mask[] = {
|
|
SPI_ADC_CS_MASK,
|
|
SPI_DAC_CS_MASK,
|
|
};
|
|
|
|
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
|
|
{
|
|
return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
|
|
}
|
|
|
|
void spi_cs_activate(struct spi_slave *slave)
|
|
{
|
|
volatile ioport_t *iopd =
|
|
ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );
|
|
|
|
iopd->pdat &= ~cs_mask[slave->cs];
|
|
}
|
|
|
|
void spi_cs_deactivate(struct spi_slave *slave)
|
|
{
|
|
volatile ioport_t *iopd =
|
|
ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );
|
|
|
|
iopd->pdat |= cs_mask[slave->cs];
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* CONFIG_MISC_INIT_R */
|
|
|