upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/net/net.c

1546 lines
35 KiB

/*
* Copied from Linux Monitor (LiMon) - Networking.
*
* Copyright 1994 - 2000 Neil Russell.
* (See License)
* Copyright 2000 Roland Borde
* Copyright 2000 Paolo Scaffardi
* Copyright 2000-2002 Wolfgang Denk, wd@denx.de
* SPDX-License-Identifier: GPL-2.0
*/
/*
* General Desription:
*
* The user interface supports commands for BOOTP, RARP, and TFTP.
* Also, we support ARP internally. Depending on available data,
* these interact as follows:
*
* BOOTP:
*
* Prerequisites: - own ethernet address
* We want: - own IP address
* - TFTP server IP address
* - name of bootfile
* Next step: ARP
*
* LINK_LOCAL:
*
* Prerequisites: - own ethernet address
* We want: - own IP address
* Next step: ARP
*
* RARP:
*
* Prerequisites: - own ethernet address
* We want: - own IP address
* - TFTP server IP address
* Next step: ARP
*
* ARP:
*
* Prerequisites: - own ethernet address
* - own IP address
* - TFTP server IP address
* We want: - TFTP server ethernet address
* Next step: TFTP
*
* DHCP:
*
* Prerequisites: - own ethernet address
* We want: - IP, Netmask, ServerIP, Gateway IP
* - bootfilename, lease time
* Next step: - TFTP
*
* TFTP:
*
* Prerequisites: - own ethernet address
* - own IP address
* - TFTP server IP address
* - TFTP server ethernet address
* - name of bootfile (if unknown, we use a default name
* derived from our own IP address)
* We want: - load the boot file
* Next step: none
*
* NFS:
*
* Prerequisites: - own ethernet address
* - own IP address
* - name of bootfile (if unknown, we use a default name
* derived from our own IP address)
* We want: - load the boot file
* Next step: none
*
* SNTP:
*
* Prerequisites: - own ethernet address
* - own IP address
* We want: - network time
* Next step: none
*/
#include <common.h>
#include <command.h>
#include <environment.h>
#include <errno.h>
#include <net.h>
#include <net/tftp.h>
#if defined(CONFIG_STATUS_LED)
#include <miiphy.h>
#include <status_led.h>
#endif
#include <watchdog.h>
#include <linux/compiler.h>
#include "arp.h"
#include "bootp.h"
#include "cdp.h"
#if defined(CONFIG_CMD_DNS)
#include "dns.h"
#endif
#include "link_local.h"
#include "nfs.h"
#include "ping.h"
#include "rarp.h"
#if defined(CONFIG_CMD_SNTP)
#include "sntp.h"
#endif
DECLARE_GLOBAL_DATA_PTR;
/** BOOTP EXTENTIONS **/
/* Our subnet mask (0=unknown) */
struct in_addr net_netmask;
/* Our gateways IP address */
struct in_addr net_gateway;
/* Our DNS IP address */
struct in_addr net_dns_server;
#if defined(CONFIG_BOOTP_DNS2)
/* Our 2nd DNS IP address */
struct in_addr net_dns_server2;
#endif
#ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */
struct in_addr net_mcast_addr;
#endif
/** END OF BOOTP EXTENTIONS **/
/* Our ethernet address */
u8 net_ethaddr[6];
/* Boot server enet address */
u8 net_server_ethaddr[6];
/* Our IP addr (0 = unknown) */
struct in_addr net_ip;
/* Server IP addr (0 = unknown) */
struct in_addr net_server_ip;
/* Current receive packet */
uchar *net_rx_packet;
/* Current rx packet length */
int net_rx_packet_len;
/* IP packet ID */
static unsigned net_ip_id;
/* Ethernet bcast address */
const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
const u8 net_null_ethaddr[6];
#ifdef CONFIG_API
void (*push_packet)(void *, int len) = 0;
#endif
/* Network loop state */
enum net_loop_state net_state;
/* Tried all network devices */
int net_restart_wrap;
/* Network loop restarted */
static int net_restarted;
/* At least one device configured */
static int net_dev_exists;
/* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
/* default is without VLAN */
ushort net_our_vlan = 0xFFFF;
/* ditto */
ushort net_native_vlan = 0xFFFF;
/* Boot File name */
char net_boot_file_name[128];
/* The actual transferred size of the bootfile (in bytes) */
u32 net_boot_file_size;
/* Boot file size in blocks as reported by the DHCP server */
u32 net_boot_file_expected_size_in_blocks;
#if defined(CONFIG_CMD_SNTP)
/* NTP server IP address */
struct in_addr net_ntp_server;
/* offset time from UTC */
int net_ntp_time_offset;
#endif
static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
/* Receive packets */
uchar *net_rx_packets[PKTBUFSRX];
/* Current UDP RX packet handler */
static rxhand_f *udp_packet_handler;
/* Current ARP RX packet handler */
static rxhand_f *arp_packet_handler;
#ifdef CONFIG_CMD_TFTPPUT
/* Current ICMP rx handler */
static rxhand_icmp_f *packet_icmp_handler;
#endif
/* Current timeout handler */
static thand_f *time_handler;
/* Time base value */
static ulong time_start;
/* Current timeout value */
static ulong time_delta;
/* THE transmit packet */
uchar *net_tx_packet;
static int net_check_prereq(enum proto_t protocol);
static int net_try_count;
int __maybe_unused net_busy_flag;
/**********************************************************************/
static int on_bootfile(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
switch (op) {
case env_op_create:
case env_op_overwrite:
copy_filename(net_boot_file_name, value,
sizeof(net_boot_file_name));
break;
default:
break;
}
return 0;
}
U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
static int on_ipaddr(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_ip = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
static int on_gatewayip(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_gateway = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
static int on_netmask(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_netmask = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(netmask, on_netmask);
static int on_serverip(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_server_ip = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(serverip, on_serverip);
static int on_nvlan(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_native_vlan = string_to_vlan(value);
return 0;
}
U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
static int on_vlan(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_our_vlan = string_to_vlan(value);
return 0;
}
U_BOOT_ENV_CALLBACK(vlan, on_vlan);
#if defined(CONFIG_CMD_DNS)
static int on_dnsip(const char *name, const char *value, enum env_op op,
int flags)
{
if (flags & H_PROGRAMMATIC)
return 0;
net_dns_server = string_to_ip(value);
return 0;
}
U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
#endif
/*
* Check if autoload is enabled. If so, use either NFS or TFTP to download
* the boot file.
*/
void net_auto_load(void)
{
#if defined(CONFIG_CMD_NFS)
const char *s = getenv("autoload");
if (s != NULL && strcmp(s, "NFS") == 0) {
/*
* Use NFS to load the bootfile.
*/
nfs_start();
return;
}
#endif
if (getenv_yesno("autoload") == 0) {
/*
* Just use BOOTP/RARP to configure system;
* Do not use TFTP to load the bootfile.
*/
net_set_state(NETLOOP_SUCCESS);
return;
}
tftp_start(TFTPGET);
}
static void net_init_loop(void)
{
if (eth_get_dev())
memcpy(net_ethaddr, eth_get_ethaddr(), 6);
return;
}
static void net_clear_handlers(void)
{
net_set_udp_handler(NULL);
net_set_arp_handler(NULL);
net_set_timeout_handler(0, NULL);
}
static void net_cleanup_loop(void)
{
net_clear_handlers();
}
void net_init(void)
{
static int first_call = 1;
if (first_call) {
/*
* Setup packet buffers, aligned correctly.
*/
int i;
net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
for (i = 0; i < PKTBUFSRX; i++) {
net_rx_packets[i] = net_tx_packet +
(i + 1) * PKTSIZE_ALIGN;
}
arp_init();
net_clear_handlers();
/* Only need to setup buffer pointers once. */
first_call = 0;
}
net_init_loop();
}
/**********************************************************************/
/*
* Main network processing loop.
*/
int net_loop(enum proto_t protocol)
{
int ret = -EINVAL;
net_restarted = 0;
net_dev_exists = 0;
net_try_count = 1;
debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
net_init();
if (eth_is_on_demand_init() || protocol != NETCONS) {
eth_halt();
eth_set_current();
ret = eth_init();
if (ret < 0) {
eth_halt();
return ret;
}
} else {
eth_init_state_only();
}
restart:
#ifdef CONFIG_USB_KEYBOARD
net_busy_flag = 0;
#endif
net_set_state(NETLOOP_CONTINUE);
/*
* Start the ball rolling with the given start function. From
* here on, this code is a state machine driven by received
* packets and timer events.
*/
debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
net_init_loop();
switch (net_check_prereq(protocol)) {
case 1:
/* network not configured */
eth_halt();
return -ENODEV;
case 2:
/* network device not configured */
break;
case 0:
net_dev_exists = 1;
net_boot_file_size = 0;
switch (protocol) {
case TFTPGET:
#ifdef CONFIG_CMD_TFTPPUT
case TFTPPUT:
#endif
/* always use ARP to get server ethernet address */
tftp_start(protocol);
break;
#ifdef CONFIG_CMD_TFTPSRV
case TFTPSRV:
tftp_start_server();
break;
#endif
#if defined(CONFIG_CMD_DHCP)
case DHCP:
bootp_reset();
net_ip.s_addr = 0;
dhcp_request(); /* Basically same as BOOTP */
break;
#endif
case BOOTP:
bootp_reset();
net_ip.s_addr = 0;
bootp_request();
break;
#if defined(CONFIG_CMD_RARP)
case RARP:
rarp_try = 0;
net_ip.s_addr = 0;
rarp_request();
break;
#endif
#if defined(CONFIG_CMD_PING)
case PING:
ping_start();
break;
#endif
#if defined(CONFIG_CMD_NFS)
case NFS:
nfs_start();
break;
#endif
#if defined(CONFIG_CMD_CDP)
case CDP:
cdp_start();
break;
#endif
#if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
case NETCONS:
nc_start();
break;
#endif
#if defined(CONFIG_CMD_SNTP)
case SNTP:
sntp_start();
break;
#endif
#if defined(CONFIG_CMD_DNS)
case DNS:
dns_start();
break;
#endif
#if defined(CONFIG_CMD_LINK_LOCAL)
case LINKLOCAL:
link_local_start();
break;
#endif
default:
break;
}
break;
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
defined(CONFIG_STATUS_LED) && \
defined(STATUS_LED_RED)
/*
* Echo the inverted link state to the fault LED.
*/
if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
else
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
#endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
#endif /* CONFIG_MII, ... */
#ifdef CONFIG_USB_KEYBOARD
net_busy_flag = 1;
#endif
/*
* Main packet reception loop. Loop receiving packets until
* someone sets `net_state' to a state that terminates.
*/
for (;;) {
WATCHDOG_RESET();
#ifdef CONFIG_SHOW_ACTIVITY
show_activity(1);
#endif
/*
* Check the ethernet for a new packet. The ethernet
* receive routine will process it.
* Most drivers return the most recent packet size, but not
* errors that may have happened.
*/
eth_rx();
/*
* Abort if ctrl-c was pressed.
*/
if (ctrlc()) {
/* cancel any ARP that may not have completed */
net_arp_wait_packet_ip.s_addr = 0;
net_cleanup_loop();
eth_halt();
/* Invalidate the last protocol */
eth_set_last_protocol(BOOTP);
puts("\nAbort\n");
/* include a debug print as well incase the debug
messages are directed to stderr */
debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
ret = -EINTR;
goto done;
}
arp_timeout_check();
/*
* Check for a timeout, and run the timeout handler
* if we have one.
*/
if (time_handler &&
((get_timer(0) - time_start) > time_delta)) {
thand_f *x;
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
defined(CONFIG_STATUS_LED) && \
defined(STATUS_LED_RED)
/*
* Echo the inverted link state to the fault LED.
*/
if (miiphy_link(eth_get_dev()->name,
CONFIG_SYS_FAULT_MII_ADDR))
status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
else
status_led_set(STATUS_LED_RED, STATUS_LED_ON);
#endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
#endif /* CONFIG_MII, ... */
debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
x = time_handler;
time_handler = (thand_f *)0;
(*x)();
}
if (net_state == NETLOOP_FAIL)
ret = net_start_again();
switch (net_state) {
case NETLOOP_RESTART:
net_restarted = 1;
goto restart;
case NETLOOP_SUCCESS:
net_cleanup_loop();
if (net_boot_file_size > 0) {
printf("Bytes transferred = %d (%x hex)\n",
net_boot_file_size, net_boot_file_size);
setenv_hex("filesize", net_boot_file_size);
setenv_hex("fileaddr", load_addr);
}
if (protocol != NETCONS)
eth_halt();
else
eth_halt_state_only();
eth_set_last_protocol(protocol);
ret = net_boot_file_size;
debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
goto done;
case NETLOOP_FAIL:
net_cleanup_loop();
/* Invalidate the last protocol */
eth_set_last_protocol(BOOTP);
debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
goto done;
case NETLOOP_CONTINUE:
continue;
}
}
done:
#ifdef CONFIG_USB_KEYBOARD
net_busy_flag = 0;
#endif
#ifdef CONFIG_CMD_TFTPPUT
/* Clear out the handlers */
net_set_udp_handler(NULL);
net_set_icmp_handler(NULL);
#endif
return ret;
}
/**********************************************************************/
static void start_again_timeout_handler(void)
{
net_set_state(NETLOOP_RESTART);
}
int net_start_again(void)
{
char *nretry;
int retry_forever = 0;
unsigned long retrycnt = 0;
int ret;
nretry = getenv("netretry");
if (nretry) {
if (!strcmp(nretry, "yes"))
retry_forever = 1;
else if (!strcmp(nretry, "no"))
retrycnt = 0;
else if (!strcmp(nretry, "once"))
retrycnt = 1;
else
retrycnt = simple_strtoul(nretry, NULL, 0);
} else {
retrycnt = 0;
retry_forever = 0;
}
if ((!retry_forever) && (net_try_count >= retrycnt)) {
eth_halt();
net_set_state(NETLOOP_FAIL);
/*
* We don't provide a way for the protocol to return an error,
* but this is almost always the reason.
*/
return -ETIMEDOUT;
}
net_try_count++;
eth_halt();
#if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
eth_try_another(!net_restarted);
#endif
ret = eth_init();
if (net_restart_wrap) {
net_restart_wrap = 0;
if (net_dev_exists) {
net_set_timeout_handler(10000UL,
start_again_timeout_handler);
net_set_udp_handler(NULL);
} else {
net_set_state(NETLOOP_FAIL);
}
} else {
net_set_state(NETLOOP_RESTART);
}
return ret;
}
/**********************************************************************/
/*
* Miscelaneous bits.
*/
static void dummy_handler(uchar *pkt, unsigned dport,
struct in_addr sip, unsigned sport,
unsigned len)
{
}
rxhand_f *net_get_udp_handler(void)
{
return udp_packet_handler;
}
void net_set_udp_handler(rxhand_f *f)
{
debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
if (f == NULL)
udp_packet_handler = dummy_handler;
else
udp_packet_handler = f;
}
rxhand_f *net_get_arp_handler(void)
{
return arp_packet_handler;
}
void net_set_arp_handler(rxhand_f *f)
{
debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
if (f == NULL)
arp_packet_handler = dummy_handler;
else
arp_packet_handler = f;
}
#ifdef CONFIG_CMD_TFTPPUT
void net_set_icmp_handler(rxhand_icmp_f *f)
{
packet_icmp_handler = f;
}
#endif
void net_set_timeout_handler(ulong iv, thand_f *f)
{
if (iv == 0) {
debug_cond(DEBUG_INT_STATE,
"--- net_loop timeout handler cancelled\n");
time_handler = (thand_f *)0;
} else {
debug_cond(DEBUG_INT_STATE,
"--- net_loop timeout handler set (%p)\n", f);
time_handler = f;
time_start = get_timer(0);
time_delta = iv * CONFIG_SYS_HZ / 1000;
}
}
int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
int payload_len)
{
uchar *pkt;
int eth_hdr_size;
int pkt_hdr_size;
/* make sure the net_tx_packet is initialized (net_init() was called) */
assert(net_tx_packet != NULL);
if (net_tx_packet == NULL)
return -1;
/* convert to new style broadcast */
if (dest.s_addr == 0)
dest.s_addr = 0xFFFFFFFF;
/* if broadcast, make the ether address a broadcast and don't do ARP */
if (dest.s_addr == 0xFFFFFFFF)
ether = (uchar *)net_bcast_ethaddr;
pkt = (uchar *)net_tx_packet;
eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
pkt += eth_hdr_size;
net_set_udp_header(pkt, dest, dport, sport, payload_len);
pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
/* if MAC address was not discovered yet, do an ARP request */
if (memcmp(ether, net_null_ethaddr, 6) == 0) {
debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
/* save the ip and eth addr for the packet to send after arp */
net_arp_wait_packet_ip = dest;
arp_wait_packet_ethaddr = ether;
/* size of the waiting packet */
arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
/* and do the ARP request */
arp_wait_try = 1;
arp_wait_timer_start = get_timer(0);
arp_request();
return 1; /* waiting */
} else {
debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
&dest, ether);
net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
return 0; /* transmitted */
}
}
#ifdef CONFIG_IP_DEFRAG
/*
* This function collects fragments in a single packet, according
* to the algorithm in RFC815. It returns NULL or the pointer to
* a complete packet, in static storage
*/
#ifndef CONFIG_NET_MAXDEFRAG
#define CONFIG_NET_MAXDEFRAG 16384
#endif
/*
* MAXDEFRAG, above, is chosen in the config file and is real data
* so we need to add the NFS overhead, which is more than TFTP.
* To use sizeof in the internal unnamed structures, we need a real
* instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately).
* The compiler doesn't complain nor allocates the actual structure
*/
static struct rpc_t rpc_specimen;
#define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply))
#define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
/*
* this is the packet being assembled, either data or frag control.
* Fragments go by 8 bytes, so this union must be 8 bytes long
*/
struct hole {
/* first_byte is address of this structure */
u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
u16 prev_hole; /* index of prev, 0 == none */
u16 unused;
};
static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
{
static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
static u16 first_hole, total_len;
struct hole *payload, *thisfrag, *h, *newh;
struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
uchar *indata = (uchar *)ip;
int offset8, start, len, done = 0;
u16 ip_off = ntohs(ip->ip_off);
/* payload starts after IP header, this fragment is in there */
payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
offset8 = (ip_off & IP_OFFS);
thisfrag = payload + offset8;
start = offset8 * 8;
len = ntohs(ip->ip_len) - IP_HDR_SIZE;
if (start + len > IP_MAXUDP) /* fragment extends too far */
return NULL;
if (!total_len || localip->ip_id != ip->ip_id) {
/* new (or different) packet, reset structs */
total_len = 0xffff;
payload[0].last_byte = ~0;
payload[0].next_hole = 0;
payload[0].prev_hole = 0;
first_hole = 0;
/* any IP header will work, copy the first we received */
memcpy(localip, ip, IP_HDR_SIZE);
}
/*
* What follows is the reassembly algorithm. We use the payload
* array as a linked list of hole descriptors, as each hole starts
* at a multiple of 8 bytes. However, last byte can be whatever value,
* so it is represented as byte count, not as 8-byte blocks.
*/
h = payload + first_hole;
while (h->last_byte < start) {
if (!h->next_hole) {
/* no hole that far away */
return NULL;
}
h = payload + h->next_hole;
}
/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
if (offset8 + ((len + 7) / 8) <= h - payload) {
/* no overlap with holes (dup fragment?) */
return NULL;
}
if (!(ip_off & IP_FLAGS_MFRAG)) {
/* no more fragmentss: truncate this (last) hole */
total_len = start + len;
h->last_byte = start + len;
}
/*
* There is some overlap: fix the hole list. This code doesn't
* deal with a fragment that overlaps with two different holes
* (thus being a superset of a previously-received fragment).
*/
if ((h >= thisfrag) && (h->last_byte <= start + len)) {
/* complete overlap with hole: remove hole */
if (!h->prev_hole && !h->next_hole) {
/* last remaining hole */
done = 1;
} else if (!h->prev_hole) {
/* first hole */
first_hole = h->next_hole;
payload[h->next_hole].prev_hole = 0;
} else if (!h->next_hole) {
/* last hole */
payload[h->prev_hole].next_hole = 0;
} else {
/* in the middle of the list */
payload[h->next_hole].prev_hole = h->prev_hole;
payload[h->prev_hole].next_hole = h->next_hole;
}
} else if (h->last_byte <= start + len) {
/* overlaps with final part of the hole: shorten this hole */
h->last_byte = start;
} else if (h >= thisfrag) {
/* overlaps with initial part of the hole: move this hole */
newh = thisfrag + (len / 8);
*newh = *h;
h = newh;
if (h->next_hole)
payload[h->next_hole].prev_hole = (h - payload);
if (h->prev_hole)
payload[h->prev_hole].next_hole = (h - payload);
else
first_hole = (h - payload);
} else {
/* fragment sits in the middle: split the hole */
newh = thisfrag + (len / 8);
*newh = *h;
h->last_byte = start;
h->next_hole = (newh - payload);
newh->prev_hole = (h - payload);
if (newh->next_hole)
payload[newh->next_hole].prev_hole = (newh - payload);
}
/* finally copy this fragment and possibly return whole packet */
memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
if (!done)
return NULL;
localip->ip_len = htons(total_len);
*lenp = total_len + IP_HDR_SIZE;
return localip;
}
static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
int *lenp)
{
u16 ip_off = ntohs(ip->ip_off);
if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
return ip; /* not a fragment */
return __net_defragment(ip, lenp);
}
#else /* !CONFIG_IP_DEFRAG */
static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
int *lenp)
{
u16 ip_off = ntohs(ip->ip_off);
if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
return ip; /* not a fragment */
return NULL;
}
#endif
/**
* Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
* drop others.
*
* @parma ip IP packet containing the ICMP
*/
static void receive_icmp(struct ip_udp_hdr *ip, int len,
struct in_addr src_ip, struct ethernet_hdr *et)
{
struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
switch (icmph->type) {
case ICMP_REDIRECT:
if (icmph->code != ICMP_REDIR_HOST)
return;
printf(" ICMP Host Redirect to %pI4 ",
&icmph->un.gateway);
break;
default:
#if defined(CONFIG_CMD_PING)
ping_receive(et, ip, len);
#endif
#ifdef CONFIG_CMD_TFTPPUT
if (packet_icmp_handler)
packet_icmp_handler(icmph->type, icmph->code,
ntohs(ip->udp_dst), src_ip,
ntohs(ip->udp_src), icmph->un.data,
ntohs(ip->udp_len));
#endif
break;
}
}
void net_process_received_packet(uchar *in_packet, int len)
{
struct ethernet_hdr *et;
struct ip_udp_hdr *ip;
struct in_addr dst_ip;
struct in_addr src_ip;
int eth_proto;
#if defined(CONFIG_CMD_CDP)
int iscdp;
#endif
ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
debug_cond(DEBUG_NET_PKT, "packet received\n");
net_rx_packet = in_packet;
net_rx_packet_len = len;
et = (struct ethernet_hdr *)in_packet;
/* too small packet? */
if (len < ETHER_HDR_SIZE)
return;
#ifdef CONFIG_API
if (push_packet) {
(*push_packet)(in_packet, len);
return;
}
#endif
#if defined(CONFIG_CMD_CDP)
/* keep track if packet is CDP */
iscdp = is_cdp_packet(et->et_dest);
#endif
myvlanid = ntohs(net_our_vlan);
if (myvlanid == (ushort)-1)
myvlanid = VLAN_NONE;
mynvlanid = ntohs(net_native_vlan);
if (mynvlanid == (ushort)-1)
mynvlanid = VLAN_NONE;
eth_proto = ntohs(et->et_protlen);
if (eth_proto < 1514) {
struct e802_hdr *et802 = (struct e802_hdr *)et;
/*
* Got a 802.2 packet. Check the other protocol field.
* XXX VLAN over 802.2+SNAP not implemented!
*/
eth_proto = ntohs(et802->et_prot);
ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
len -= E802_HDR_SIZE;
} else if (eth_proto != PROT_VLAN) { /* normal packet */
ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
len -= ETHER_HDR_SIZE;
} else { /* VLAN packet */
struct vlan_ethernet_hdr *vet =
(struct vlan_ethernet_hdr *)et;
debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
/* too small packet? */
if (len < VLAN_ETHER_HDR_SIZE)
return;
/* if no VLAN active */
if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
#if defined(CONFIG_CMD_CDP)
&& iscdp == 0
#endif
)
return;
cti = ntohs(vet->vet_tag);
vlanid = cti & VLAN_IDMASK;
eth_proto = ntohs(vet->vet_type);
ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
len -= VLAN_ETHER_HDR_SIZE;
}
debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
#if defined(CONFIG_CMD_CDP)
if (iscdp) {
cdp_receive((uchar *)ip, len);
return;
}
#endif
if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
if (vlanid == VLAN_NONE)
vlanid = (mynvlanid & VLAN_IDMASK);
/* not matched? */
if (vlanid != (myvlanid & VLAN_IDMASK))
return;
}
switch (eth_proto) {
case PROT_ARP:
arp_receive(et, ip, len);
break;
#ifdef CONFIG_CMD_RARP
case PROT_RARP:
rarp_receive(ip, len);
break;
#endif
case PROT_IP:
debug_cond(DEBUG_NET_PKT, "Got IP\n");
/* Before we start poking the header, make sure it is there */
if (len < IP_UDP_HDR_SIZE) {
debug("len bad %d < %lu\n", len,
(ulong)IP_UDP_HDR_SIZE);
return;
}
/* Check the packet length */
if (len < ntohs(ip->ip_len)) {
debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
return;
}
len = ntohs(ip->ip_len);
debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
len, ip->ip_hl_v & 0xff);
/* Can't deal with anything except IPv4 */
if ((ip->ip_hl_v & 0xf0) != 0x40)
return;
/* Can't deal with IP options (headers != 20 bytes) */
if ((ip->ip_hl_v & 0x0f) > 0x05)
return;
/* Check the Checksum of the header */
if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
debug("checksum bad\n");
return;
}
/* If it is not for us, ignore it */
dst_ip = net_read_ip(&ip->ip_dst);
if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
dst_ip.s_addr != 0xFFFFFFFF) {
#ifdef CONFIG_MCAST_TFTP
if (net_mcast_addr != dst_ip)
#endif
return;
}
/* Read source IP address for later use */
src_ip = net_read_ip(&ip->ip_src);
/*
* The function returns the unchanged packet if it's not
* a fragment, and either the complete packet or NULL if
* it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
*/
ip = net_defragment(ip, &len);
if (!ip)
return;
/*
* watch for ICMP host redirects
*
* There is no real handler code (yet). We just watch
* for ICMP host redirect messages. In case anybody
* sees these messages: please contact me
* (wd@denx.de), or - even better - send me the
* necessary fixes :-)
*
* Note: in all cases where I have seen this so far
* it was a problem with the router configuration,
* for instance when a router was configured in the
* BOOTP reply, but the TFTP server was on the same
* subnet. So this is probably a warning that your
* configuration might be wrong. But I'm not really
* sure if there aren't any other situations.
*
* Simon Glass <sjg@chromium.org>: We get an ICMP when
* we send a tftp packet to a dead connection, or when
* there is no server at the other end.
*/
if (ip->ip_p == IPPROTO_ICMP) {
receive_icmp(ip, len, src_ip, et);
return;
} else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
return;
}
debug_cond(DEBUG_DEV_PKT,
"received UDP (to=%pI4, from=%pI4, len=%d)\n",
&dst_ip, &src_ip, len);
#ifdef CONFIG_UDP_CHECKSUM
if (ip->udp_xsum != 0) {
ulong xsum;
ushort *sumptr;
ushort sumlen;
xsum = ip->ip_p;
xsum += (ntohs(ip->udp_len));
xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
sumlen = ntohs(ip->udp_len);
sumptr = (ushort *)&(ip->udp_src);
while (sumlen > 1) {
ushort sumdata;
sumdata = *sumptr++;
xsum += ntohs(sumdata);
sumlen -= 2;
}
if (sumlen > 0) {
ushort sumdata;
sumdata = *(unsigned char *)sumptr;
sumdata = (sumdata << 8) & 0xff00;
xsum += sumdata;
}
while ((xsum >> 16) != 0) {
xsum = (xsum & 0x0000ffff) +
((xsum >> 16) & 0x0000ffff);
}
if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
printf(" UDP wrong checksum %08lx %08x\n",
xsum, ntohs(ip->udp_xsum));
return;
}
}
#endif
#if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
src_ip,
ntohs(ip->udp_dst),
ntohs(ip->udp_src),
ntohs(ip->udp_len) - UDP_HDR_SIZE);
#endif
/*
* IP header OK. Pass the packet to the current handler.
*/
(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
ntohs(ip->udp_dst),
src_ip,
ntohs(ip->udp_src),
ntohs(ip->udp_len) - UDP_HDR_SIZE);
break;
}
}
/**********************************************************************/
static int net_check_prereq(enum proto_t protocol)
{
switch (protocol) {
/* Fall through */
#if defined(CONFIG_CMD_PING)
case PING:
if (net_ping_ip.s_addr == 0) {
puts("*** ERROR: ping address not given\n");
return 1;
}
goto common;
#endif
#if defined(CONFIG_CMD_SNTP)
case SNTP:
if (net_ntp_server.s_addr == 0) {
puts("*** ERROR: NTP server address not given\n");
return 1;
}
goto common;
#endif
#if defined(CONFIG_CMD_DNS)
case DNS:
if (net_dns_server.s_addr == 0) {
puts("*** ERROR: DNS server address not given\n");
return 1;
}
goto common;
#endif
#if defined(CONFIG_CMD_NFS)
case NFS:
#endif
/* Fall through */
case TFTPGET:
case TFTPPUT:
if (net_server_ip.s_addr == 0) {
puts("*** ERROR: `serverip' not set\n");
return 1;
}
#if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
defined(CONFIG_CMD_DNS)
common:
#endif
/* Fall through */
case NETCONS:
case TFTPSRV:
if (net_ip.s_addr == 0) {
puts("*** ERROR: `ipaddr' not set\n");
return 1;
}
/* Fall through */
#ifdef CONFIG_CMD_RARP
case RARP:
#endif
case BOOTP:
case CDP:
case DHCP:
case LINKLOCAL:
if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
int num = eth_get_dev_index();
switch (num) {
case -1:
puts("*** ERROR: No ethernet found.\n");
return 1;
case 0:
puts("*** ERROR: `ethaddr' not set\n");
break;
default:
printf("*** ERROR: `eth%daddr' not set\n",
num);
break;
}
net_start_again();
return 2;
}
/* Fall through */
default:
return 0;
}
return 0; /* OK */
}
/**********************************************************************/
int
net_eth_hdr_size(void)
{
ushort myvlanid;
myvlanid = ntohs(net_our_vlan);
if (myvlanid == (ushort)-1)
myvlanid = VLAN_NONE;
return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
VLAN_ETHER_HDR_SIZE;
}
int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
{
struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
ushort myvlanid;
myvlanid = ntohs(net_our_vlan);
if (myvlanid == (ushort)-1)
myvlanid = VLAN_NONE;
memcpy(et->et_dest, dest_ethaddr, 6);
memcpy(et->et_src, net_ethaddr, 6);
if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
et->et_protlen = htons(prot);
return ETHER_HDR_SIZE;
} else {
struct vlan_ethernet_hdr *vet =
(struct vlan_ethernet_hdr *)xet;
vet->vet_vlan_type = htons(PROT_VLAN);
vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
vet->vet_type = htons(prot);
return VLAN_ETHER_HDR_SIZE;
}
}
int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
{
ushort protlen;
memcpy(et->et_dest, addr, 6);
memcpy(et->et_src, net_ethaddr, 6);
protlen = ntohs(et->et_protlen);
if (protlen == PROT_VLAN) {
struct vlan_ethernet_hdr *vet =
(struct vlan_ethernet_hdr *)et;
vet->vet_type = htons(prot);
return VLAN_ETHER_HDR_SIZE;
} else if (protlen > 1514) {
et->et_protlen = htons(prot);
return ETHER_HDR_SIZE;
} else {
/* 802.2 + SNAP */
struct e802_hdr *et802 = (struct e802_hdr *)et;
et802->et_prot = htons(prot);
return E802_HDR_SIZE;
}
}
void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
{
struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
/*
* Construct an IP header.
*/
/* IP_HDR_SIZE / 4 (not including UDP) */
ip->ip_hl_v = 0x45;
ip->ip_tos = 0;
ip->ip_len = htons(IP_HDR_SIZE);
ip->ip_id = htons(net_ip_id++);
ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
ip->ip_ttl = 255;
ip->ip_sum = 0;
/* already in network byte order */
net_copy_ip((void *)&ip->ip_src, &source);
/* already in network byte order */
net_copy_ip((void *)&ip->ip_dst, &dest);
}
void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
int len)
{
struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
/*
* If the data is an odd number of bytes, zero the
* byte after the last byte so that the checksum
* will work.
*/
if (len & 1)
pkt[IP_UDP_HDR_SIZE + len] = 0;
net_set_ip_header(pkt, dest, net_ip);
ip->ip_len = htons(IP_UDP_HDR_SIZE + len);
ip->ip_p = IPPROTO_UDP;
ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
ip->udp_src = htons(sport);
ip->udp_dst = htons(dport);
ip->udp_len = htons(UDP_HDR_SIZE + len);
ip->udp_xsum = 0;
}
void copy_filename(char *dst, const char *src, int size)
{
if (*src && (*src == '"')) {
++src;
--size;
}
while ((--size > 0) && *src && (*src != '"'))
*dst++ = *src++;
*dst = '\0';
}
#if defined(CONFIG_CMD_NFS) || \
defined(CONFIG_CMD_SNTP) || \
defined(CONFIG_CMD_DNS)
/*
* make port a little random (1024-17407)
* This keeps the math somewhat trivial to compute, and seems to work with
* all supported protocols/clients/servers
*/
unsigned int random_port(void)
{
return 1024 + (get_timer(0) % 0x4000);
}
#endif
void ip_to_string(struct in_addr x, char *s)
{
x.s_addr = ntohl(x.s_addr);
sprintf(s, "%d.%d.%d.%d",
(int) ((x.s_addr >> 24) & 0xff),
(int) ((x.s_addr >> 16) & 0xff),
(int) ((x.s_addr >> 8) & 0xff),
(int) ((x.s_addr >> 0) & 0xff)
);
}
void vlan_to_string(ushort x, char *s)
{
x = ntohs(x);
if (x == (ushort)-1)
x = VLAN_NONE;
if (x == VLAN_NONE)
strcpy(s, "none");
else
sprintf(s, "%d", x & VLAN_IDMASK);
}
ushort string_to_vlan(const char *s)
{
ushort id;
if (s == NULL)
return htons(VLAN_NONE);
if (*s < '0' || *s > '9')
id = VLAN_NONE;
else
id = (ushort)simple_strtoul(s, NULL, 10);
return htons(id);
}
ushort getenv_vlan(char *var)
{
return string_to_vlan(getenv(var));
}