upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/sparc/cpu/leon3/usb_uhci.c

1195 lines
35 KiB

/*
* Part of this code has been derived from linux:
* Universal Host Controller Interface driver for USB (take II).
*
* (c) 1999-2001 Georg Acher, acher@in.tum.de (executive slave) (base guitar)
* Deti Fliegl, deti@fliegl.de (executive slave) (lead voice)
* Thomas Sailer, sailer@ife.ee.ethz.ch (chief consultant) (cheer leader)
* Roman Weissgaerber, weissg@vienna.at (virt root hub) (studio porter)
* (c) 2000 Yggdrasil Computing, Inc. (port of new PCI interface support
* from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
* (C) 2000 David Brownell, david-b@pacbell.net (usb-ohci.c)
*
* HW-initalization based on material of
*
* (C) Copyright 1999 Linus Torvalds
* (C) Copyright 1999 Johannes Erdfelt
* (C) Copyright 1999 Randy Dunlap
* (C) Copyright 1999 Gregory P. Smith
*
*
* Adapted for U-Boot:
* (C) Copyright 2001 Denis Peter, MPL AG Switzerland
* (C) Copyright 2008, Daniel Hellström, daniel@gaisler.com
* Added AMBA Plug&Play detection of GRUSB, modified interrupt handler.
* Added cache flushes where needed.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/**********************************************************************
* How it works:
* -------------
* The framelist / Transfer descriptor / Queue Heads are similar like
* in the linux usb_uhci.c.
*
* During initialization, the following skeleton is allocated in init_skel:
*
* framespecific | common chain
*
* framelist[]
* [ 0 ]-----> TD ---------\
* [ 1 ]-----> TD ----------> TD ------> QH -------> QH -------> QH ---> NULL
* ... TD ---------/
* [1023]-----> TD --------/
*
* ^^ ^^ ^^ ^^ ^^
* 7 TDs for 1 TD for Start of Start of End Chain
* INT (2-128ms) 1ms-INT CTRL Chain BULK Chain
*
*
* Since this is a bootloader, the isochronous transfer descriptor have been removed.
*
* Interrupt Transfers.
* --------------------
* For Interrupt transfers USB_MAX_TEMP_INT_TD Transfer descriptor are available. They
* will be inserted after the appropriate (depending the interval setting) skeleton TD.
* If an interrupt has been detected the dev->irqhandler is called. The status and number
* of transfered bytes is stored in dev->irq_status resp. dev->irq_act_len. If the
* dev->irqhandler returns 0, the interrupt TD is removed and disabled. If an 1 is returned,
* the interrupt TD will be reactivated.
*
* Control Transfers
* -----------------
* Control Transfers are issued by filling the tmp_td with the appropriate data and connect
* them to the qh_cntrl queue header. Before other control/bulk transfers can be issued,
* the programm has to wait for completion. This does not allows asynchronous data transfer.
*
* Bulk Transfers
* --------------
* Bulk Transfers are issued by filling the tmp_td with the appropriate data and connect
* them to the qh_bulk queue header. Before other control/bulk transfers can be issued,
* the programm has to wait for completion. This does not allows asynchronous data transfer.
*
*
*/
#include <common.h>
#include <ambapp.h>
#include <asm/leon.h>
#include <asm/leon3.h>
#include <asm/processor.h>
#ifdef CONFIG_USB_UHCI
#include <usb.h>
#include "usb_uhci.h"
DECLARE_GLOBAL_DATA_PTR;
#define USB_MAX_TEMP_TD 128 /* number of temporary TDs for bulk and control transfers */
#define USB_MAX_TEMP_INT_TD 32 /* number of temporary TDs for Interrupt transfers */
/*
#define out16r(address,data) (*(unsigned short *)(address) = \
(unsigned short)( \
(((unsigned short)(data)&0xff)<<8) | \
(((unsigned short)(data)&0xff00)>>8) \
))
*/
#define out16r(address,data) _out16r((unsigned int)(address), (unsigned short)(data))
void _out16r(unsigned int address, unsigned short data)
{
unsigned short val = (unsigned short)((((unsigned short)(data) & 0xff)
<< 8) | (((unsigned short)(data)
& 0xff00) >> 8));
#ifdef UHCI_DEBUG_REGS
printf("out16r(0x%lx,0x%04x = 0x%04x)\n", address, val, data);
#endif
*(unsigned short *)(address) = val;
}
#define out32r(address,data) _out32r((unsigned int)(address), (unsigned int)(data))
void _out32r(unsigned int address, unsigned int data)
{
unsigned int val = (unsigned int)((((unsigned int)(data) & 0x000000ff)
<< 24) | (((unsigned int)(data) &
0x0000ff00) << 8) |
(((unsigned int)(data) & 0x00ff0000)
>> 8) | (((unsigned int)(data) &
0xff000000) >> 24));
#ifdef UHCI_DEBUG_REGS
printf("out32r(0x%lx,0x%lx = 0x%lx)\n", address, val, data);
#endif
*(unsigned int *)address = val;
}
#define in16r(address) _in16r((unsigned int)(address))
unsigned short _in16r(unsigned int address)
{
unsigned short val = sparc_load_reg_cachemiss_word(address);
val = ((val << 8) & 0xff00) | ((val >> 8) & 0xff);
#ifdef UHCI_DEBUG_REGS
printf("in16r(0x%lx): 0x%04x\n", address, val);
#endif
return val;
}
#define in32r(address) _in32r((unsigned int)(address))
unsigned int _in32r(unsigned int address)
{
unsigned int val = sparc_load_reg_cachemiss(address);
val =
((val << 24) & 0xff000000) | ((val << 8) & 0xff0000) | ((val >> 8) &
0xff00) |
((val >> 24) & 0xff);
#ifdef UHCI_DEBUG_REGS
printf("in32r(0x%lx): 0x%08x\n", address, val);
#endif
return val;
}
#define READ32(address) sparc_load_reg_cachemiss((unsigned int)(address))
/*#define USB_UHCI_DEBUG*/
#undef USB_UHCI_DEBUG
void usb_show_td(int max);
#ifdef USB_UHCI_DEBUG
void grusb_show_regs(void);
#define USB_UHCI_PRINTF(fmt,args...) printf (fmt ,##args)
#else
#define USB_UHCI_PRINTF(fmt,args...)
#endif
static int grusb_irq = -1; /* irq vector, if -1 uhci is stopped / reseted */
unsigned int usb_base_addr; /* base address */
static uhci_td_t td_int[8] __attribute__ ((aligned(16))); /* Interrupt Transfer descriptors */
static uhci_qh_t qh_cntrl __attribute__ ((aligned(16))); /* control Queue Head */
static uhci_qh_t qh_bulk __attribute__ ((aligned(16))); /* bulk Queue Head */
static uhci_qh_t qh_end __attribute__ ((aligned(16))); /* end Queue Head */
static uhci_td_t td_last __attribute__ ((aligned(16))); /* last TD (linked with end chain) */
/* temporary tds */
static uhci_td_t tmp_td[USB_MAX_TEMP_TD] __attribute__ ((aligned(16))); /* temporary bulk/control td's */
static uhci_td_t tmp_int_td[USB_MAX_TEMP_INT_TD] __attribute__ ((aligned(16))); /* temporary interrupt td's */
static unsigned long framelist[1024] __attribute__ ((aligned(0x1000))); /* frame list */
static struct virt_root_hub rh; /* struct for root hub */
/**********************************************************************
* some forward decleration
*/
int uhci_submit_rh_msg(struct usb_device *dev, unsigned long pipe,
void *buffer, int transfer_len,
struct devrequest *setup);
/* fill a td with the approproiate data. Link, status, info and buffer
* are used by the USB controller itselfes, dev is used to identify the
* "connected" device
*/
void usb_fill_td(uhci_td_t * td, unsigned long link, unsigned long status,
unsigned long info, unsigned long buffer, unsigned long dev)
{
td->link = swap_32(link);
td->status = swap_32(status);
if ((info & UHCI_PID) == 0)
info |= USB_PID_OUT;
td->info = swap_32(info);
td->buffer = swap_32(buffer);
td->dev_ptr = dev;
}
/* fill a qh with the approproiate data. Head and element are used by the USB controller
* itselfes. As soon as a valid dev_ptr is filled, a td chain is connected to the qh.
* Please note, that after completion of the td chain, the entry element is removed /
* marked invalid by the USB controller.
*/
void usb_fill_qh(uhci_qh_t * qh, unsigned long head, unsigned long element)
{
qh->head = swap_32(head);
qh->element = swap_32(element);
qh->dev_ptr = 0L;
}
/* get the status of a td->status
*/
unsigned long usb_uhci_td_stat(unsigned long status)
{
unsigned long result = 0;
result |= (status & TD_CTRL_NAK) ? USB_ST_NAK_REC : 0;
result |= (status & TD_CTRL_STALLED) ? USB_ST_STALLED : 0;
result |= (status & TD_CTRL_DBUFERR) ? USB_ST_BUF_ERR : 0;
result |= (status & TD_CTRL_BABBLE) ? USB_ST_BABBLE_DET : 0;
result |= (status & TD_CTRL_CRCTIMEO) ? USB_ST_CRC_ERR : 0;
result |= (status & TD_CTRL_BITSTUFF) ? USB_ST_BIT_ERR : 0;
result |= (status & TD_CTRL_ACTIVE) ? USB_ST_NOT_PROC : 0;
return result;
}
/* get the status and the transfered len of a td chain.
* called from the completion handler
*/
int usb_get_td_status(uhci_td_t * td, struct usb_device *dev)
{
unsigned long temp, info;
unsigned long stat;
uhci_td_t *mytd = td;
if (dev->devnum == rh.devnum)
return 0;
dev->act_len = 0;
stat = 0;
do {
temp = swap_32((unsigned long)READ32(&mytd->status));
stat = usb_uhci_td_stat(temp);
info = swap_32((unsigned long)READ32(&mytd->info));
if (((info & 0xff) != USB_PID_SETUP) && (((info >> 21) & 0x7ff) != 0x7ff) && (temp & 0x7FF) != 0x7ff) { /* if not setup and not null data pack */
dev->act_len += (temp & 0x7FF) + 1; /* the transfered len is act_len + 1 */
}
if (stat) { /* status no ok */
dev->status = stat;
return -1;
}
temp = swap_32((unsigned long)READ32(&mytd->link));
mytd = (uhci_td_t *) (temp & 0xfffffff0);
} while ((temp & 0x1) == 0); /* process all TDs */
dev->status = stat;
return 0; /* Ok */
}
/*-------------------------------------------------------------------
* LOW LEVEL STUFF
* assembles QHs und TDs for control, bulk and iso
*-------------------------------------------------------------------*/
int dummy(void)
{
USB_UHCI_PRINTF("DUMMY\n");
return 0;
}
/* Submits a control message. That is a Setup, Data and Status transfer.
* Routine does not wait for completion.
*/
int submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int transfer_len, struct devrequest *setup)
{
unsigned long destination, status;
int maxsze = usb_maxpacket(dev, pipe);
unsigned long dataptr;
int len;
int pktsze;
int i = 0;
if (!maxsze) {
USB_UHCI_PRINTF
("uhci_submit_control_urb: pipesize for pipe %lx is zero\n",
pipe);
return -1;
}
if (((pipe >> 8) & 0x7f) == rh.devnum) {
/* this is the root hub -> redirect it */
return uhci_submit_rh_msg(dev, pipe, buffer, transfer_len,
setup);
}
USB_UHCI_PRINTF("uhci_submit_control start len %x, maxsize %x\n",
transfer_len, maxsze);
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; /* Setup stage */
/* 3 errors */
status = (pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | (3 << 27);
/* (urb->transfer_flags & USB_DISABLE_SPD ? 0 : TD_CTRL_SPD); */
/* Build the TD for the control request, try forever, 8 bytes of data */
usb_fill_td(&tmp_td[i], UHCI_PTR_TERM, status, destination | (7 << 21),
(unsigned long)setup, (unsigned long)dev);
#ifdef DEBUG_EXTRA
{
char *sp = (char *)setup;
printf("SETUP to pipe %lx: %x %x %x %x %x %x %x %x\n", pipe,
sp[0], sp[1], sp[2], sp[3], sp[4], sp[5], sp[6], sp[7]);
}
#endif
dataptr = (unsigned long)buffer;
len = transfer_len;
/* If direction is "send", change the frame from SETUP (0x2D)
to OUT (0xE1). Else change it from SETUP to IN (0x69). */
destination =
(pipe & PIPE_DEVEP_MASK) | ((pipe & USB_DIR_IN) ==
0 ? USB_PID_OUT : USB_PID_IN);
while (len > 0) {
/* data stage */
pktsze = len;
i++;
if (pktsze > maxsze)
pktsze = maxsze;
destination ^= 1 << TD_TOKEN_TOGGLE; /* toggle DATA0/1 */
usb_fill_td(&tmp_td[i], UHCI_PTR_TERM, status, destination | ((pktsze - 1) << 21), dataptr, (unsigned long)dev); /* Status, pktsze bytes of data */
tmp_td[i - 1].link = swap_32((unsigned long)&tmp_td[i]);
dataptr += pktsze;
len -= pktsze;
}
/* Build the final TD for control status */
/* It's only IN if the pipe is out AND we aren't expecting data */
destination &= ~UHCI_PID;
if (((pipe & USB_DIR_IN) == 0) || (transfer_len == 0))
destination |= USB_PID_IN;
else
destination |= USB_PID_OUT;
destination |= 1 << TD_TOKEN_TOGGLE; /* End in Data1 */
i++;
status &= ~TD_CTRL_SPD;
/* no limit on errors on final packet , 0 bytes of data */
usb_fill_td(&tmp_td[i], UHCI_PTR_TERM, status | TD_CTRL_IOC,
destination | (UHCI_NULL_DATA_SIZE << 21), 0,
(unsigned long)dev);
tmp_td[i - 1].link = swap_32((unsigned long)&tmp_td[i]); /* queue status td */
/* usb_show_td(i+1); */
USB_UHCI_PRINTF("uhci_submit_control end (%d tmp_tds used)\n", i);
/* first mark the control QH element terminated */
qh_cntrl.element = 0xffffffffL;
/* set qh active */
qh_cntrl.dev_ptr = (unsigned long)dev;
/* fill in tmp_td_chain */
dummy();
qh_cntrl.element = swap_32((unsigned long)&tmp_td[0]);
return 0;
}
/*-------------------------------------------------------------------
* Prepare TDs for bulk transfers.
*/
int submit_bulk_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int transfer_len)
{
unsigned long destination, status, info;
unsigned long dataptr;
int maxsze = usb_maxpacket(dev, pipe);
int len;
int i = 0;
if (transfer_len < 0) {
printf("Negative transfer length in submit_bulk\n");
return -1;
}
if (!maxsze)
return -1;
/* The "pipe" thing contains the destination in bits 8--18. */
destination = (pipe & PIPE_DEVEP_MASK) | usb_packetid(pipe);
/* 3 errors */
status = (pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | (3 << 27);
/* ((urb->transfer_flags & USB_DISABLE_SPD) ? 0 : TD_CTRL_SPD) | (3 << 27); */
/* Build the TDs for the bulk request */
len = transfer_len;
dataptr = (unsigned long)buffer;
do {
int pktsze = len;
if (pktsze > maxsze)
pktsze = maxsze;
/* pktsze bytes of data */
info =
destination | (((pktsze - 1) & UHCI_NULL_DATA_SIZE) << 21) |
(usb_gettoggle
(dev, usb_pipeendpoint(pipe),
usb_pipeout(pipe)) << TD_TOKEN_TOGGLE);
if ((len - pktsze) == 0)
status |= TD_CTRL_IOC; /* last one generates INT */
usb_fill_td(&tmp_td[i], UHCI_PTR_TERM, status, info, dataptr, (unsigned long)dev); /* Status, pktsze bytes of data */
if (i > 0)
tmp_td[i - 1].link = swap_32((unsigned long)&tmp_td[i]);
i++;
dataptr += pktsze;
len -= pktsze;
usb_dotoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));
} while (len > 0);
/* first mark the bulk QH element terminated */
qh_bulk.element = 0xffffffffL;
/* set qh active */
qh_bulk.dev_ptr = (unsigned long)dev;
/* fill in tmp_td_chain */
qh_bulk.element = swap_32((unsigned long)&tmp_td[0]);
return 0;
}
/* search a free interrupt td
*/
uhci_td_t *uhci_alloc_int_td(void)
{
int i;
for (i = 0; i < USB_MAX_TEMP_INT_TD; i++) {
if (tmp_int_td[i].dev_ptr == 0) /* no device assigned -> free TD */
return &tmp_int_td[i];
}
return NULL;
}
/*-------------------------------------------------------------------
* submits USB interrupt (ie. polling ;-)
*/
int submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int transfer_len, int interval)
{
int nint, n;
unsigned long status, destination;
unsigned long info, tmp;
uhci_td_t *mytd;
if (interval < 0 || interval >= 256)
return -1;
if (interval == 0)
nint = 0;
else {
for (nint = 0, n = 1; nint <= 8; nint++, n += n) { /* round interval down to 2^n */
if (interval < n) {
interval = n / 2;
break;
}
}
nint--;
}
USB_UHCI_PRINTF("Rounded interval to %i, chain %i\n", interval, nint);
mytd = uhci_alloc_int_td();
if (mytd == NULL) {
printf("No free INT TDs found\n");
return -1;
}
status = (pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | TD_CTRL_IOC | (3 << 27);
/* (urb->transfer_flags & USB_DISABLE_SPD ? 0 : TD_CTRL_SPD) | (3 << 27);
*/
destination =
(pipe & PIPE_DEVEP_MASK) | usb_packetid(pipe) |
(((transfer_len - 1) & 0x7ff) << 21);
info =
destination |
(usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)) <<
TD_TOKEN_TOGGLE);
tmp = swap_32(td_int[nint].link);
usb_fill_td(mytd, tmp, status, info, (unsigned long)buffer,
(unsigned long)dev);
/* Link it */
tmp = swap_32((unsigned long)mytd);
td_int[nint].link = tmp;
usb_dotoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));
return 0;
}
/**********************************************************************
* Low Level functions
*/
void reset_hc(void)
{
/* Global reset for 100ms */
out16r(usb_base_addr + USBPORTSC1, 0x0204);
out16r(usb_base_addr + USBPORTSC2, 0x0204);
out16r(usb_base_addr + USBCMD, USBCMD_GRESET | USBCMD_RS);
/* Turn off all interrupts */
out16r(usb_base_addr + USBINTR, 0);
mdelay(50);
out16r(usb_base_addr + USBCMD, 0);
mdelay(10);
}
void start_hc(void)
{
int timeout = 1000;
while (in16r(usb_base_addr + USBCMD) & USBCMD_HCRESET) {
if (!--timeout) {
printf("USBCMD_HCRESET timed out!\n");
break;
}
}
/* Turn on all interrupts */
out16r(usb_base_addr + USBINTR,
USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP);
/* Start at frame 0 */
out16r(usb_base_addr + USBFRNUM, 0);
/* set Framebuffer base address */
out32r(usb_base_addr + USBFLBASEADD, (unsigned long)&framelist);
/* Run and mark it configured with a 64-byte max packet */
out16r(usb_base_addr + USBCMD, USBCMD_RS | USBCMD_CF | USBCMD_MAXP);
}
/* Initialize the skeleton
*/
void usb_init_skel(void)
{
unsigned long temp;
int n;
for (n = 0; n < USB_MAX_TEMP_INT_TD; n++)
tmp_int_td[n].dev_ptr = 0L; /* no devices connected */
/* last td */
usb_fill_td(&td_last, UHCI_PTR_TERM, TD_CTRL_IOC, USB_PID_OUT, 0, 0L);
/* usb_fill_td(&td_last,UHCI_PTR_TERM,0,0,0); */
/* End Queue Header */
usb_fill_qh(&qh_end, UHCI_PTR_TERM, (unsigned long)&td_last);
/* Bulk Queue Header */
temp = (unsigned long)&qh_end;
usb_fill_qh(&qh_bulk, temp | UHCI_PTR_QH, UHCI_PTR_TERM);
/* Control Queue Header */
temp = (unsigned long)&qh_bulk;
usb_fill_qh(&qh_cntrl, temp | UHCI_PTR_QH, UHCI_PTR_TERM);
/* 1ms Interrupt td */
temp = (unsigned long)&qh_cntrl;
usb_fill_td(&td_int[0], temp | UHCI_PTR_QH, 0, USB_PID_OUT, 0, 0L);
temp = (unsigned long)&td_int[0];
for (n = 1; n < 8; n++)
usb_fill_td(&td_int[n], temp, 0, USB_PID_OUT, 0, 0L);
for (n = 0; n < 1024; n++) {
/* link all framelist pointers to one of the interrupts */
int m, o;
if ((n & 127) == 127)
framelist[n] = swap_32((unsigned long)&td_int[0]);
else
for (o = 1, m = 2; m <= 128; o++, m += m)
if ((n & (m - 1)) == ((m - 1) / 2))
framelist[n] =
swap_32((unsigned long)&td_int[o]);
}
}
/* check the common skeleton for completed transfers, and update the status
* of the "connected" device. Called from the IRQ routine.
*/
void usb_check_skel(void)
{
struct usb_device *dev;
/* start with the control qh */
if (qh_cntrl.dev_ptr != 0) { /* it's a device assigned check if this caused IRQ */
dev = (struct usb_device *)qh_cntrl.dev_ptr;
/* Flush cache now that hardware updated DATA and TDs/QHs */
if (!gd->arch.snooping_avail)
sparc_dcache_flush_all();
usb_get_td_status(&tmp_td[0], dev); /* update status */
if (!(dev->status & USB_ST_NOT_PROC)) { /* is not active anymore, disconnect devices */
qh_cntrl.dev_ptr = 0;
}
}
/* now process the bulk */
if (qh_bulk.dev_ptr != 0) { /* it's a device assigned check if this caused IRQ */
dev = (struct usb_device *)qh_bulk.dev_ptr;
/* Flush cache now that hardware updated DATA and TDs/QHs */
if (!gd->arch.snooping_avail)
sparc_dcache_flush_all();
usb_get_td_status(&tmp_td[0], dev); /* update status */
if (!(dev->status & USB_ST_NOT_PROC)) { /* is not active anymore, disconnect devices */
qh_bulk.dev_ptr = 0;
}
}
}
/* check the interrupt chain, ubdate the status of the appropriate device,
* call the appropriate irqhandler and reactivate the TD if the irqhandler
* returns with 1
*/
void usb_check_int_chain(void)
{
int i, res;
unsigned long link, status;
struct usb_device *dev;
uhci_td_t *td, *prevtd;
for (i = 0; i < 8; i++) {
prevtd = &td_int[i]; /* the first previous td is the skeleton td */
link = swap_32(READ32(&td_int[i].link)) & 0xfffffff0; /* next in chain */
td = (uhci_td_t *) link; /* assign it */
/* all interrupt TDs are finally linked to the td_int[0].
* so we process all until we find the td_int[0].
* if int0 chain points to a QH, we're also done
*/
while (((i > 0) && (link != (unsigned long)&td_int[0])) ||
((i == 0)
&& !(swap_32(READ32(&td->link)) & UHCI_PTR_QH))) {
/* check if a device is assigned with this td */
status = swap_32(READ32(&td->status));
if ((td->dev_ptr != 0L) && !(status & TD_CTRL_ACTIVE)) {
/* td is not active and a device is assigned -> call irqhandler */
dev = (struct usb_device *)td->dev_ptr;
dev->irq_act_len = ((status & 0x7FF) == 0x7FF) ? 0 : (status & 0x7FF) + 1; /* transfered length */
dev->irq_status = usb_uhci_td_stat(status); /* get status */
res = dev->irq_handle(dev); /* call irqhandler */
if (res == 1) {
/* reactivate */
status |= TD_CTRL_ACTIVE;
td->status = swap_32(status);
prevtd = td; /* previous td = this td */
} else {
prevtd->link = READ32(&td->link); /* link previous td directly to the nex td -> unlinked */
/* remove device pointer */
td->dev_ptr = 0L;
}
} /* if we call the irq handler */
link = swap_32(READ32(&td->link)) & 0xfffffff0; /* next in chain */
td = (uhci_td_t *) link; /* assign it */
} /* process all td in this int chain */
} /* next interrupt chain */
}
/* usb interrupt service routine.
*/
void handle_usb_interrupt(void)
{
unsigned short status;
static int error = 0;
/*
* Read the interrupt status, and write it back to clear the
* interrupt cause
*/
status = in16r(usb_base_addr + USBSTS);
if (!status) /* shared interrupt, not mine */
return;
if (status != 1) {
/* remove host controller halted state */
if ((status & (USBSTS_HCPE | USBSTS_HCH)) ==
(USBSTS_HCPE | USBSTS_HCH)) {
/* Stop due to bug in driver, or hardware */
out16r(usb_base_addr + USBSTS, status);
out16r(usb_base_addr + USBCMD,
USBCMD_HCRESET | USBCMD_GRESET);
printf
("GRUSB: HW detected error(s) in USB Descriptors (STS: 0x%x)\n",
status);
usb_show_td(8);
return;
} else if ((status & 0x20)
&& ((in16r(usb_base_addr + USBCMD) & USBCMD_RS) ==
0)) {
if (error < 10) {
out16r(usb_base_addr + USBCMD,
USBCMD_RS | in16r(usb_base_addr +
USBCMD));
error++;
}
} else
error = 0;
}
usb_check_int_chain(); /* call interrupt handlers for int tds */
usb_check_skel(); /* call completion handler for common transfer routines */
out16r(usb_base_addr + USBSTS, status);
}
/* init uhci
*/
int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
{
ambapp_ahbdev ahbdev;
/* Find GRUSB core using AMBA Plug&Play information */
if (ambapp_ahbslv_find(&ambapp_plb, VENDOR_GAISLER, GAISLER_UHCI,
CONFIG_SYS_GRLIB_GRUSB_INDEX, &ahbdev) != 1) {
printf("USB UHCI: Failed to find GRUSB controller\n");
return -1;
}
usb_base_addr = ahbdev.address[0];
grusb_irq = ahbdev.irq;
/*
usb_base_addr = 0xfffa0000;
grusb_irq = 10;
*/
#ifdef USB_UHCI_DEBUG
grusb_show_regs();
#endif
memset(td_int, 0, sizeof(td_int));
memset(tmp_td, 0, sizeof(tmp_td));
memset(tmp_int_td, 0, sizeof(tmp_int_td));
memset(&qh_cntrl, 0, sizeof(qh_cntrl));
memset(&qh_end, 0, sizeof(qh_end));
memset(&td_last, 0, sizeof(td_last));
irq_free_handler(grusb_irq);
USB_UHCI_PRINTF("GRUSB: at 0x%lx irq %d\n", usb_base_addr, grusb_irq);
rh.devnum = 0;
usb_init_skel();
reset_hc();
start_hc();
irq_install_handler(grusb_irq,
(interrupt_handler_t *) handle_usb_interrupt, NULL);
return 0;
}
/* stop uhci
*/
int usb_lowlevel_stop(int index)
{
if (grusb_irq == -1)
return 1;
irq_free_handler(grusb_irq);
reset_hc();
grusb_irq = -1;
return 0;
}
/*******************************************************************************************
* Virtual Root Hub
* Since the uhci does not have a real HUB, we simulate one ;-)
*/
#undef USB_RH_DEBUG
#ifdef USB_RH_DEBUG
#define USB_RH_PRINTF(fmt,args...) printf (fmt ,##args)
static void usb_display_wValue(unsigned short wValue, unsigned short wIndex);
static void usb_display_Req(unsigned short req);
#else
#define USB_RH_PRINTF(fmt,args...)
static void usb_display_wValue(unsigned short wValue, unsigned short wIndex)
{
}
static void usb_display_Req(unsigned short req)
{
}
#endif
#define WANT_USB_ROOT_HUB_HUB_DES
#include <usbroothubdes.h>
#undef WANT_USB_ROOT_HUB_HUB_DES
/*
* Root Hub Control Pipe (interrupt Pipes are not supported)
*/
int uhci_submit_rh_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
int transfer_len, struct devrequest *cmd)
{
void *data = buffer;
int leni = transfer_len;
int len = 0;
int status = 0;
int stat = 0;
int i;
unsigned short cstatus;
unsigned short bmRType_bReq;
unsigned short wValue;
unsigned short wIndex;
unsigned short wLength;
if (usb_pipeint(pipe)) {
printf("Root-Hub submit IRQ: NOT implemented\n");
return 0;
}
bmRType_bReq = cmd->requesttype | cmd->request << 8;
wValue = swap_16(cmd->value);
wIndex = swap_16(cmd->index);
wLength = swap_16(cmd->length);
usb_display_Req(bmRType_bReq);
for (i = 0; i < 8; i++)
rh.c_p_r[i] = 0;
USB_RH_PRINTF("Root-Hub: adr: %2x cmd(%1x): %02x%02x %04x %04x %04x\n",
dev->devnum, 8, cmd->requesttype, cmd->request, wValue,
wIndex, wLength);
switch (bmRType_bReq) {
/* Request Destination:
without flags: Device,
RH_INTERFACE: interface,
RH_ENDPOINT: endpoint,
RH_CLASS means HUB here,
RH_OTHER | RH_CLASS almost ever means HUB_PORT here
*/
case RH_GET_STATUS:
*(unsigned short *)data = swap_16(1);
len = 2;
break;
case RH_GET_STATUS | RH_INTERFACE:
*(unsigned short *)data = swap_16(0);
len = 2;
break;
case RH_GET_STATUS | RH_ENDPOINT:
*(unsigned short *)data = swap_16(0);
len = 2;
break;
case RH_GET_STATUS | RH_CLASS:
*(unsigned long *)data = swap_32(0);
len = 4;
break; /* hub power ** */
case RH_GET_STATUS | RH_OTHER | RH_CLASS:
status = in16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1));
cstatus = ((status & USBPORTSC_CSC) >> (1 - 0)) |
((status & USBPORTSC_PEC) >> (3 - 1)) |
(rh.c_p_r[wIndex - 1] << (0 + 4));
status = (status & USBPORTSC_CCS) | ((status & USBPORTSC_PE) >> (2 - 1)) | ((status & USBPORTSC_SUSP) >> (12 - 2)) | ((status & USBPORTSC_PR) >> (9 - 4)) | (1 << 8) | /* power on ** */
((status & USBPORTSC_LSDA) << (-8 + 9));
*(unsigned short *)data = swap_16(status);
*(unsigned short *)(data + 2) = swap_16(cstatus);
len = 4;
break;
case RH_CLEAR_FEATURE | RH_ENDPOINT:
switch (wValue) {
case (RH_ENDPOINT_STALL):
len = 0;
break;
}
break;
case RH_CLEAR_FEATURE | RH_CLASS:
switch (wValue) {
case (RH_C_HUB_OVER_CURRENT):
len = 0; /* hub power over current ** */
break;
}
break;
case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS:
usb_display_wValue(wValue, wIndex);
switch (wValue) {
case (RH_PORT_ENABLE):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) & ~USBPORTSC_PE;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
case (RH_PORT_SUSPEND):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) & ~USBPORTSC_SUSP;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
case (RH_PORT_POWER):
len = 0; /* port power ** */
break;
case (RH_C_PORT_CONNECTION):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) | USBPORTSC_CSC;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
case (RH_C_PORT_ENABLE):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) | USBPORTSC_PEC;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
case (RH_C_PORT_SUSPEND):
/*** WR_RH_PORTSTAT(RH_PS_PSSC); */
len = 0;
break;
case (RH_C_PORT_OVER_CURRENT):
len = 0;
break;
case (RH_C_PORT_RESET):
rh.c_p_r[wIndex - 1] = 0;
len = 0;
break;
}
break;
case RH_SET_FEATURE | RH_OTHER | RH_CLASS:
usb_display_wValue(wValue, wIndex);
switch (wValue) {
case (RH_PORT_SUSPEND):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) | USBPORTSC_SUSP;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
case (RH_PORT_RESET):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) | USBPORTSC_PR;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
mdelay(10);
status = (status & 0xfff5) & ~USBPORTSC_PR;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
udelay(10);
status = (status & 0xfff5) | USBPORTSC_PE;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
mdelay(10);
status = (status & 0xfff5) | 0xa;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
case (RH_PORT_POWER):
len = 0; /* port power ** */
break;
case (RH_PORT_ENABLE):
status =
in16r(usb_base_addr + USBPORTSC1 +
2 * (wIndex - 1));
status = (status & 0xfff5) | USBPORTSC_PE;
out16r(usb_base_addr + USBPORTSC1 + 2 * (wIndex - 1),
status);
len = 0;
break;
}
break;
case RH_SET_ADDRESS:
rh.devnum = wValue;
len = 0;
break;
case RH_GET_DESCRIPTOR:
switch ((wValue & 0xff00) >> 8) {
case (0x01): /* device descriptor */
i = sizeof(root_hub_config_des);
status = i > wLength ? wLength : i;
len = leni > status ? status : leni;
memcpy(data, root_hub_dev_des, len);
break;
case (0x02): /* configuration descriptor */
i = sizeof(root_hub_config_des);
status = i > wLength ? wLength : i;
len = leni > status ? status : leni;
memcpy(data, root_hub_config_des, len);
break;
case (0x03): /*string descriptors */
if (wValue == 0x0300) {
i = sizeof(root_hub_str_index0);
status = i > wLength ? wLength : i;
len = leni > status ? status : leni;
memcpy(data, root_hub_str_index0, len);
break;
}
if (wValue == 0x0301) {
i = sizeof(root_hub_str_index1);
status = i > wLength ? wLength : i;
len = leni > status ? status : leni;
memcpy(data, root_hub_str_index1, len);
break;
}
stat = USB_ST_STALLED;
}
break;
case RH_GET_DESCRIPTOR | RH_CLASS:
root_hub_hub_des[2] = 2;
i = sizeof(root_hub_hub_des);
status = i > wLength ? wLength : i;
len = leni > status ? status : leni;
memcpy(data, root_hub_hub_des, len);
break;
case RH_GET_CONFIGURATION:
*(unsigned char *)data = 0x01;
len = 1;
break;
case RH_SET_CONFIGURATION:
len = 0;
break;
default:
stat = USB_ST_STALLED;
}
USB_RH_PRINTF("Root-Hub stat %lx port1: %x port2: %x\n\n", stat,
in16r(usb_base_addr + USBPORTSC1),
in16r(usb_base_addr + USBPORTSC2));
dev->act_len = len;
dev->status = stat;
return stat;
}
/********************************************************************************
* Some Debug Routines
*/
#ifdef USB_RH_DEBUG
static void usb_display_Req(unsigned short req)
{
USB_RH_PRINTF("- Root-Hub Request: ");
switch (req) {
case RH_GET_STATUS:
USB_RH_PRINTF("Get Status ");
break;
case RH_GET_STATUS | RH_INTERFACE:
USB_RH_PRINTF("Get Status Interface ");
break;
case RH_GET_STATUS | RH_ENDPOINT:
USB_RH_PRINTF("Get Status Endpoint ");
break;
case RH_GET_STATUS | RH_CLASS:
USB_RH_PRINTF("Get Status Class");
break; /* hub power ** */
case RH_GET_STATUS | RH_OTHER | RH_CLASS:
USB_RH_PRINTF("Get Status Class Others");
break;
case RH_CLEAR_FEATURE | RH_ENDPOINT:
USB_RH_PRINTF("Clear Feature Endpoint ");
break;
case RH_CLEAR_FEATURE | RH_CLASS:
USB_RH_PRINTF("Clear Feature Class ");
break;
case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS:
USB_RH_PRINTF("Clear Feature Other Class ");
break;
case RH_SET_FEATURE | RH_OTHER | RH_CLASS:
USB_RH_PRINTF("Set Feature Other Class ");
break;
case RH_SET_ADDRESS:
USB_RH_PRINTF("Set Address ");
break;
case RH_GET_DESCRIPTOR:
USB_RH_PRINTF("Get Descriptor ");
break;
case RH_GET_DESCRIPTOR | RH_CLASS:
USB_RH_PRINTF("Get Descriptor Class ");
break;
case RH_GET_CONFIGURATION:
USB_RH_PRINTF("Get Configuration ");
break;
case RH_SET_CONFIGURATION:
USB_RH_PRINTF("Get Configuration ");
break;
default:
USB_RH_PRINTF("****UNKNOWN**** 0x%04X ", req);
}
USB_RH_PRINTF("\n");
}
static void usb_display_wValue(unsigned short wValue, unsigned short wIndex)
{
switch (wValue) {
case (RH_PORT_ENABLE):
USB_RH_PRINTF("Root-Hub: Enable Port %d\n", wIndex);
break;
case (RH_PORT_SUSPEND):
USB_RH_PRINTF("Root-Hub: Suspend Port %d\n", wIndex);
break;
case (RH_PORT_POWER):
USB_RH_PRINTF("Root-Hub: Port Power %d\n", wIndex);
break;
case (RH_C_PORT_CONNECTION):
USB_RH_PRINTF("Root-Hub: C Port Connection Port %d\n", wIndex);
break;
case (RH_C_PORT_ENABLE):
USB_RH_PRINTF("Root-Hub: C Port Enable Port %d\n", wIndex);
break;
case (RH_C_PORT_SUSPEND):
USB_RH_PRINTF("Root-Hub: C Port Suspend Port %d\n", wIndex);
break;
case (RH_C_PORT_OVER_CURRENT):
USB_RH_PRINTF("Root-Hub: C Port Over Current Port %d\n",
wIndex);
break;
case (RH_C_PORT_RESET):
USB_RH_PRINTF("Root-Hub: C Port reset Port %d\n", wIndex);
break;
default:
USB_RH_PRINTF("Root-Hub: unknown %x %x\n", wValue, wIndex);
break;
}
}
#endif
/*#ifdef USB_UHCI_DEBUG*/
static int usb_display_td(uhci_td_t * td)
{
unsigned long tmp;
int valid;
printf("TD at %p:\n", td);
tmp = swap_32(READ32(&td->link));
printf("Link points to 0x%08lX, %s first, %s, %s\n", tmp & 0xfffffff0,
((tmp & 0x4) == 0x4) ? "Depth" : "Breath",
((tmp & 0x2) == 0x2) ? "QH" : "TD",
((tmp & 0x1) == 0x1) ? "invalid" : "valid");
valid = ((tmp & 0x1) == 0x0);
tmp = swap_32(READ32(&td->status));
printf
(" %s %ld Errors %s %s %s \n %s %s %s %s %s %s\n Len 0x%lX\n",
(((tmp >> 29) & 0x1) == 0x1) ? "SPD Enable" : "SPD Disable",
((tmp >> 28) & 0x3),
(((tmp >> 26) & 0x1) == 0x1) ? "Low Speed" : "Full Speed",
(((tmp >> 25) & 0x1) == 0x1) ? "ISO " : "",
(((tmp >> 24) & 0x1) == 0x1) ? "IOC " : "",
(((tmp >> 23) & 0x1) == 0x1) ? "Active " : "Inactive ",
(((tmp >> 22) & 0x1) == 0x1) ? "Stalled" : "",
(((tmp >> 21) & 0x1) == 0x1) ? "Data Buffer Error" : "",
(((tmp >> 20) & 0x1) == 0x1) ? "Babble" : "",
(((tmp >> 19) & 0x1) == 0x1) ? "NAK" : "",
(((tmp >> 18) & 0x1) == 0x1) ? "Bitstuff Error" : "",
(tmp & 0x7ff));
tmp = swap_32(READ32(&td->info));
printf(" MaxLen 0x%lX\n", ((tmp >> 21) & 0x7FF));
printf(" %sEndpoint 0x%lX Dev Addr 0x%lX PID 0x%lX\n",
((tmp >> 19) & 0x1) == 0x1 ? "TOGGLE " : "", ((tmp >> 15) & 0xF),
((tmp >> 8) & 0x7F), tmp & 0xFF);
tmp = swap_32(READ32(&td->buffer));
printf(" Buffer 0x%08lX\n", tmp);
printf(" DEV %08lX\n", td->dev_ptr);
return valid;
}
void usb_show_td(int max)
{
int i;
if (max > 0) {
for (i = 0; i < max; i++) {
usb_display_td(&tmp_td[i]);
}
} else {
i = 0;
do {
printf("tmp_td[%d]\n", i);
} while (usb_display_td(&tmp_td[i++]));
}
}
void grusb_show_regs(void)
{
unsigned int tmp;
tmp = in16r(usb_base_addr + USBCMD);
printf(" USBCMD: 0x%04x\n", tmp);
tmp = in16r(usb_base_addr + USBSTS);
printf(" USBSTS: 0x%04x\n", tmp);
tmp = in16r(usb_base_addr + USBINTR);
printf(" USBINTR: 0x%04x\n", tmp);
tmp = in16r(usb_base_addr + USBFRNUM);
printf(" FRNUM: 0x%04x\n", tmp);
tmp = in32r(usb_base_addr + USBFLBASEADD);
printf(" FLBASEADD: 0x%08x\n", tmp);
tmp = in16r(usb_base_addr + USBSOF);
printf(" SOFMOD: 0x%04x\n", tmp);
tmp = in16r(usb_base_addr + USBPORTSC1);
printf(" PORTSC1: 0x%04x\n", tmp);
}
/*#endif*/
#endif /* CONFIG_USB_UHCI */
/* EOF */