upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mmc/mmc.c

966 lines
19 KiB

/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <mmc.h>
#include <div64.h>
static struct list_head mmc_devices;
static int cur_dev_num = -1;
int __board_mmc_getcd(u8 *cd, struct mmc *mmc) {
return -1;
}
int board_mmc_getcd(u8 *cd, struct mmc *mmc)__attribute__((weak,
alias("__board_mmc_getcd")));
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
return mmc->send_cmd(mmc, cmd, data);
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
printf("MMC Device %d not found\n", dev_num);
return NULL;
}
static ulong
mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
int stoperr = 0;
struct mmc *mmc = find_mmc_device(dev_num);
int blklen;
if (!mmc)
return -1;
blklen = mmc->write_bl_len;
if ((start + blkcnt) > mmc->block_dev.lba) {
printf("MMC: block number 0x%lx exceeds max(0x%lx)",
start + blkcnt, mmc->block_dev.lba);
return 0;
}
err = mmc_set_blocklen(mmc, mmc->write_bl_len);
if (err) {
printf("set write bl len failed\n\r");
return err;
}
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * blklen;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.src = src;
data.blocks = blkcnt;
data.blocksize = blklen;
data.flags = MMC_DATA_WRITE;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
printf("mmc write failed\n\r");
return err;
}
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
stoperr = mmc_send_cmd(mmc, &cmd, NULL);
}
return blkcnt;
}
int mmc_read_block(struct mmc *mmc, void *dst, uint blocknum)
{
struct mmc_cmd cmd;
struct mmc_data data;
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = blocknum;
else
cmd.cmdarg = blocknum * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.dest = dst;
data.blocks = 1;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
int mmc_read(struct mmc *mmc, u64 src, uchar *dst, int size)
{
char *buffer;
int i;
int blklen = mmc->read_bl_len;
int startblock = lldiv(src, mmc->read_bl_len);
int endblock = lldiv(src + size - 1, mmc->read_bl_len);
int err = 0;
/* Make a buffer big enough to hold all the blocks we might read */
buffer = malloc(blklen);
if (!buffer) {
printf("Could not allocate buffer for MMC read!\n");
return -1;
}
/* We always do full block reads from the card */
err = mmc_set_blocklen(mmc, mmc->read_bl_len);
if (err)
goto free_buffer;
for (i = startblock; i <= endblock; i++) {
int segment_size;
int offset;
err = mmc_read_block(mmc, buffer, i);
if (err)
goto free_buffer;
/*
* The first block may not be aligned, so we
* copy from the desired point in the block
*/
offset = (src & (blklen - 1));
segment_size = MIN(blklen - offset, size);
memcpy(dst, buffer + offset, segment_size);
dst += segment_size;
src += segment_size;
size -= segment_size;
}
free_buffer:
free(buffer);
return err;
}
static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
{
int err;
int i;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if ((start + blkcnt) > mmc->block_dev.lba) {
printf("MMC: block number 0x%lx exceeds max(0x%lx)",
start + blkcnt, mmc->block_dev.lba);
return 0;
}
/* We always do full block reads from the card */
err = mmc_set_blocklen(mmc, mmc->read_bl_len);
if (err) {
return 0;
}
for (i = start; i < start + blkcnt; i++, dst += mmc->read_bl_len) {
err = mmc_read_block(mmc, dst, i);
if (err) {
printf("block read failed: %d\n", err);
return i - start;
}
}
return blkcnt;
}
int mmc_go_idle(struct mmc* mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
int
sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc->voltages & 0xff8000;
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
struct mmc_cmd cmd;
int err;
/* Some cards seem to need this */
mmc_go_idle(mmc);
do {
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = OCR_HCS | mmc->voltages;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while (!(cmd.response[0] & OCR_BUSY) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.dest = ext_csd;
data.blocks = 1;
data.blocksize = 512;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
int mmc_change_freq(struct mmc *mmc)
{
char ext_csd[512];
char cardtype;
int err;
mmc->card_caps = 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
mmc->card_caps |= MMC_MODE_4BIT;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
if (ext_csd[212] || ext_csd[213] || ext_csd[214] || ext_csd[215])
mmc->high_capacity = 1;
cardtype = ext_csd[196] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
if (!ext_csd[185])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & MMC_HS_52MHZ)
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
else
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
cmd.flags = 0;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
uint scr[2];
uint switch_status[16];
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
retry_scr:
data.dest = (char *)&scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)&switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status);
if (err)
return err;
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
int multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
void mmc_set_ios(struct mmc *mmc)
{
mmc->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->f_max)
clock = mmc->f_max;
if (clock < mmc->f_min)
clock = mmc->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
int mmc_startup(struct mmc *mmc)
{
int err;
uint mult, freq;
u64 cmult, csize;
struct mmc_cmd cmd;
char ext_csd[512];
/* Put the Card in Identify Mode */
cmd.cmdidx = MMC_CMD_ALL_SEND_CID;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity = (csize + 1) << (cmult + 2);
mmc->capacity *= mmc->read_bl_len;
if (mmc->read_bl_len > 512)
mmc->read_bl_len = 512;
if (mmc->write_bl_len > 512)
mmc->write_bl_len = 512;
/* Select the card, and put it into Transfer Mode */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err & (ext_csd[192] >= 2)) {
mmc->capacity = ext_csd[212] << 0 | ext_csd[213] << 8 |
ext_csd[214] << 16 | ext_csd[215] << 24;
mmc->capacity *= 512;
}
}
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->host_caps;
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc_set_clock(mmc, 50000000);
else
mmc_set_clock(mmc, 25000000);
} else {
if (mmc->card_caps & MMC_MODE_4BIT) {
/* Set the card to use 4 bit*/
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_4);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
} else if (mmc->card_caps & MMC_MODE_8BIT) {
/* Set the card to use 8 bit*/
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8);
if (err)
return err;
mmc_set_bus_width(mmc, 8);
}
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc_set_clock(mmc, 52000000);
else
mmc_set_clock(mmc, 26000000);
} else
mmc_set_clock(mmc, 20000000);
}
/* fill in device description */
mmc->block_dev.lun = 0;
mmc->block_dev.type = 0;
mmc->block_dev.blksz = mmc->read_bl_len;
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
(mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
(mmc->cid[2] >> 24) & 0xf);
init_part(&mmc->block_dev);
return 0;
}
int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
int mmc_register(struct mmc *mmc)
{
/* Setup the universal parts of the block interface just once */
mmc->block_dev.if_type = IF_TYPE_MMC;
mmc->block_dev.dev = cur_dev_num++;
mmc->block_dev.removable = 1;
mmc->block_dev.block_read = mmc_bread;
mmc->block_dev.block_write = mmc_bwrite;
INIT_LIST_HEAD (&mmc->link);
list_add_tail (&mmc->link, &mmc_devices);
return 0;
}
block_dev_desc_t *mmc_get_dev(int dev)
{
struct mmc *mmc = find_mmc_device(dev);
return mmc ? &mmc->block_dev : NULL;
}
int mmc_init(struct mmc *mmc)
{
int err;
err = mmc->init(mmc);
if (err)
return err;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == TIMEOUT) {
err = mmc_send_op_cond(mmc);
if (err) {
printf("Card did not respond to voltage select!\n");
return UNUSABLE_ERR;
}
}
return mmc_startup(mmc);
}
/*
* CPU and board-specific MMC initializations. Aliased function
* signals caller to move on
*/
static int __def_mmc_init(bd_t *bis)
{
return -1;
}
int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
void print_mmc_devices(char separator)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
printf("%s: %d", m->name, m->block_dev.dev);
if (entry->next != &mmc_devices)
printf("%c ", separator);
}
printf("\n");
}
int mmc_initialize(bd_t *bis)
{
INIT_LIST_HEAD (&mmc_devices);
cur_dev_num = 0;
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
print_mmc_devices(',');
return 0;
}