|
|
|
/*
|
|
|
|
* (C) Copyright 2006-2008
|
|
|
|
* Stefan Roese, DENX Software Engineering, sr@denx.de.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <nand.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <linux/mtd/nand_ecc.h>
|
|
|
|
|
|
|
|
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
|
|
|
|
static struct mtd_info *mtd;
|
|
|
|
static struct nand_chip nand_chip;
|
|
|
|
|
|
|
|
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
|
|
|
|
CONFIG_SYS_NAND_ECCSIZE)
|
|
|
|
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
|
|
|
|
|
|
|
|
|
|
|
|
#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
|
|
|
|
/*
|
|
|
|
* NAND command for small page NAND devices (512)
|
|
|
|
*/
|
|
|
|
static int nand_command(int block, int page, uint32_t offs,
|
|
|
|
u8 cmd)
|
|
|
|
{
|
|
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
|
|
|
|
|
|
|
|
while (!this->dev_ready(mtd))
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Begin command latch cycle */
|
|
|
|
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
|
|
/* Set ALE and clear CLE to start address cycle */
|
|
|
|
/* Column address */
|
|
|
|
this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
|
|
this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
|
|
|
|
this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
|
|
|
|
NAND_CTRL_ALE); /* A[24:17] */
|
|
|
|
#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
|
|
|
|
/* One more address cycle for devices > 32MiB */
|
|
|
|
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
|
|
|
|
NAND_CTRL_ALE); /* A[28:25] */
|
|
|
|
#endif
|
|
|
|
/* Latch in address */
|
|
|
|
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait a while for the data to be ready
|
|
|
|
*/
|
|
|
|
while (!this->dev_ready(mtd))
|
|
|
|
;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* NAND command for large page NAND devices (2k)
|
|
|
|
*/
|
|
|
|
static int nand_command(int block, int page, uint32_t offs,
|
|
|
|
u8 cmd)
|
|
|
|
{
|
|
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
|
|
|
|
void (*hwctrl)(struct mtd_info *mtd, int cmd,
|
|
|
|
unsigned int ctrl) = this->cmd_ctrl;
|
|
|
|
|
|
|
|
while (!this->dev_ready(mtd))
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Emulate NAND_CMD_READOOB */
|
|
|
|
if (cmd == NAND_CMD_READOOB) {
|
|
|
|
offs += CONFIG_SYS_NAND_PAGE_SIZE;
|
|
|
|
cmd = NAND_CMD_READ0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Shift the offset from byte addressing to word addressing. */
|
mtd: nand: force NAND_CMD_READID onto 8-bit bus
As per following Sections in ONFI Spec, NAND_CMD_READID should use only
lower 8-bit for transfering command, address and data even on x16 NAND device.
*Section: Target Initialization"
"The Read ID and Read Parameter Page commands only use the lower 8-bits of the
data bus. The host shall not issue commands that use a word data width on x16
devices until the host determines the device supports a 16-bit data bus width
in the parameter page."
*Section: Bus Width Requirements*
"When the host supports a 16-bit bus width, only data is transferred at the
16-bit width. All address and command line transfers shall use only the lower
8-bits of the data bus. During command transfers, the host may place any value
on the upper 8-bits of the data bus. During address transfers, the host shall
set the upper 8-bits of the data bus to 00h."
Thus porting following commit from linux-kernel to ensure that column address
is not altered to align to x16 bus when issuing NAND_CMD_READID command.
commit 3dad2344e92c6e1aeae42df1c4824f307c51bcc7
mtd: nand: force NAND_CMD_READID onto 8-bit bus
Author: Brian Norris <computersforpeace@gmail.com> (preserving authorship)
The NAND command helpers tend to automatically shift the column address
for x16 bus devices, since most commands expect a word address, not a
byte address. The Read ID command, however, expects an 8-bit address
(i.e., 0x00, 0x20, or 0x40 should not be translated to 0x00, 0x10, or
0x20).
This fixes the column address for a few drivers which imitate the
nand_base defaults.
Signed-off-by: Pekon Gupta <pekon@ti.com>
11 years ago
|
|
|
if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
|
|
|
|
offs >>= 1;
|
|
|
|
|
|
|
|
/* Begin command latch cycle */
|
|
|
|
hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
|
|
/* Set ALE and clear CLE to start address cycle */
|
|
|
|
/* Column address */
|
|
|
|
hwctrl(mtd, offs & 0xff,
|
|
|
|
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
|
|
|
|
hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
|
|
|
|
/* Row address */
|
|
|
|
hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
|
|
|
|
hwctrl(mtd, ((page_addr >> 8) & 0xff),
|
|
|
|
NAND_CTRL_ALE); /* A[27:20] */
|
|
|
|
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
|
|
|
|
/* One more address cycle for devices > 128MiB */
|
|
|
|
hwctrl(mtd, (page_addr >> 16) & 0x0f,
|
|
|
|
NAND_CTRL_ALE); /* A[31:28] */
|
|
|
|
#endif
|
|
|
|
/* Latch in address */
|
|
|
|
hwctrl(mtd, NAND_CMD_READSTART,
|
|
|
|
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
|
|
hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait a while for the data to be ready
|
|
|
|
*/
|
|
|
|
while (!this->dev_ready(mtd))
|
|
|
|
;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int nand_is_bad_block(int block)
|
|
|
|
{
|
|
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
u_char bb_data[2];
|
|
|
|
|
|
|
|
nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
|
|
|
|
NAND_CMD_READOOB);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read one byte (or two if it's a 16 bit chip).
|
|
|
|
*/
|
|
|
|
if (this->options & NAND_BUSWIDTH_16) {
|
|
|
|
this->read_buf(mtd, bb_data, 2);
|
|
|
|
if (bb_data[0] != 0xff || bb_data[1] != 0xff)
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
this->read_buf(mtd, bb_data, 1);
|
|
|
|
if (bb_data[0] != 0xff)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(CONFIG_SYS_NAND_HW_ECC_OOBFIRST)
|
|
|
|
static int nand_read_page(int block, int page, uchar *dst)
|
|
|
|
{
|
|
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
u_char ecc_calc[ECCTOTAL];
|
|
|
|
u_char ecc_code[ECCTOTAL];
|
|
|
|
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
|
|
|
|
int i;
|
|
|
|
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
|
|
|
|
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
|
|
|
|
int eccsteps = ECCSTEPS;
|
|
|
|
uint8_t *p = dst;
|
|
|
|
|
|
|
|
nand_command(block, page, 0, NAND_CMD_READOOB);
|
|
|
|
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
|
|
|
|
nand_command(block, page, 0, NAND_CMD_READ0);
|
|
|
|
|
|
|
|
/* Pick the ECC bytes out of the oob data */
|
|
|
|
for (i = 0; i < ECCTOTAL; i++)
|
|
|
|
ecc_code[i] = oob_data[nand_ecc_pos[i]];
|
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
this->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
this->read_buf(mtd, p, eccsize);
|
|
|
|
this->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static int nand_read_page(int block, int page, void *dst)
|
|
|
|
{
|
|
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
|
|
u_char ecc_calc[ECCTOTAL];
|
|
|
|
u_char ecc_code[ECCTOTAL];
|
|
|
|
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
|
|
|
|
int i;
|
|
|
|
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
|
|
|
|
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
|
|
|
|
int eccsteps = ECCSTEPS;
|
|
|
|
uint8_t *p = dst;
|
|
|
|
|
|
|
|
nand_command(block, page, 0, NAND_CMD_READ0);
|
|
|
|
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
if (this->ecc.mode != NAND_ECC_SOFT)
|
|
|
|
this->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
this->read_buf(mtd, p, eccsize);
|
|
|
|
this->ecc.calculate(mtd, p, &ecc_calc[i]);
|
|
|
|
}
|
|
|
|
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
|
|
|
|
|
|
|
|
/* Pick the ECC bytes out of the oob data */
|
|
|
|
for (i = 0; i < ECCTOTAL; i++)
|
|
|
|
ecc_code[i] = oob_data[nand_ecc_pos[i]];
|
|
|
|
|
|
|
|
eccsteps = ECCSTEPS;
|
|
|
|
p = dst;
|
|
|
|
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
|
|
/* No chance to do something with the possible error message
|
|
|
|
* from correct_data(). We just hope that all possible errors
|
|
|
|
* are corrected by this routine.
|
|
|
|
*/
|
|
|
|
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPL_UBI
|
|
|
|
/*
|
|
|
|
* Temporary storage for non NAND page aligned and non NAND page sized
|
|
|
|
* reads. Note: This does not support runtime detected FLASH yet, but
|
|
|
|
* that should be reasonably easy to fix by making the buffer large
|
|
|
|
* enough :)
|
|
|
|
*/
|
|
|
|
static u8 scratch_buf[CONFIG_SYS_NAND_PAGE_SIZE];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* nand_spl_read_block - Read data from physical eraseblock into a buffer
|
|
|
|
* @block: Number of the physical eraseblock
|
|
|
|
* @offset: Data offset from the start of @peb
|
|
|
|
* @len: Data size to read
|
|
|
|
* @dst: Address of the destination buffer
|
|
|
|
*
|
|
|
|
* This could be further optimized if we'd have a subpage read
|
|
|
|
* function in the simple code. On NAND which allows subpage reads
|
|
|
|
* this would spare quite some time to readout e.g. the VID header of
|
|
|
|
* UBI.
|
|
|
|
*
|
|
|
|
* Notes:
|
|
|
|
* @offset + @len are not allowed to be larger than a physical
|
|
|
|
* erase block. No sanity check done for simplicity reasons.
|
|
|
|
*
|
|
|
|
* To support runtime detected flash this needs to be extended by
|
|
|
|
* information about the actual flash geometry, but thats beyond the
|
|
|
|
* scope of this effort and for most applications where fast boot is
|
|
|
|
* required it is not an issue anyway.
|
|
|
|
*/
|
|
|
|
int nand_spl_read_block(int block, int offset, int len, void *dst)
|
|
|
|
{
|
|
|
|
int page, read;
|
|
|
|
|
|
|
|
/* Calculate the page number */
|
|
|
|
page = offset / CONFIG_SYS_NAND_PAGE_SIZE;
|
|
|
|
|
|
|
|
/* Offset to the start of a flash page */
|
|
|
|
offset = offset % CONFIG_SYS_NAND_PAGE_SIZE;
|
|
|
|
|
|
|
|
while (len) {
|
|
|
|
/*
|
|
|
|
* Non page aligned reads go to the scratch buffer.
|
|
|
|
* Page aligned reads go directly to the destination.
|
|
|
|
*/
|
|
|
|
if (offset || len < CONFIG_SYS_NAND_PAGE_SIZE) {
|
|
|
|
nand_read_page(block, page, scratch_buf);
|
|
|
|
read = min(len, CONFIG_SYS_NAND_PAGE_SIZE - offset);
|
|
|
|
memcpy(dst, scratch_buf + offset, read);
|
|
|
|
offset = 0;
|
|
|
|
} else {
|
|
|
|
nand_read_page(block, page, dst);
|
|
|
|
read = CONFIG_SYS_NAND_PAGE_SIZE;
|
|
|
|
}
|
|
|
|
page++;
|
|
|
|
len -= read;
|
|
|
|
dst += read;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
|
|
|
|
{
|
|
|
|
unsigned int block, lastblock;
|
|
|
|
unsigned int page;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* offs has to be aligned to a page address!
|
|
|
|
*/
|
|
|
|
block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
|
|
|
|
lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
|
|
|
|
page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
|
|
|
|
|
|
|
|
while (block <= lastblock) {
|
|
|
|
if (!nand_is_bad_block(block)) {
|
|
|
|
/*
|
|
|
|
* Skip bad blocks
|
|
|
|
*/
|
|
|
|
while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
|
|
|
|
nand_read_page(block, page, dst);
|
|
|
|
dst += CONFIG_SYS_NAND_PAGE_SIZE;
|
|
|
|
page++;
|
|
|
|
}
|
|
|
|
|
|
|
|
page = 0;
|
|
|
|
} else {
|
|
|
|
lastblock++;
|
|
|
|
}
|
|
|
|
|
|
|
|
block++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* nand_init() - initialize data to make nand usable by SPL */
|
|
|
|
void nand_init(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Init board specific nand support
|
|
|
|
*/
|
|
|
|
mtd = nand_to_mtd(&nand_chip);
|
|
|
|
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
|
|
|
|
(void __iomem *)CONFIG_SYS_NAND_BASE;
|
|
|
|
board_nand_init(&nand_chip);
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPL_NAND_SOFTECC
|
|
|
|
if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
|
|
|
|
nand_chip.ecc.calculate = nand_calculate_ecc;
|
|
|
|
nand_chip.ecc.correct = nand_correct_data;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (nand_chip.select_chip)
|
|
|
|
nand_chip.select_chip(mtd, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unselect after operation */
|
|
|
|
void nand_deselect(void)
|
|
|
|
{
|
|
|
|
if (nand_chip.select_chip)
|
|
|
|
nand_chip.select_chip(mtd, -1);
|
|
|
|
}
|